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Abstract: Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease that causes 
breathlessness and leads to serious illness including lung cancer. It is estimated that COPD caused 5% of all 
deaths globally in 2015, putting COPD as the three leading causes of death worldwide. This study proposes 
methods that utilize gene expression data from microarrays to predict the presence or absence of COPD. 
The proposed method assists in determining better treatments to lower the fatality rates. In this study, 
microarray data of the small airway epithelium cells obtained from 135 samples of 23 smokers with COPD 
(9 GOLD stage I, 12 GOLD stage II, and 2 GOLD stage III), 59 healthy smokers, and 53 healthy non-
smokers were selected from GEO dataset. Machine learning and regression algorithms performed in this 
study included Random Forest, Support Vector Machine, Naïve Bayes, Gradient Boosting Machines, Elastic 
Net Regression, and Multiclass Logistic Regression. After diminishing imbalance data effect using SMOTE, 
classification algorithms were performed using 825 of the selected features. High AUC score was achieved 
by elastic net regression and multiclass logistic regression with AUC of 89% and 90%, respectively. In the 
metrics including accuracy, specificity, and sensitivity, both classifiers also outperformed the others. 

1 INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is a 
progressive inflammatory lung disease that restricts 
airflow from the lung and imposes a significant 
burden on daily patient’s lives. COPD becomes one 
of the significant risk factors for developing lung 
cancer (Sekine et al., 2012). According to WHO, 
COPD caused 5% of all deaths globally in 2015 and 
in 2020, it is estimated that 4.7 million out of 68 
million deaths worldwide will be caused by COPD 
(Lopez-Campos et al., 2016). COPD is often noticed 
when the condition has caused major lung damage. 
It is difficult to detect COPD in the early stage 
because the symptoms only appear after significant 
lung damage has occurred. With current 
computational technologies, developing machine 
learning algorithms, and better access to health and 
disease-related data, opportunities for detecting 
COPD in the early stage will be improved. Anakal, 
S. & Sandhya, P. (2017) highlighted the need of 
employing machine learning algorithm in designing 

Clinical Decision Support Systems to classify the 
different stages of COPD in patients. By employing 
machine learning algorithms, Yao, Yangwei, et al 
(2019) identified 38 genes which associated with the 
pathogenesis of COPD and ILD (interstitial lung 
disease). The identified genes can be used to assist 
in determining better treatments for COPD and ILD.  

Studies of diseases are commonly conducted by 
using gene expression data which can reveal 
components of the genome that are significantly 
changed to help us understand which biological 
processes are affected (e.g., Qian et al., 2014). 
However, gene expression data analysis and 
handling are complex and difficult tasks since the 
number of experiments is less than the number of 
genes or probes which usually used as features. 
Furthermore, platform differences resulting in batch 
effects, different experimental conditions, and the 
lack of uniformity in experimental annotation 
become the major challenge.  

What makes this challenge even more difficult is 
that the presence of class imbalance, i.e., the number 
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of data represented in one class is smaller than other 
classes. The minority class is usually the main 
interest since classifiers will degrade their 
performance on this class while biased towards the 
majority class. Class imbalance problem has become 
an important issue in the field of machine learning 
and remains as one of the major difficulties in 
intelligent computer systems. Researchers in this 
field have developed techniques to solve this 
problem. One of the methods to deal with class 
imbalance is by resampling the original dataset 
either by oversampling or undersampling (Chawla et 
al., 2002).  

 
Figure 1: Flowchart of this study plan. 

This study was designed to solve the problem 
using some machine learning algorithms by dealing 
with class imbalance using synthetic minority 
oversampling technique (SMOTE). For comparison, 
we also performed other different resampling 

methods of the “caret” package. The flowchart of 
this study is shown in Figure 1. 

