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Abstract: Automatic natural language description of visual content is an emerging and fast-growing topic that has at-
tracted extensive research attention recently. However, different from typical ‘image captioning’ or ‘video
captioning’, coherent story generation from a sequence of images is a relatively less studied problem. Story
generation poses the challenges of diverse language style, context modeling, coherence and latent concepts
that are not even visible in the visual content. Contemporary methods fall short of modeling the context and
visual variance, and generate stories devoid of language coherence among multiple sentences. To this end, we
propose a novel framework Contextualize, Attend, Modulate and Tell (CAMT) that models the temporal rela-
tionship among the image sequence in forward as well as backward direction. The contextual information and
the regional image features are then projected into a joint space and then subjected to an attention mechanism
that captures the spatio-temporal relationships among the images. Before feeding the attentive representations
of the input images into a language model, gated modulation between the attentive representation and the in-
put word embeddings is performed to capture the interaction between the inputs and their context. To the best
of our knowledge, this is the first method that exploits such a modulation technique for story generation. We
evaluate our model on the Visual Storytelling Dataset (VIST) employing both automatic and human evaluation
measures and demonstrate that our CAMT model achieves better performance than existing baselines.

1 INTRODUCTION

Describing a story from a sequence of images, a.k.a.
visual storytelling (Huang et al., 2016), is a trivial
task for humans but a challenging one for machines
as it requires understanding of each image in isola-
tion as well as in the wider context of the image se-
quence. Furthermore, the story must be described
in a coherent and grammatically correct natural lan-
guage. Closely related research areas to visual story-
telling are image captioning (Pan et al., 2020; Feng
et al., 2019; Yang et al., 2019; Donahue et al., 2015)
and video captioning (Zhang and Peng, 2020; Aafaq
et al., 2019a; Yan et al., 2019; Liu et al., 2020; Yao
et al., 2015; Gan et al., 2017; Pan et al., 2017; Aafaq
et al., 2019b). Figure 1 demonstrates the difference
between descriptions of images in isolation and sto-
ries for images in a sequence. Similarly we compare
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Figure 1: An example highlighting the differences between
image captioning and storytelling. First block (top) depicts
that each image is captioned with one sentence in isolation.
The second block (bottom) indicates the narrative descrip-
tion for the same images stream.

the example of two captions: “stand in front of a flag”
and “time to honor the flag”. The first caption cap-
tures the image content which is literal and concrete.
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However, the second caption requires further infer-
ence about what it means to honor a flag.

In contrast to conventional image captioning
where a static input image is presented devoid of con-
text, visual storytelling is more challenging as it must
capture the contextual relationship among the events
as depicted by the sequence of images. Moreover,
in comparison to video captioning, visual storytelling
poses challenges due to large visual variation at the
input (Wang et al., 2018a). On the language side,
it requires narrative generation rather than literal de-
scription. To achieve the narrative, it requires to en-
hance long term image consistency among multiple
sentences. The task becomes even more challeng-
ing as some stories involve description of human sub-
cognitive concepts that do not appear in the visual
content.

To address the aforementioned challenges, we
propose a novel framework that starts by modeling the
visual variance as a temporal relationship among the
stream of images. We capture the temporal relation-
ship in two directions i.e, forward as well as backward
using Bi-LSTM. To maintain the image specific rele-
vance and context of images, we project the image
information and the context vectors from Bi-LSTM
into a joint latent space. The spatio-temporal atten-
tion mechanism learns to relate the corresponding
information by focusing on image features (spatial-
attention) and context vectors (temporal attention).
The attentive representation (i.e, encoder output) is
then modulated with the input word embeddings be-
fore it is fed into the language model. We used the
Mogrifier-LSTM (Melis et al., 2020) architecture to
achieve this task. During the gated modulation in the
first layer, the first gating step scales the input em-
bedding, depending on the actual context, resulting in
a contextualized representation of the input. In ad-
dition, the input token itself is a contextual represen-
tation in which it occurs. This results in the LSTM
input highly context dependent and enabling the lan-
guage model to generate more relevant and contex-
tual descriptions of the images. Furthermore, intra-
sentence coherence is improved by feeding the last
hidden state of the first sentence generator to the next
sentence generator.

