
CyExec∗: Automatic Generation of Randomized Cyber Range Scenarios

Ryotaro Nakata a and Akira Otsuka b

Institute of Information Security, Yokohama, Kanagawa, Japan

Keywords: Information Security Education, Cyber Security, Cyber Range Scenario, Randomization, Docker Container.

Abstract: With the development of information technology, the need for information security education is increasing, and
the effectiveness of cyber range exercises is attracting attention. The cyber range is a system to learn knowl-
edge and skills by experiencing an incident scenario reproduced in a virtual environment. Many scenarios are
required to train a security expert through various incident experiences. However, scenario development re-
quires highly specialized expertise. Thus, in practice, only a limited number of scenarios are worn out around.
Identical scenarios may decrease the educational effect since the other teams’ actions or write-ups on the in-
ternet will hint the students. We propose CyExec*, a cyber range system that automatically generates multiple
scenarios based on DAG(Directed Acyclic Graph)-based scenario randomization. Multiple scenarios with the
same learning objectives can enhance teaching effectiveness and prevent cheating. We developed the DAG-
based scenario randomization technique on a Docker-based cyber range system called CyExec. By taking
full advantage of Docker’s system/network configuration power, we can randomize complex scenarios across
multiple networks. Comparison with the VM-based scenario generators, CyExec* outperforms, especially in
storage usage. Further, CyExec∗ only consumes 1/3 memories, 1/4 CPU loads, and 1/10 storage usages. Thus,
Cyexec∗ can operate approximately 3-times more complex scenarios than VM-based systems.

1 INTRODUCTION

With the development of information technology
and the internet, cyber-attacks and malware damage
worldwide, and information security measures have
become necessary everywhere. As a result, the train-
ing of information security personnel is very active,
and in recent years, skills training by cyber range has
received much attention (Maki et al., 2020).

The cyber range is a system that allows stu-
dents to learn knowledge and skills by experiencing
real security incident scenarios in a virtual environ-
ment(Vincent E Urias, 2018). The cyber range sce-
narios provide a highly realistic security incident ex-
perience. Therefore, it is expected to be highly ed-
ucational. However, scenario development and envi-
ronmental preparation require people with expertise.
Many scenarios are required to address a large amount
of learning content and repetition, but it is difficult
for teachers and institutions to develop them indepen-
dently (Beuran et al., 2019).

Also, the cyber range exercises are divided into
teams of several people each. If a same scenario is

a https://orcid.org/0000-0001-8885-848X
b https://orcid.org/0000-0001-6862-2576

offered to all teams, and the learning content is the
same, there is a risk of leaking hints while the teams
work on the problem at the same place. So it is nec-
essary to prepare scenarios with different content for
each group, but this is easily said than done. It is
possible to develop multiple scenarios with the same
learning objectives, but that would be a huge burden
in terms of development (Razvan et al., 2017).

Moreover, existing cyber range consists of large
numbers of virtual machines to run scenarios. De-
pending on the number of attendees and teams, this
can require 100 or more virtual instances. The prob-
lem is that this requires high-performance hardware
that can withstand multiple virtual machines’ opera-
tion (Maki et al., 2020).

As described above, the existing cyber range is re-
quired to develop many scenarios, and preparing an
environment to do so will be a significant operational
burden (Schreuders et al., 2015). We developed a new
cyber range platform, CyExec*, which incorporates
random components into cyber range scenarios and
leverages containerized virtualization to solve these
problems. Not only does this provide many scenario
patterns, but it is also a versatile cyber range that is
light, fast, and can be used in the cloud.

226
Nakata, R. and Otsuka, A.
CyExec*: Automatic Generation of Randomized Cyber Range Scenarios.
DOI: 10.5220/0010324502260236
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 226-236
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Table 1: Exercise environments used for information security education.

Type CTF Lab Work cyber range

Target Beginners-
highly skilled Hackers

Students and
professionals studying
information security

Security personnel and
various other roles

Require Skill
Web/Network/
Programing/Encryption
etc...