The rest of this document describes our methods 
in detail. In section 2, we describe the material and 
methods used for this study. It briefly discusses data 
selection methods to increase model performance. 
We briefly describe machine learning and regression 
algorithms suitable for this analysis and the 
evaluation metrics used for assessing the 
performance of our proposed method. Section 3 
discusses the experiment and result. Finally, section 
4 concludes this paper. 

2 MATERIAL AND METHODS 

2.1 Dataset 

We used microarray dataset of the small airway 
epithelium (SAE) provided by the Gene Expression 
Omnibus (GEO) database, 
https://www.ncbi.nlm.nih.gov/geo/, with accession 
number GSE20257. It is a series of GPL570 
platform which described as Smoking-induced 
Disarray of the Apical Junctional Complex Gene 
Expression Architecture in the Human Airway 
Epithelium. The airway epithelial cells were 
obtained by bronchoscopy and brushing which were 
done by Crystal Laboratory of Department of 
Genetic and Medicine, Weill Cornell Medical 
College. The data were originally collected on June 
27, 2011 and were updated recently on March 25, 
2019. The gene expressions are arranged in 
GeneChip HG-U133 Plus2.0 arrays, a single array 
representing around 14,500 well-characterized 
human genes that can be used to explore human 
biology and disease processes (ThermoFisher, 
2001). 

The dataset contains gene expression data of 135 
human subjects with the total number of 54,675 
probes. Out of 135 subjects, 23 subjects are smokers 
with COPD (9 GOLD stage I, 12 GOLD stage II, 
and 2 GOLD stage III), 59 subjects are healthy 
smokers, and 53 subjects are healthy nonsmokers. 

The data were log2 normalized, removing batch 
effects using “affy” and “biobased” R packages 
provided by Bioconductor. Differential expression 
analysis was then performed using “Limma” 
package to select probes that were significantly 
changed in healthy non-smokers compared to COPD 
patients. These selected probes were then used in the 
machine learning algorithms. The probe selection is 
aimed at reducing the dimension of the dataset, 
which is essential to reduce the computational cost 
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of modelling. Furthermore, removing unneeded, 
irrelevant, and redundant attributes that statistically 
do not contribute to the accuracy and other 
evaluation metrics of a predictive model can 
improve the model’s performances. 

2.2 Machine Learning (ML)  

We employed various machine learning models 
including support vector machine (SVM), naïve 
bayes, random forest, gradient boosting machine 
(GBM), and regression models included elastic net 
regression and multiclass logistic regression (LR) 
for the classification task. All ML and regression 
methods were applied using “caret”, “e1017”, 
“nnet”, and “naivebayes” R packages.  

Elastic net is one of regularized regression 
models which use a linear combination penalty of L1 
and L2. It combines the strength of the other two 
regularized regression models, ridge and lasso 
regression. Parameter α in elastic net regression has 
a value between 0 and 1. The aim of the elastic net 
regression model was to minimize the loss function. 

Multiclass LR is an extension of binary logistic 
regression. This model allows us to predict 
categorical response variable which has more than 
two outcomes. This model aims at capturing the 
linear relationship between the response variables 
and the independent variables. 

2.3 Synthetic Minority Over-sampling 
Technique (SMOTE) 

A dataset is called imbalanced if the classes are not 
approximately equally distributed. Imbalance is a 
challenging problem for classification algorithms 
because the classifier’s decision is biased toward the 
majority class. Dominating effects of the majority 
class exert severe impact on the value and meaning 
of most of the evaluation metrics (Luque et.al. 
2019).  

One of the prominent methods to solve class 
imbalance is to resample the original dataset either 
by oversampling the minority class and/or 
undersampling the majority class (Chawla et al., 
2002). SMOTE utilizes a k-nearest 
neighbor algorithm to create synthetic samples based 
on the existing minority samples. 

 
 
 
 

2.4 Evaluation Metrics of Predictive 
Models 

To evaluate the performance of the proposed 
classification models, the mean accuracy, AUC, 
sensitivity, and specificity were calculated for each 
model. Sensitivity and specificity are important 
evaluation metrics for evaluating a model’s ability to 
recognize positive and negative outcomes of a 
disease-related dataset. (Trtica-Majnaric et al., 
2010).  