Our contributions are summarised as follows:

• We propose a novel framework Contextualise, At-
tend, Modulate and Tell (CAMT) to generate a
story from a sequence of input images. We first
model the bidirectional context vectors capturing
the temporal relationship among the input images
from the same stream and then project the regional
image features and the contextual vectors to a
joint latent space and employ the spatio-temporal

attention.

• We perform gated modulation on attentive repre-
sentation and the input token before feeding it into
the language model i.e, LSTM to model the in-
teraction between the two inputs. The modulated
transition function results in a highly context-
dependent input to the LSTM.

• To demonstrate the effectiveness of proposed
technique for visual storytelling, we perform
experiments on the popular Visual Storytelling
Dataset (VIST) with both automatic and human
evaluation measures. The superior performance
of our model over the current state-of-the-art in
both automatic and human evaluations shows the
efficacy of our technique.

2 RELATED WORK

Below we discuss the literature related to image cap-
tioning and video captioning which are closely asso-
ciated to visual storytelling, followed by literature re-
view of visual storytelling.

2.1 Image Captioning

Image captioning can be categorised as a single frame
(i.e, image) described by a single sentence. The meth-
ods can further be sub-categorised into rule based
methods (do Carmo Nogueira et al., 2020; Mo-
gadala et al., 2020) and deep learning based methods
(Phukan and Panda, 2020; Huang et al., 2019a). The
rule based methods employ the classical approach of
detecting pre-defined and limited number of subjects,
actions and scenes in an image and describe them
in natural language using template based techniques.
Due to advancements in deep learning and introduc-
tion of larger datasets (Krizhevsky et al., 2012), most
recent methods normally rely on deep learning and
advanced techniques such as attention (Wang et al.,
2020), reinforcement learning (Shen et al., 2020), se-
mantic attributes integration (Li et al., 2019a) and,
subjects and objects modeling (Ding et al., 2019).
However, all these techniques do not perform well in
generating narrative for a sequence of images.

2.2 Video Captioning

Video captioning can be treated as multi-frame (i.e,
video) described by a single sentence. This in-
volves capturing the variable length sequence of video
frames and mapping them to variable length of words
in a sentence. Like image captioning, classical video
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Figure 2: Our model is based on encoder-decoder architecture. The encoder part consists of pre-trained ResNet 152 to extract
the visual features from each image. The feature vectors are then fed to a bidirectional Long Short-term Memory (LSTM)
network sequentially, which allows the context of all images to be reflected in the entire story. The decoder is a Mogrifier
LSTM comprising five rounds which improve the generated story.

captioning methods (Kojima et al., 2002; Das et al.,
2013; Krishnamoorthy et al., 2013; Nayyer et al.,
2019) follow template based approaches. Most recent
methods rely on the neural networks based frame-
work with encoder-decoder architecture being most
widely employed. The encoder i.e, 2D/3D-CNN, first
encodes the video frames and the decoder i.e, Recur-
rent Neural Network (RNN), decodes the visual infor-
mation into natural language sentences. More recent
video captioning methods employ e.g reinforcement
learning (Wang et al., 2018d), objects and actions
modeling (Pan et al., 2020; Zheng et al., 2020; Zhang
et al., 2020), Fourier transform (Aafaq et al., 2019a),
attention mechanism (Yan et al., 2019; Yao et al.,
2015), semantic attribute learning (Gan et al., 2017;
Pan et al., 2017), multimodal memory (Wang et al.,
2018b; Pei et al., 2019) and audio integration (Hao
et al., 2018; Xu et al., 2017) for improved perfor-
mance. Few video captioning methods attempt to de-
scribe the video frames into multiple sentences (Yu
et al., 2016; Xiong et al., 2018). However, describing
a short video by a single or rarely by multiple sen-
tences, the challenges of storytelling are multi-fold,
as discussed in Section 1. Hence, most of the afore-
mentioned video captioning techniques are ineffective
for the task of storytelling in their original form.