Specific Vulnerabilities
and attack methods

Comprehensive response
to security incidents

Scenario
contents

One-off scenarios
in game format

A single scenario
to address a
specific vulnerability

Ability to respond
comprehensively to the
entire incident response

Implementation
cost

Low-Medium
(Large-scale events
are also held)

Medium
(A hands-on, primarily
on a personal device)

High
(Reproduce real-world
equivalent systems
in a virtual environment)

Examples PicoCTF
SecGen

Webgoat
Labtainer

Tame Range
CyTrONE

In this paper, we describe the architecture and im-
plementation of the developed CyExec∗. We also
show the usefulness of CyExec∗ by comparing it to
existing exercise platforms. We describe existing ex-
ercises and cyber range in Chapter 2, discuss the ran-
domization of cyber range scenarios in Chapter 3, de-
scribe the implementation in Chapter 4, and present
the comparative validation in Chapter 5.

2 INFORMATION SECURITY
EDUCATION

2.1 Various Hands-on Environments

In information security education, hands-on learn-
ing is prevalent, such as CTF (Capture The Flag).
Learners work on problems like a game using secu-
rity knowledge or lab work to learn the attack meth-
ods and vulnerabilities through experience. Many of
these are open to the public, and learners can set up
their environment to work on the problems (Chothia
and Novakovic, 2015).

On the other hand, in cyber range, teams are di-
vided into roles, such as CEOs, security personnel and
engineers, and they work on the exercise from their
perspective. The environment in which the exercise
is conducted is a reproduction of the real system en-
vironment, and the organization’s incident response
skills are developed through scenarios that simulate
real security incidents (Maki et al., 2020).

The cyber range exercises are complex environ-
ments, difficult to set up, and are not available to
the public. Some educational institutions use them
in their professional courses, but companies use com-
mercially available cyber range systems to train their

professionals in many cases. Table 1 shows a com-
parison of hands-on exercises in information security
education.

CTF and lab-work are easy to prepare the environ-
ment and comfortable for individuals to learn. The cy-
ber range is highly effective in education but requires
the preparation of appropriate scenarios and environ-
ments. Therefore, it is not easy to conduct exercises
and utilize them in the educational curriculum (Chap-
man et al., 2014; E et al., 2017; Raj et al., 2016).

2.2 Responding to Cyber Range Issues

To address the problem of developing cyber range
scenarios and building an environment, we considered
the following.
• Easy to provide a large number of scenarios.
• Even if the content of the scenario is leaked, the

educational effect will not be compromised.
• The environment is capable of executing many

scenarios simultaneously.
Although cyber range scenarios are the cornerstone
of the exercise, the educational outcome is limited if
the same scenarios are always being offered. Also, if
many teams are working on the same scenario simul-
taneously, the scenario’s content could be leaked from
the situation of other teams. If the exercise is con-
ducted online, students may share tips and answers,
which is not a positively affect for teaching pur-
poses. Additionally, to run multiple scenarios, many
virtual instances need to be running simultaneously,
and the environment needs to be prepared, replicated,
replaced, started, and closed quickly (Costa et al.,
2020).

To address the above, we referred to the concept
of SecGen, which is a publicly available platform

CyExec*: Automatic Generation of Randomized Cyber Range Scenarios

227

that provides many exercise environments (Schreud-
ers et al., 2017). The main concepts of SecGen are as
follows.
• Provides a randomizable, flexible, and generic

method for security education used in CTF and
security lab exercises and simulations.

• Outputs a set of VMs, including server, client and
network configurations, software and configura-
tion vulnerabilities, and randomizes their various
component to create richer scenarios.

• Design and implement a specification for generat-
ing scenarios randomly.

These concepts can be used in a cyber range en-
vironment and are essential for providing students
with many organized learning opportunities. Even on
the cyber range, incorporating random components
into scenarios can provide many scenarios, provid-
ing learning opportunities, and improving educational
effectiveness. However, some of the randomization
components targeted by SecGen lack or have differ-
ent use for cyber range, since it has different learning
objectives and target systems. The cyber range char-
acteristics must be considered in determineing which
components should be randomized in the scenario.
That will be discussed in Chapter 3.