Various evaluation metrics such as accuracy, 
sensitivity, and precision are derived from confusion 
matrix. Table.1 shows the possible nine outputs of 
classification models for three classes 1,2, and 3. It 
represents the elements of a 3×3 confusion matrix as 
described in Tharwat A. (2018). 

In Table 1, the columns represent the predicted 
classes, and the rows represent the actual classes. 
We then have the numbers of nine cases where TP1 
is the case for which the classifier predicted as class-
1 and the sample were actually class-1, and E12 is a 
sample from class-1 that misclassified as class-2. 
Thus, the false negative in the class-1 (FN1) is the 
sum of E12 and E13 ሺ𝐹𝑁ଵ = 𝐸ଵଶ + 𝐸ଵଷሻ which 
indicates the sum of all samples that were actually 
class-1 but were misclassified as class-2 or class-3. 
Whereas the false positive in the class-1 (FP1) is the 
sum of E21 and E31 ሺ𝐹𝑃ଵ = 𝐸ଶଵ + 𝐸ଷଵሻ which 
indicates the sum of all sample that actually were not 
class-1 but were misclassified as class-1. 

Table 1: An illustrative example of the confusion matrix 
for a 3-class classification test. 
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    True Class 
1 2 3 

1 TP1 E21 E31 

2 E12 TP2 E32 

3 E13 E23 TP3 
 

In the “caret” packages, the accuracy is defined 
as the overall accuracy using the predicted classes, 
while sensitivity and specificity are defined as the 
averages of the “one versus all” statistics. As 
described in Ballabio et al., (2018), the overall 
accuracy is computed as follows: 𝐴𝑐𝑐 = ∑ 𝑇𝑃ୀଵ𝑛  (1)

where 𝑇𝑃 is the number of true positive samples in 
class-i, and 𝑛 is the total number of samples. 
Accuracy shows how accurate our classification 
model is able to predict the class labels given in the 
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problem statement. In other word, the best selected 
model has the highest accuracy. 

Sensitivity for multiclass classification is 
computed as follows: 𝑆𝑛 = ∑ 𝑆𝑛ୀଵ𝑔  (2)

where 𝑆𝑛 is sensitivity for class-i and g is the total 
number of classes. 𝑆𝑛 can be calculated as follows: 𝑆𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3)

On the other hand, specificity for multiclass 
classification is computed as follows: 𝑆𝑝 = ∑ 𝑆𝑝ୀଵ𝑔  (4)

where 𝑆𝑝 is specificity for class-i. 𝑆𝑝 can be 
calculated as follows: 

𝑆𝑝 = ∑ ሺೖିாೖሻೖసభஷ𝑛 െ 𝑛  (5)

Sensitivity shows the ability of a model in 
correctly identifying positive data out of all actual 
positives data. In contrast, specificity shows the 
ability of a model in correctly identifying negative 
data out of all actual negative data. The higher the 
sensitivity and specificity, the better the model in 
correctly identifying data that belong to a certain 
class as well as a data that do not belong to the class. 

To calculate AUC score, we used 
multiclass.roc function from pROC packages 
which computed multiclass AUC as an average 
AUC defined by Hand and Till (2001). For multiple 
classes labelled as 0,1,2, … , ሺ𝑐 െ 1ሻ with 𝑐  2, the 
separability between class i and j or auc is defined as 
follows: 𝑎𝑢𝑐 = 𝐴መሺ𝑖|𝑗ሻ + 𝐴መሺ𝑗|𝑖ሻ2  (6)

where 𝐴መሺ𝑖|𝑗ሻ is the probability shows that if we 
draw a member of class j randomly, the estimated 
probability of j belongs to class i will be lower than 
if if we randomly draw a member of class i instead. 
This also applies to the reverse case. For multiclass 
case 𝐴መሺ𝑖|𝑗ሻ ് 𝐴መሺ𝑗|𝑖ሻ. 𝐴𝑈𝐶 = 2𝑐ሺ𝑐 െ 1ሻ𝑎𝑢𝑐𝑠 (7)

with aucs all the pairwise roc curves.  
The best model is selected based on the highest 

value of the four evaluation metrics. The higher the 
AUC, the better the model in distinguishing a 
positive example from a negative one. 