2.3 Visual Storytelling

Storytelling is one of the oldest activities of mankind
and has attracted extensive research recently due to
improvement in computation and machine learning.
Visual storytelling provides a strategy to understand
activities within stream of images and summarise
these images in one paragraph (Wiessner, 2014). It
started with ranking and retrieval approach which is
used to retrieve a paragraph rather than a sentence
from multiple images rather than one image (Kim
et al., 2015). Later, Coherent Recurrent Convolu-
tional Network (CRCN) was introduced which en-

hanced the smooth flow of various sentences in a
photostream (Park et al., 2017). This deep learn-
ing network encompasses entity-based local coher-
ence model, bidirectional Long Short Term Mem-
ory (LSTM) networks, and convolutional neural net-
works. A multiple reward functions approach dur-
ing training is used to understand the essential re-
ward role from human demonstrations (Wang et al.,
2018c). LSTM based model and transformer-decoder
was introduced to improve coherence in stories (Hsu
et al., 2019). Encoder-decoder based deep learning
models are deployed to improve image features and
generating sequence of sentences (Al Nahian et al.,
2019; Huang et al., 2019b). Recurrent neural Net-
work (RNNs) are introduced to improve the modula-
tion which enhanced the relevance, coherence and ex-
pressiveness of the generated story (Hu et al., 2020).
Overall, the listed studies are mostly computationally
expensive due to their complexity level. In this pa-
per, our focus is to propose a computationally efficient
method that can generate human-like story.

3 METHODOLOGY

Figure 2 shows the architecture of the proposed
model. It comprises of three modules: Bi-Encoder,
Attention and Decoder. Our Bi-Encoder module first
encodes the image features and then it also encodes
the temporal context of the l images. The Attention
module captures the relationship at two levels: image
and image-sequence. Finally, the Decoder module
generates sequence of sentences by exploiting the mo-
grifier LSTM architecture. Details of the three mod-
ules are discussed below.

3.1 Bi-Encoder

Given a stream of l images i.e, I = (I1, I2, ..., Il), we
extract their high level feature vectors by employing a
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pre-trained convolutional neural network ResNet152
(He et al., 2016). We denote the extracted features by
f = [ f 1, f 2, ..., f l ]. To further capture the context in-
formation, we employ a sequence-encoder. A naive
method is to simply concatenate the image features
with the same sequence length, however, this loses
the temporal relationship amongst the images. Alter-
natively, a recurrent neural network can be employed
to capture the sequential information that aggregates
the temporal information over time. To capture this
relationship, we employ a Bi-LSTM, that summarises
the sequential information of l images in both direc-
tions i.e, forward as well as backward. At each time
step ‘t’, our sequence encoder takes an input of image
feature vector f i where i ∈ {1,2,3,4,5}. At last time
step i.e, t = 5, the sequence encoder has encoded the
whole stream of images and provides the contextual
information through the last hidden state denoted as
hse = [

−→
hse;
←−
hse].

3.2 Attention Module

The task of visual storytelling from a sequence of im-
ages involves describing the image(s) content in the
context of the other images. Here, the description of
images in isolation is undesired. To capture the image
features in the context of all the images, we incor-
porate an attention mechanism on image features and
the output of the sequence encoder that includes the
overall context of visual stream. Formally,

ϕi =W T
a · tanh(W f [ f i,hsei ]+b) (3.1)

where f i is the feature vector of ith image with hidden
state hsei of sequence encoder after ith image has been
fed.