Also, cyber range requires more virtual instances
than other exercises. As a result, it requires a lot of
hardware resources and high-performance equipment.
Running multiple scenarios may require even more
high-performance equipment, which is not practical.
Therefore, we considered carrying on the concept of
CyExec, a cyber range platform that leverages con-
tainerized virtualization with Docker (Li et al., 2017).
Specifically, we have developed CyExec∗, which im-
plements the concept of scenario randomization in
CyExec. CyExec∗ is envisioned as a realistic exercise
system that can be integrated into educational curric-
ula and will be discussed in detail in Chapter 4.

3 RANDOMIZE CYBER RANGE
SCENARIOS

3.1 DAG-based Cyber Range Scenario

In examining the randomization of cyber range sce-
narios, we analyzed an example of a common cyber
range scenarios as show on Figure 1.

The cyber range scenario has several milestone
points within the overall scenario. The operations and
actions that reach those milestones are a single sce-
nario that deals with individual attack methods, sim-
ilar to CTF and lab work. The overall scenario can

Figure 1: Example of a cyber range scenario.

be thought of as a composite scenario in which each
milestone is connected through a separate scenario,
ultimately forming the entire incident.

There is more than one operation or action to
reach each milestone. For example, the difference
between a malicious file or malware being sent via
email, or downloaded via a rogue website, and the dif-
ference between whether an attacker exploits a con-
figuration issue in the operating system, or a vulnera-
bility in a particular software in an attempt take away
administrative rights. Some of these scenarios could
read to the same outcome, even if the attacker uses
different means. We thought that if we could fix the
milestones and incorporate a random element into the
scenarios leading up to them, we could create a ran-
dom cyber range scenario. Figure 2 shows an image
of a cyber range scenario that incorporates random-
ization.

The randomized cyber range scenario takes the
form of a graph, with the milestone considered to be
the same state as the vertex and the scenario directed
to the next milestone as the edge. Since the attack
is directed towards the final target, the scenario does
not consider the possibility of going back to a previ-
ous milestone or looping back to the same location.
Therefore, a cyber range scenario that takes random-
ness into account is a directed acyclic graph (DAG).

When developing a scenario, it is important to en-
sure that the overall scenario is a DAG and consider
multiple scenarios heading towards each milestone.
This method can provide a scenario pattern for the
total number of paths in the graph. Multiple random
scenarios with different paths but the same objectives
allow participants to experience security incidents in
a variety of situations.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

228

Figure 2: Example of a randomized cyber range scenario.

3.2 Consideration of Randomizable
Components

In 3.1, we showed how to develop a random scenario
using DAG. In order to conduct a cyber range exer-
cise, it is necessary to build a scenario reproduction
environment within the cyber range. To examine the
components that can be randomized during the con-
struction of the cyber range environment, we identi-
fied the components considered in SecGen (Schreud-
ers et al., 2017), a VM-based scenario generation tool.
Table 2 shows the results of the examination of the
components that can be randomized.

The content of SecGen can be incorporated into
the CyExec* environment as well. Almost any ele-
ment can be considered for randomization and can be
used to cyber range exercise. These contents can be
randomized as long as they do not interfere with the
progress of the scenario. Even if the scenario leads
to the same milestone, they are provided as new situ-
ations, such as different environments and settings to
operate in, or a vulnerability used for an attack.

In the case of SecGen, there is an internal network
of single or multiple VMs, so there is no need to con-
sider the external networks, as long as the necessary
components work. In CyExec*, to replicate the real-
world network configuration, not only do we need to
replicate the vulnerabilities and configuration flaws,
but we also need to consider randomization of in-
ternal/external network configurations, including not
only vulnerabilities and configuration flaws, but also
security devices such as IPS and firewalls, etc.

When developing scenarios, we will develop
DAG-based randomized scenarios by identifying
these randomizable components and branching them
out with content that can lead to same milestones.

4 DEVELOPMENT AND
IMPLEMENTATION

4.1 Consideration of Implementation
Methods

To implement the randomized cyber range scenar-
ios that we have studied, we investigated the imple-
mentation in CyExec, a container-based cyber range.
CyExec uses Docker to implement a virtual environ-
ment. Docker is a platform for containerized virtual-
ization and has the following features that make it use-
ful for cyber range implementations (Raj et al., 2016;
Docker, c).