 
 

2.5 Evaluation of Resampling Methods 

In the experiment, we performed SMOTE algorithm 
using two different CRAN packages “DMwR” and 
“smotefamily”. We also performed down-sampling 
and up-sampling for comparison. Up-sampling 
works by randomly sampling a dataset so that all 
classes have the same number of samples as 
majority class. On the contrary, down-sampling will 
randomly sample a data set so that all classes have 
the same number of samples as the minority class. 

To evaluate the performance of all the classifiers, 
we performed repeated k-fold cross-validations as it 
is a very common technique used for this purpose. 
This evaluation technique improves the performance 
of machine learning algorithms and regression by 
repeating the k-fold cross-validation procedure n 
times and reporting the mean result of all folds from 
all runs. Filzmoser (2009) shows that repeated cross 
validation is a good strategy for optimizing the 
complexity of regression models as well as machine 
learning models. 

3 EXPERIMENTS AND RESULT 

The gene expression data usually contain unneeded, 
irrelevant, and redundant attributes during the 
collection process of the data. In the first step before 
performing classification model, we removed 
unneeded attributes so that our proposed 
classification method will be more accurate. In this 
data pre-processing, the raw data downloaded from 
GOE dataset were log2 normalized using “biobased” 
R package, removed batch effects and unwanted 
variation using “affy” package, and compared 
statistically or analysed for differential expression 
using “Limma” package.  

After removing batch effects in the data pre-
processing, 20,663 probes were selected out of 
54,675 probes. We then identified 825 probes which 
were significantly changed with p value < 0.0001 in 
COPD subjects compared to healthy non-smoker 
subjects as shown in Figure 2.  

The dataset was splitted into training and test set 
with percentage of 80% and 20% respectively. We 
then applied SMOTE only in the training data to 
resample the data. The oversampled data were 
included in machine learning and regression 
modelling approaches with repeated 10-fold cross-
validations 10 times. 
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Figure 2: Mean difference (MD) plot displays log2 fold 
change versus average log2 expression values for all the 
54,675 probes. Highlighted genes are significantly 
differentially expressed in COPD compared to healthy 
non-smoker (red = upregulated, blue = downregulated). 

3.1 Comparison of Machine Learning 
Algorithm and Regression Analysis 

Table 2 shows the accuracy and AUC score of the 
machine learning models of SVM, naïve bayes, 
random forest, GBM, and regression model of 
elastic net regression and multiclass LR with and 
without applying SMOTE to deal with class 
imbalance. 

Table 2: Accuracy and AUC for different models. 

Classifier Accuracy (%) AUC (%) 
SVM 68 73 
       +SMOTE 68 85 
Naïve Bayes 48 70 
       +SMOTE 64 76 
Random Forest 48 60 
       +SMOTE 64 81 
GBM 64 81 
       +SMOTE 56 70 
Elastic Net 64 71 
       +SMOTE 76 89 
Multiclass LR 72 82 
       +SMOTE 80 90 

Based on repeated 10-fold cross-validations 10 
times, all the performance increased in the models 
with SMOTE compared to those without SMOTE 
except for GBM. This indicated that SMOTE is 
effective when dealing with class imbalance. 

The best performance is obtained by multiclass 
LR with SMOTE with the highest overall accuracy 
score and AUC of 80% and 90%, respectively. This 
model also has the highest sensitivity and specificity 

value of 0.80 and 0.89, respectively, as shown in 
Table 3. This high sensitivity and specificity in the 
model indicate that the model can be used to 
correctly classify subjects that belong to a certain 
class as well as a subject that did not belong to the 
class. 