αi =
exp(ϕi)

∑
l
k=1 exp(ϕk)

(3.2)

where k is the length of the visual stream. Finally, the
attentive representation becomes;

ζi =
k

∑
i=1

αi · [ f i,hsei ] (3.3)

The final representations serve as the decoder inputs
which attends both image specific (low level) and
stream specific (high level) information.

3.3 Decoder

Recurrent networks, while successful, still lack in
generalisation while modeling the sequential inputs
especially for the problems where coherence and rel-
evance are vital. In visual storytelling, the problem

Figure 3: Illustrates how Mogrifier modulation is concate-
nating with LSTM unit. Before the input to LSTM, two
inputs x and hprev modulate each other alternatively. Af-
ter five mutual gating rounds, the highest indexed updated x
and hprev are then fed into normal LSTM unit.

depends on how model inputs interact with the con-
text in which they occur. To address these problems,
we exploit the modulating mechanism of the Mogri-
fier LSTM (Melis et al., 2020) and employ as de-
coder in our framework. We first describe how the
standard LSTM (Hochreiter and Schmidhuber, 1997)
generates the current hidden state i.e, h〈t〉, given the
previous hidden state hprev, and updates its memory
state c〈t〉. For that matter, LSTM uses input gates Γi,
forget gates Γ f , and output gates Γo that are computed
as follows:

Γ
〈t〉
f = σ(W f [hprev,xt ]+b f ), (3.4)

Γ
〈t〉
i = σ(W i[hprev,xt ]+bi), (3.5)

c̃〈t〉 = tanh(W c[hprev,xt ]+bc), (3.6)

c〈t〉 = Γ
〈t〉
f � c〈t−1〉+Γ

〈t〉
i � c̃〈t〉, (3.7)

Γ
〈t〉
o = σ(W o[hprev,xt ]+bo), (3.8)

h〈t〉 = Γ
〈t〉
o � tanh(c〈t〉) (3.9)

where x is the input word embedding vector at time
step ‘t’ (we suppress t at all places for readability),
W ∗ represents the transformation matrix to be learned
in all cases, b∗ represent the biases, σ is the logis-
tic sigmoid function, and � represent the hadamard
product of the vectors. In our decoder network, the
LSTM hidden state h is initialized by attentive vector
ζi from the encoder output.

LSTM has proven to be a good solution for the
vanishing gradient problem. However, its input gate
Γi also scales the rows of the weight matrices W c (ig-
nore the non-linearity in c). To this end, in the Mo-
grifier LSTM instead, the columns of all its weight
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matrices W ∗ are scaled by gated modulation. Before
the input to the LSTM, two inputs x and hprev mod-
ulate each other alternatively. Formally, x is gated
conditioned on the output of the previous step hprev.
Likewise, the gated input is utilised in a similar fash-
ion to gate previous time step output. After a few
mutual gating rounds, the highest indexed updated
x and hprev are then fed into LSTM as presented in
Figure 3. Thus, it can be expressed as: Mogrify
(x,cprev,hprev) = LST M(x↑,cprev,h↑prev) where x↑ and
h↑prev are the modulated inputs being the highest in-
dexed xi and hi

prev respectively. Formally,

xi = 2σ(W i
xhhi−1

prev)� xi−2, for odd i ∈ [1,2, ...,r]
(3.10)

hi
prev = 2σ(W i

hxxi−1)�hi−2
prev, for even i ∈ [1,2, ...,r]

(3.11)

where � is the Hadamard product, x−1 = x,
h0

prev = hprev = ζi and r denotes the number of mod-
ulation rounds treated as a hyperparameter. Setting
r = 0 represents the standard LSTM without any gated
modulation at the input. Multiplication with a con-
stant 2 ensures that the matrices W i

xh and W i
hx result

in transformations close to identity.