• Reduced resource consumption due to virtual in-
stance increase

• Environment suitable for frequent changes and
disposables

• Managing image and network configuration with
Dockerfile and Docker-compose

Docker behaves like an independent machine by
grouping and isolating only the processes that are nec-
essary to run the virtual environment. Because other
resources are shared with the host, the Overhead is
low, and the operation is fast and lightweight. Since it
does not occupy memory and CPU like VMs, the load
is low even when many virtual instances are launched
in the cyber range.

Containers have a smaller image size than VMs,
because containers require a minimal configuration.
In addition, the Union File System (UFS) allows fre-
quent changes and partial additions to the base image
to be made efficiently. It is often used in verification
environments that do not require data persistence, and
is suitable for disposable environments such as exer-
cises. The images can all be described in a simple
text file called Dockerfile (Docker, a). In the case of

CyExec*: Automatic Generation of Randomized Cyber Range Scenarios

229

Table 2: Scenario Components.

Random
Components SecGen CyExec*

OS
(virtual instance) Single OS with multiple services Multiple OS and services can be added flexibly

Network Internal network of VMs and hosts Internal/External complex multiple networks
Network
Services

such as FTP, IRC, HTTP, NFS
Internal Network Services

Including IPS/IDS and monitoring services.
Internal/External services

System
Configuration

Configuration within a single OS
and the Installed Software Multiple OS and services, Softwares configuration

Vulnerabilities Independent Vulnerabilities
Configuration/Softoware

Equivalent vulnerability resulting
in equivalent milestones

CTF-style
challenges

Addressing the above issues or
attacking vulnerabilities

Advanced attacks such as targeted attacks and
incident response

Figure 3: Image of CyExec∗ in action.

SecGen, we use many platforms such as Ruby, Va-
grant, Puppet, Virtual-Box, to build VMs. Although
these environments are generally accessible, they may
not work correctly due to various factors, such as dif-
ferences in versions and modules’ interaction. Using
Docker as the primary platform makes it easier to im-
plement containers with the necessary configurations
instead of VMs.

CyExec∗ uses many Dockerfiles to build contain-
ers of various configurations and prepare multiple en-
vironments. To build a network environment using
multiple Dockerfiles, we use Docker-compose to au-
tomate (Docker, b). Docker-compose can start an
environment with multiple container images, includ-
ing network configuration. By providing multiple
Docker-compose files, it enables randomization or
changing the environment by specifying the Docker-
file to be used on startup.

Figure 3 shows an image of CyExec∗ in action.
CyExec∗, like SecGen, consists of two stages.

Stage 1 is based on the default scenario and defines,
the number of environments to generate, the number
of students to connect to (and the devices to prepare
for), etc. Based on this, CyExec passes the scenar-
ios and the necessary arguments to Docker-compose,
specifies the Dockerfile needed to execute the scenar-

ios, builds the container, and launches the exercise en-
vironment at stage 2.

4.2 Implementing the Default Scenario

CyExec∗ provides a default scenario with a base sys-
tem configuration. Additional randomness can be ac-
commodated by modifying some of the default sce-
narios. The default scenario environment can also be
used as a place to learn attack and defense techniques
or to develop scenarios.

Default scenario is automatically generated by
Dockerfile and Docker-compose, which is highly
portable, and any environment running Docker can
build an equivalent environment. There is no need
to develop complex programs or modules for sce-
nario development. Scenario development can be
handled by adding a Dockerfile and editing Docker-
compose.yml file. Figure 4 shows the configuration
of the default scenario.

In the exercise, students requires a device that can
be operated in the cyber range. Also, this device will
also include a GUI desktop environment that allows
connection from the host. In CTFs and lab work, the
host on which the virtual environment is built is also
part of the exercise environment. Because the cyber

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

230

Figure 4: Configure the default scenario.

range reproduce a real-world network, providing an
operational devices within the exercise environment
can make the exercises more realistic.