The second-best model based on the evaluation 
metrics is elastic net regression which obtained a 
slightly different of accuracy and AUC score from 
that of multiclass LR with 76% and 89%, 
respectively. 

Table 3: Average sensitivity and specificity for different 
models. 

Classifier Sensitivity Specificity 
SVM 0.53 0.81 
       +SMOTE 0.70 0.82 
Naïve Bayes 0.44 0.71 
       +SMOTE 0.67 0.80 
Random Forest 0.37 0.69 
       +SMOTE 0.61 0.81 
GBM 0.57 0.80 
       +SMOTE 0.50 0.76 
Elastic Net 0.56 0.80 
       +SMOTE 0.76 0.87 
Multiclass LR 0.67 0.84 
       +SMOTE 0.80 0.89 

3.2 Comparison of Resampling 
Methods 

Table 4: AUC for multiclass LR with different resampling 
methods. 

Resampling methods 
AUC of  

Multiclass LR 
(%) 

Without resampling 82.4 
SMOTE from “DMwR” 90.1 
SMOTE from “smotefamily” 89.3 
upSample 87.4 
downSample 78.1 
 
We performed different resampling methods in 

multiclass LR to see the effect of those on the model 
performances. We employed two SMOTE functions 
from two different packages. The difference between 
SMOTE of “DMwR” and “smotefamily” packages 
is that SMOTE in “DMwR”  uses a combination of 
SMOTE and under-sampling of the majority class 
while in “smotefamily” do not. So that, in “DMwR” 
we need to tune the two parameters perc_over and 
perc_under in the smote function until we get an 
acceptable sample size. In this function, we set 
perc_over to 200 and perc_under to 300. For 
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comparison, we also performed up-sampling and 
down-sampling. 

By dividing 80% of the dataset as training data 
and 20% as validation data, 110 out of 135 data 
samples were used as training data which consist of 
43 samples of healthy non-smokers, 48 samples of 
healthy smokers, and 19 samples of COPD. 
upSample function of “caret” package randomly 
samples the dataset so that all classes have 48 
samples, while downSample randomly samples the 
dataset so that all classes have 19 samples. 

Table 4 shows the AUC values for multiclass LR 
of different resampling methods. The AUCs of 
SMOTE from both “DMwR” and “smotefamily” are 
quite similar with the difference of only 0.8%. 
Considering that both packages give insignificantly 
different outcomes, we can randomly choose to use 
one of the SMOTE functions from both packages. 
As comparison, resampling the dataset using 
upSample function increased the AUC performance 
by 5% while downSample decreased the 
performance by 4.3%. However, the AUC 
performance of upSample function is still lower than 
that of SMOTE either using “DMwR” or 
“smotefamily”. The models trained with SMOTE 
outperformed the models without SMOTE in the 
four evaluation metrics. 

4 CONCLUSION 

In this study, we used microarray dataset to predict 
the presence of COPD by dealing with the class 
imbalance at first. Prior study on this dataset have 
tried to predict the presence of COPD regardless of 
the existence of class imbalance. 

The model we proposed can predict the presence 
of COPD with an overall accuracy and AUC score 
of 80% and 90% respectively, based on repeated 10-
fold cv 10-times. The outcomes indicate that by 
dealing with class imbalance before performing 
machine learning algorithms and regression analysis 
can be used to predict the presence of COPD more 
accurately. Our proposed methods also have higher 
sensitivity and specificity values than that without 
dealing with class imbalance. It shows that the 
selected model can be used to correctly classify 
subjects that belong to a certain class as well as a 
subject that did not belong to the class. The 
proposed method in this study can be used to assist 
in determining better treatments to lower the fatality 
rates caused by COPD. 

In the future study, we are considering to employ 
more recent and advanced resampling methods to 
achieve a better performance. 
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