3.4 Architecture Details

Our proposed architecture is based on deep learn-
ing model, which is combined in central two-parts,
as shown in Figure 2. The first part is the encoder
which is utilized a pre-trained Resnet-152 (He et al.,
2016) as a CNN. The CNN is responsible for extract-
ing the image features and feed all extracted features
to bidirectional-LSTM. The bi-LSTM is utilized to
reflect all context of the streaming images as story-
like. Simultaneously, the bi-LSTM made up the vec-
tors which are fed directly through a fully connected
layer as word token into the decoder part. The de-
coder part is contained the Mogrifier LSTM with five
steps. Then all decoded vectors are fed to LSTM tok-
enizer to generate visual stories. In the <start> sign,
the tokenizer will start to receive the feature vectors
from Mogrifier, and it tokenizes the sentence word un-
til the LSTM meets the < end > which is a complete
sentence of the first image and so on for the whole
story.

3.5 Model Training

All input images were resized to 256X256 pixels and
their intensities were normalized to [0,1]. All the im-
portant words from the VIST dataset were extracted

Figure 4: VIST dataset is composed of two types of image
sequences: Description In Isolation (DII), which is a collec-
tion of five images described in isolation, and Description
In Sequence (SIS), which is a collection of five images cap-
tioned in sequence (Huang et al., 2016).

and used as words embedded with a diminution of
256 vectors. For the encoder part, we used the param-
eters settings suggested by the GLACNet model (Kim
et al., 2018). The learning rate was set to 0.001 with
weight decay equals to 1e-5, and used the Adam op-
timizer. We applied teacher-forcing algorithm for our
LSTM training. To prevent overfitting and enhance
the performance of the training, we set the batch size
to 64.

4 EVALUATION

Below are the details about the dataset and metrics
which we used to evaluate our proposed model.

4.1 Visual Storytelling Dataset (VIST)

We evaluated our model on VIST dataset (Huang
et al., 2016). It was the first dataset which was
created for the problem of visual storytelling. The
dataset contains 209,651 images creating 50,200 sto-
ries. There are two different types of sequence im-
ages: Description-in-Isolation (DII) and Story-in-
Sequence (SIS). Both these types consist of the same
photos, but the differences are in the description text.
In DII, all sequence images are described as an im-
age captioning, and they are not related to each other.
In SIS, the images are described as a narrative story-
like. Figure 4 demonstrate an example of DII and SIS
description.
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Table 1: Comparison of the efficiency of our proposed model with variants of GLAC Net (Kim et al., 2018) in terms of
perplexity score, number of epochs and METEOR score. “-” means that the scores are not provided by the authors of the
respective method. Results inside brackets represent best scores.

Model Perplexity Score METEOR Number of
with Attention Validation Testing Score Epoch

LSTM Seq2Seq 21.89 % 22.18 % 0.2721 -
GLAC Net (-Cascading) 20.24 % 20.54 % 0.3063 -

GLAC Net (-Global) 18.32 % 18.47 % 0.2913 -
GLAC Net (-Local) 18.21 % 18.33 % 0.2996 -
GLAC Net (-Count) 18.13 % 18.28 % 0.2823 -

GLAC Net 18.13 % 18.28 % 0.3014 69
Ours (Encoder and Decoder Mogrifier) 17.11 % 16.77 % 0.3238 23

Ours - (Decoder Mogrifier only) (16.67 %) (15.89 %) (0.335) (22)