Also, as a vulnerable environment, Metas-
ploitable2 is used to handle a variety of attack sce-
narios coming from the web and vulnerable applica-
tions. Metasploitable2 is a server that deliberately
holds vulnerable configurations and vulnerable ver-
sions of software, and is used for penetration test-
ing and other purposes (Rapid7,). Officially, Metas-
ploitable2 is offered in VM, but we implemented it by
containerizing. We implemented snort as an IDS that
can detect attacks from kali-linux (Security, ; team,),
which is prepared as an attacker. Other vulnerabilities
with different settings and versions were also imple-
mented on multiple client devices.

All virtual instances are implemented in contain-
ers, but are as usable as VMs, and even attack scenario
can be executed at startup by writing into a Dockerfile
or making a script. By using this default scenario, the
exercises can be run from attack to defense. However,
this default scenario is not prepared for a specific at-
tack or vulnerability in mind. The idea is to add new
equipment and service containers to this environment
and expand the types of randomness by changing the
attack methods and forensic content to provide more
scenarios.

4.3 Adding Randomness

To test the addition of randomness, we considered
adding a random scenario with multiple attack meth-

ods to the default scenario environment. Vulnera-
ble application running on Metasploitable2 can be at-
tacked using the exploit module in kali-linux. If this
attack’s result creates the same state and leads to the
next scenario, this attack’s content can be chosen at
random. Table 3 shows the vulnerable applications
running on Metasploitable2 and the equivalent exploit
modules that leads to the same milestone.

Table 3: Vulnerable Applications and Equivalent Exploit
Modules.

Vulnerable
Applications exploit on msfconsole

vsftpd exploit/unix/ftp/
vsftpd 234 backdoor

php exploit/multi/http/
php arg injection

Samba exploit/multi/samba/
usermap script

PostgreSQL exploit/linux/postgres/
postgres payload

UnrealIRCD exploit/unix/irc/
unreal ircd 3281 backdoor

distccd exploit/unix/misc/distcc exec

Ruby DRb RMI exploit/linux/misc/
drb remote codeexec

As a result of attacks using these exploit mod-
ules, arbitrary commands can be executed remotely
on Metasploitable2. Since they can execute com-
mands with root privileges, they can perform vari-
ous actions, such as obtaining information or tam-
pering with files, which leads to the next attack sce-
nario. This way, the scenarios can be swapped and
selected randomly if a similar situation is created, us-
ing a different vulnerability or attack technique. Be-
cause same circumstances can be created even from
different exploit modules, you can swap them around
and have it choose randomly. Therefore, you can add
randomness to the scenarios.

CyExec∗ executes attack scenarios by writing
them in a Dockerfile or loading a script. In other
words, selecting which Dockerfile to use determines
the scenario. To make randomization easier, we
placed the Dockerfile in a separate directory for each
scenario; selecting a directory in the Docker-compose
launches the scenario based on where the Dockerfile
is placed. Figure 5 shows an example of the directory
structure.

Place the Docker-compose.yml file in the top di-
rectory. The environment will be built using the
Dockerfile in a subdirectory. Arrange the branches
of the scenario as symbolic links so that the direc-
tory structure takes a DAG form. The scenario struc-

CyExec*: Automatic Generation of Randomized Cyber Range Scenarios

231

Figure 5: Example of CyExec∗ directory structure.

ture matches the directory structure. The Docker-
compose.yml file specifies the directory where the
Dockerfile is located. By making this a variable, it
made it possible to choose any scenario route or ran-
domize.

5 VERIFICATION AND
COMPARISON

5.1 Verification of Operation

To verify the operation of CyExec∗, we ran the default
scenario. For reference, here is the example Docker-
file of the client device.
FROM ubuntu:18.04
LABEL maintainer="Ryotaro Nakata"

ARG host_name="cyexec*_client01"
ENV DEBIAN_FRONTEND=noninteractive \

HOSTNAME=$host_name

#Locale and Language setting
RUN apt-get update && \

apt-get install -y ibus-mozc

#User setting
ARG root_password="root"
ARG user_name="ubuntu"

ARG user_password="password"
RUN echo root:$root_password | \

chpasswd && apt-get update && \
apt-get install -y openssl sudo \
&& useradd -m -G sudo $user_name -p \
$(openssl passwd -1 $user_password) \
--shell /bin/bash

#RDP setting
RUN apt-get update && \

apt-get install -y xfce4 xfce4-terminal \
xfce4-goodies xrdp && adduser xrdp \
ssl-cert && update-alternatives --set \
x-terminal-emulator \
/usr/bin/xfce4-terminal.wrapper

COPY ./config/xrdp/sesman.ini \
/etc/xrdp/sesman.ini

COPY ./config/xrdp/xrdp.ini \
/etc/xrdp/xrdp.ini

COPY ./config/xrdp/default.pa \
/etc/xrdp/pulse/default.pa

EXPOSE 3389

#Startup setting
RUN apt-get update && \

apt-get install -y supervisor
ADD ./config/supervisord/* \

/etc/supervisor/conf.d/

#Install Preferred package
RUN apt-get update && \

apt-get install -y \
git tig gedit nano \
wget curl net-tools firefox\
build-essential \
software-properties-common

#Install Network tools
RUN apt-get update && \

apt-get install -y \
iputils-ping inetutils-traceroute \
net-tools

Clean up
RUN apt-get clean && apt-get autoremove \

&& rm -rf /var/cache/apt/archives/* \
/var/lib/apt/lists/*

CMD ["bash", "-c", "/usr/bin/supervisord \
-c /etc/supervisor/supervisord.conf"]

This client device is available in all scenarios, as
a device for participants to study and review inci-
dents. We also built Kali-linux, Metasploitable, and
Snort using container images published on Docker-
HUB. These containers can be started and run in sce-
narios based on the Dockerfile description. Figure 6
shows a screenshot of the container connection and
operation.

We have confirmed that everything works fine.
All containers are working correctly, including ac-
cess to the Metasploitable2 web screen by launching
a browser from the operating terminal’s GUI desktop.
This state alone is sufficient enough to be used as a
simulation environment. Students will carry out the
exercise by performing various checks and examina-
tions from this client device.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

232

Figure 6: Desktop operations in a launched container.

5.2 Running Randomize Scenario

We added an exploit that sends malware to the default
scenario to verify that it can run a random scenario in
CyExec shown by Figure 7 .

Figure 7: Randomization.

With the randomization scenario shown in Fig-
ure 7, we confirmed that all patterns of the scenar-
ios could be executed, as scenarios by changing the
exploit type and how to send malware. Here’s an ex-
ample of the Docker-compose.yml file used to select
the scenarios
version: ’3’

services:
client01:
build:
context: .
dockerfile: >
-./scenario01-A/Dockerfile_client01

client02:
build:
context: .
dockerfile: >
-./scenario01-A/Dockerfile_client02

vulnerable_server:
build:

context: .
Dockerfiles: >
-./scenario01-A
-/Dockerfile_metasploitable2

IDS:
Build: .
context: .
Dockerfiles: >
-./scenario01-A/Dockerfile_snort

scenario_A:
build:

context: .
Dockerfiles: >
-${SCENARIO_01_A:-"./scenario01_A1"}

scenario_B:
build:

context: .
Dockerfiles: >
-${SCENARIO_01_B:-"./scenario01_B1"}

Clients and servers, which are common to the en-
tire scenario are started at the first step. The part re-
lated to the selection of the scenario is specified by
variables beforehand, but is started later so it does not
interfere with the progress. In the default scenario, all
the vulnerable applications shown in Table 3 are run-
ning, but some may not be necessary depending on the
selected scenario route. Since they do not interfere
with the scenario’s execution, they are left running
for this verification. However, there are times when
stopping them is desirable, such as when you want to
simplify the exercise or focus on performance.

In this case, we confirmed that 4 scenarios with
2x2 path can work without any problems. In the
Docker-compose.yml file, you can also specify ad-
ditional settings, such as network configuration, in
variables. By running several scenarios at the same
time and separating the network configuration, differ-
ent scenarios can be used in team-based exercises.