4.2 Evaluation Metrics

In the area of image description, researchers gener-
ally use several evaluation metrics to measure the
quality of their proposed techniques. The first eval-
uation metric used in our study is Bilingual Evalua-
tion Understudy (BLEU) which compares set of ref-
erence texts with the generated-text using n-grams.
It is considered to be optimal for measuring the ef-
ficiency of techniques with short sentences and have
different versions. We selected BLEU-1, BLEU-
2, BLEU-3, and BLEU-4 in our study (Papineni
et al., 2002). The second evaluation metric used
is Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) which is used to compare three different
types of text summaries such as n-grams, word se-
quences and word pairs. ROUGE has various sub-
types, such as ROUGE-1, ROUGE-2, ROUGE-W.
ROUGE-L and ROUGE-SU4, and we use ROUGE-
L as it is suitable for measuring efficiency for sin-
gle text document evaluation and short summaries
(Lin, 2004). The third evaluation metric used is Met-
ric for Evaluation of Translation with Explicit OR-
dering (METEOR) which considers the words’ syn-
onyms with its matching with the text reference. It is
optimal in measuring efficiency at the sentence level
(Banerjee and Lavie, 2005). The final evaluation met-
ric used is Consensus-based Image Description Eval-
uation (CIDEr) which is designed for image caption-
ing evaluation. It compares generated-text with vari-
ous human captions (Vedantam et al., 2015). All of
these selected evaluation metrics thoroughly evaluate
our proposed methodology and help us to compare
with state-of-the-art techniques.

Table 2: Human evaluation survey results for 10 ground
truth stories and also 10 generated stories by our proposed
model.

Story Rank 1-5 (worst-best)
Type Relevance Coherence

Ground Truth 3.45 3.44
Proposed model (CAMT) (3.66) (3.65)

5 RESULTS AND DISCUSSION

In this section, we compare the results of our pro-
posed approach with state-of-the-art methods. We
also discuss the human evaluation of our technique
and performance of the model during training.

5.1 Quantitative Result

5.1.1 Perplexity Score Comparison

During training, we compare the proposed model’s
perplexity score with the model proposed by (Kim
et al., 2018) which has different variants. We used
two variants of our proposed model: using Mogri-
fier LSTM in both encoder and decoder parts, and us-
ing Mogrifier LSTM in decoder part only. Table 1
shows the perplexity scores, METEOR scores and
number of epochs for all the selected models. Table 1
shows that using Mogrifier LSTM only in the decoder
part improves the perplexity score to 16.67 and 15.89
for validation and test data respectively in only 22
epochs which is the best among the compared mod-
els. Similarly, we also found that our proposed model
with Mogrifier LSTM in only the decoder part out-
performs other models by achieving best METEOR
score of 0.335. Therefore, we selected this variant of
our model for comparison with other state-of-the-art
techniques.
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Table 3: Comparison of performance of our proposed model with state-of-the-art techniques using six automatic evaluation
metrics. “-” means that the scores are not provided by the authors of the respective method. Results enclosed in brackets
represent scores.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L
Show, Reward and Tell(Wang et al., 2018a) 0.434 0.213 0.104 0.516 (0.113) -

AREL(baseline) (Wang et al., 2018c) 0.536 0.315 0.173 0.099 0.038 0.286
GLACNet(baseline) (Kim et al., 2018) 0.568 0.321 0.171 0.091 0.041 0.264

HCBNet (Al Nahian et al., 2019) 0.593 0.348 0.191 0.105 0.051 0.274
HCBNet(without prev. sent. attention) (Al Nahian et al., 2019) 0.598 0.338 0.180 0.097 0.057 0.271
HCBNet(without description attention) (Al Nahian et al., 2019) 0.584 0.345 0.194 0.108 0.043 0.271

HCBNet(VGG19) (Al Nahian et al., 2019) 0.591 0.34 0.186 0.104 0.051 0.269
VSCMR (Li et al., 2019b) 0.638 - - 0.143 0.090 0.302

MLE (Hu et al., 2020) - - - 0.143 0.072 0.300
BLEU-RL (Hu et al., 2020) - - - 0.144 0.067 0.301
ReCo-RL (Hu et al., 2020) - - - 0.124 0.086 0.299
Proposed model (CAMT) (0.641) (0.361) (0.2011) (0.1845) 0.042 (0.303)

Figure 5: Comparison of stories generated by our proposed model and GLAC Net model with ground truth for a sequence of
five images. The text in red represents repetition while text in blue represents relevance to the information in its subsequent
image.