5.3 Performance Comparison with
SecGen

To verify the performance of CyExec∗, we compared
it to SecGen. CyExec∗ and SecGen have very differ-
ent configurations. The default scenario of CyExec∗

contains 6 containers and utilizes a large image such
as kali-linux, whereas the default scenario for SecGen
is 1 VM image, including web server, etc. CyExec* is
the more versatile environment, but it covers the con-
tent of the default SecGen scenario and can replicate
an equivalent environment. Both environments are
fundamental to the exercise and comparing the two
can provide useful information on preparation time
and hardware resource consumption.

Figure 8 shows a comparison of startup speed and
storage consumption for CyExec∗ and SecGen, when
the default scenario is launched multiple times and
when the randomization of scenarios are in place.

Both CyExec* and SecGen require the necessary
images to be downloaded when they are run for the
first time. In particular, CyExec* uses a large num-
ber of container images and requires more download
time and storage space when it is first started. How-
ever, the build time and storage consumption are less
than 1/10 compared to SecGen after the second time.
This is most likely the result of the efficient use of
storage with UFS(Union File System) and the elim-
ination of the startup process required for VMs , by
using Docker.

Even with the addition of random scenarios,
CyExec had a bit of increase in time for building
changes, but was still very fast and storage intensive
compared to the VM-based SecGen. Also assuming

CyExec*: Automatic Generation of Randomized Cyber Range Scenarios

233

Figure 8: Comparison of startup time and storage consumption when launching several scenarios, including randomization.

Figure 9: Comparison of resource consumption for multiple launches of the same scenario.

an exercise with many teams, we compared the con-
sumption of hardware resources when multiple de-
fault scenarios were launched. The results are shown
in Figure 9.

When built under the same hardware, the increase
in hardware resource consumption was proportional
to the number of environments; CyExec’s default sce-
nario had less than one-half the memory consumption
and less than one-third the CPU consumption com-
pared to SecGen’s default scenario. With CyExec∗,
the initial storage consumption was high due to the
large number of images used during the initial build.
However, because consumption hardly increases even
when there are multiple environments, as the num-
ber of environments increases, the consumption can
be kept much lower than with SecGen. These results
show that CyExec∗ has an advantage with an increas-
ing number of environments, which can be very use-
ful, especially when randomization requires multiple
exercise environments.

6 APPLICATION TO SECURITY
EDUCATION

The CyExec, on which this development was based
on, has been used in several educational institutions
and training for workers. We also consider to carry
out an exercises using the randomized scenarios de-
veloped in CyExec∗.

We planned to conduct the exercise at CyExec* as
well to test the educational effectiveness of the exer-
cise. However, due to COVID-19, we could not gather
students to conduct the exercise.

CyExec* takes into account the effectiveness of
conducting an exercise by assembling in a classroom
or other settings. In addition, we expect the demand
for online cyber range exercises to increase. We think
important to have randomness in the scenarios, even
when the exercises are conducted online.

We plan to use cloud services to apply CyExec∗ to
the online environment, and test the effectiveness of
the exercise.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

234

CyExec∗ is a cyber range that can significantly re-
duce resource consumption and is suitable for cloud
services. Randomization of scenarios can further in-
crease its effectiveness. We have already started test-
ing it on several cloud services, and our goal is to
conduct online exercises and verify the effectiveness
of its educational outcome. We will continue our re-
search and development, and expand our information
security education in the future.

7 CONCLUSIONS

The cyber range used in information security exer-
cises is a system that allows students to learn knowl-
edge and skills efficiently, through a highly realis-
tic security incident experience reproduced in virtual
space. However, the system is not easy to implement
nor operate. In particular, scenario development re-
quires specialized knowledge, and using the same sce-
nario or sharing and leaking of scenario information
has been a problem.

We developed the DAG-based scenario random-
ization technique named CyExec∗ on docker-based
cyber range system. Multiple scenarios with the same
learning objectives can enhance teaching effective-
ness and prevent cheating. CyExec∗ makes the best
use of Docker’s performance, which allows us to build
exercise environment efficiently, eliminating the con-
cern of the increasing load on the system caused by
the scenario number increase. In comparison to Sec-
Gen, CyExec∗ showed advantages of 1/3 memories,
1/4 CPU loads, and over 1/10 storage usage. This
shows that it has at least three times more capability
to reproduce scenarios than VM-based environments,
allowing more complex environments to be run simul-
taneously.

Our future work includes several main direc-
tions:(i) enriching the random scenarios that can be
provided by CyExec∗, (ii) applying to online exercise,
and (iii) testing their educational effectiveness.

ACKNOWLEDGEMENTS

This work is supported in part by the Telecommuni-
cation Advancement Foundation.

REFERENCES

Beuran, R., Inoue, T., Tan, Y., and Shinoda, Y. (2019). Re-
alistic cybersecurity training via scenarioprogression

management. In 2019 IEEE European Symposium on
Security and Privacy Workshops.

Chapman, P., Burket, J., and Brumley, D. (2014). Picoctf:
A game-based computer security competition for high
school students. In 2014 USENIX Summit on Gam-
ing, Games, and Gamification in Security Education
(3GSE 14), San Diego, CA. USENIX Association.

Chothia, T. and Novakovic, C. (2015). An offline capture
the flag-style virtual machine and an assessment of its
value for cybersecurity education. In 2015 USENIX
Summit on Gaming, Games, and Gamification in Se-
curity Education (3GSE 15).

Costa, G., Russo, E., and Armando, A. (2020). Automating
the generation of cyber range virtual scenarios with
vsdl.

Docker. Dockerfile reference.
https://docs.docker.com/engine/reference/builder/.

Docker. Overview of docker compose.
https://docs.docker.com/compose/.

Docker. What is a container? a standardized unit of
software. https://www.docker.com/resources/what-
container.

E, I. C., F, T. M., and Jean, K. (2017). Labtainers: a frame-
work for parameterized cybersecurity labs using con-
tainers.

Li, Z., Kihl, M., Lu, Q., and Andersson, J. A. (2017).
Performance overhead comparison between hypervi-
sor and container based virtualization. In 2017 IEEE
31st International Conference on Advanced Informa-
tion Networking and Applications (AINA), pages 955–
962.

Maki, N., Nakata, R., Toyoda, S., Kasai, Y., Shin, S., and
Seto, Y. (2020). An effective cybersecurity exercises
platform cyexec and its training contents. In 2020 In-
ternational Conference on Advances in Education and
Information Technology(AEIT’20).

Raj, A. S., Alangot, B., Prabhu, S., and Achuthan, K.
(2016). Scalable and lightweight ctf infrastructures
using application containers. In 2016 USENIX Work-
shop on Advances in Security Education (ASE 16).

Rapid7. Metasploitable2.
https://docs.rapid7.com/metasploit/metasploitable-2/.

Razvan, B., Cuong, P., Dat, T., Ken-ichi, C., Yasuo, T., and
Yoichi, S. (2017). Cytrone: An integrated cyberse-
curity training framework. In Proceedings of the 3rd
International Conference on Information Systems Se-
curity and Privacy (ICISSP 2017): 157-166.

Schreuders, Z. C., Butterfield, E., and Staniforth, P. (2015).
An open cloud-based virtual lab environment for com-
puter security education. In The first UK Workshop on
Cybersecurity raining & EducationVibrant Workshop
2015.

Schreuders, Z. C., Shaw, T., Shan-A-Khuda, M., Ravichan-
dran, G., and Keighley, J. (2017). Security sce-
nario generator (secgen): A framework for generat-
ing randomly vulnerable rich-scenario vms for learn-
ing computer security and hosting ctf events. In 2017
USENIX Workshop on Advances in Security Educa-
tion(ASE’17).

CyExec*: Automatic Generation of Randomized Cyber Range Scenarios

235

Security, O. Kali linux — penetration testing and ethical
hacking linux distribution. https://www.kali.org.

team, S. Snort network intrusion detection & prevention
system. https://www.snort.org/.

Vincent E Urias, William M.S Stout Brian Van Leeuwen,
H. L. (2018). Cyber range infrastructure limitations
and needs of tomorrow.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

236