5.1.2 Comparison with State-of-the-Art
Methods

We compare our proposed model with the follow-
ing state-of-the-art models: Show, Reward and Tell
method (Wang et al., 2018a); AREL1, a method for an
implicit reward with imitation learning (Wang et al.,
2018c); GLACNet2, an approach to learn attention
cascading network (Kim et al., 2018); HCBNet, an
approach of using image description as a hierarchy

1https://github.com/eric-xw/AREL.git
2https://github.com/tkim-snu/GLACNet

for the sequence of images (Al Nahian et al., 2019);
VSCMR, a method of cross-modal rule mining (Li
et al., 2019b); and ReCo-RL, an approach of de-
signing composite rewards (Hu et al., 2020). All
these methods achieve high scores on VIST visual
storytelling dataset. The performance of all models
are compared using the selected automatic evaluation
metrics which include BLEU-1, BLEU-2, BLEU-
3, BLEU-4, CIDEr, METEOR, and ROUGE-L. The
evaluation metric script was published by (Hu et al.,
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2020)3. Table 3 presents the results for all the men-
tioned models, which clearly shows that our proposed
model outperform other models on all the selected
evaluation metrics except CIDEr score.

5.1.3 Human Evaluation

To evaluate the performance of our model in real
world scenarios, we conducted a survey where par-
ticipants were asked to rank the stories generated by
our model in terms of relevance and coherence. We
selected 10 stories generated by our model and 10
ground truth stories. All with their associated images
and asked the participants to rank them on a scale of
1 to 5 (worst to best) in terms of relevance and coher-
ence. Table 2 presents the results which shows that the
participants found the stories generated by our model
to be more coherent and relevant than the provided
ground truth with the dataset.

5.2 Qualitative Analysis

Due to the nature of the visual storytelling problem,
we thoroughly analysed the stories generated by our
model. We also compared our stories with ground
truth and stories generated by GLAC Net model (Kim
et al., 2018). Figure 5 presents two sets of five images
from VIST dataset along with the provided ground
truth stories followed by stories generated by GLAC
Net and our proposed model. The text in red mentions
the repetition of the story while the text in blue men-
tions the relevance of the story with the images. In
both stories generated by GLAC Net, we can observe
the repetition of the information and non-relevance to
the images while stories generated by our proposed
model were more coherent and relevant to the gener-
ated images. For instance, the last three sentences in
the story generated by GLAC Net for the lower set
of images are “We had a great time”, “It was a lot of
fun”, and “I can’t wait to go back”. All the three sen-
tences do not contribute in the story and repeating the
information. On the other hand, our proposed model
generated story which is more coherent and relevant
to the images.

5.3 Discussion

The main purpose of our study was to build a simple
and computationally efficient model which can gen-
erate stories form images that are more relevant to the
images and coherent in structure. From the results,
it can be observed that our proposed model achieves

3https://github.com/JunjieHu/ReCo-RL

both objectives in addition to achieving better per-
formance than the existing state-of-the-art techniques.
As mentioned in Table 1, our proposed model is time-
efficient in training as it is trained over 22 epochs
only. In addition, our proposed model is much sim-
pler than existing models such as (Hu et al., 2020)
which uses more complex architectures involving two
RNNs. Whereas, our proposed model is designed on a
simple encoder-decoder methodology achieving com-
petitive results with state-of-art techniques.

6 CONCLUSION

In this paper, we introduced a novel encoder-decoder
technique for visual description as storytelling. Our
framework is straightforward and comprises a ResNet
152 and Bi-LSTM as an encoder, and Mogrifier
LSTM with five steps as a decoder. In between,
we utilize an attention mechanism which allows the
model to generate a novel sentence according to a spe-
cific image region while maintaining the overall story
context. Our proposed model outperforms state-of-
the-art methods on automatic evaluation metrics. In
future work, we aim to extend our model to gener-
ate different types of stories such as fiction. In addi-
tion, we aim to to extend our model to be able to track
objects that re-appear in subsequent images and in-
corporate their re-appearance and movement into the
story.
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