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Abstract: Hierarchical Temporal Memory (HTM) - Spatial Pooler (SP) is a Learning Algorithm for learning of spatial 
patterns inspired by the neo-cortex. It is designed to learn the pattern in a few iteration steps and to generate 
the Sparse Distributed Representation (SDR) of the input. It encodes spatially similar inputs into the same or 
similar SDRs memorized as a population of active neurons organized in groups called micro-columns. 
Findings in this research show that produced SDRs can be forgotten during the training progress, which causes 
the SP to learn the same pattern again and converts into the new SDR. This work shows that instable learning 
behaviour of the SP is caused by the internal boosting algorithm inspired by the homeostatic plasticity 
mechanism. Previous findings in neurosciences show that this mechanism is only active during the 
development of new-born mammals and later deactivated or shifted from cortical layer L4, where the SP is 
supposed to be active. The same mechanism was used in this work. The SP algorithm was extended with the 
new homeostatic plasticity component that controls the boosting and deactivates it after entering the stable 
state. Results show that learned SDRs remain stable during the lifetime of the Spatial Pooler. 

1 INTRODUCTION 

The Hierarchical Temporal Memory Cortical 
Learning Algorithm (HTM CLA) is an algorithm 
inspired by the biological functioning of the 
neocortex, which combines spatial pattern 
recognition and temporal sequence learning 
(Hawkins, Subutai and Cui, 2017).  

It organizes neurons in layers of column-like units 
built from many neurons, such that the units are 
connected into structures called areas. Areas, 
columns and mini-columns are hierarchically 
organized (Mountcastle, 1997)  and can further be 
connected in more complex networks, which 
implement higher cognitive functions like invariant 
representations, pattern- and sequence-recognition 
etc. HTM CLA in general consists of two major 
algorithms: Spatial Pooler and Temporal Memory.  

The Spatial Pooler operates on mini-columns 
connected to sensory inputs (Yuwei, Subutai and 
Hawkins, 2017) . It is responsible to learn spatial 
patterns by encoding the pattern into the sparse 
distributed representation (SDR). The created SDR, 
which represents the encoded spatial pattern is further 
used as the input for the Temporal Memory (TM) 
algorithm.  

The TM is responsible for learning of sequences 
from SDR. Experiments in this work show that the 

current version of the Spatial Pooler is instable. 
During the learning process, learned patterns will be 
forgotten and learned again. Results show that the 
Spatial Pooler oscillates between stable and unstable 
stable. Moreover, experiments show the instability is 
related to the single pattern and not to the set of 
patterns.  

For example, The Spatial Pooler can keep the 
stable SDR1 for pattern p1 while SDR2 for pattern p2 
becomes unstable and so on. Having stable Spatial 
Pooler is essential for all applications that rely on 
spatial pattern recognition. Because SDRs produced 
by the Spatial Pooler are also used as an input for the 
Temporal Memory algorithm, an unstable Spatial 
Pooler will also cause the Temporal Memory 
algorithm to forget learned sequences. 

In this work, the instability of the SP was 
investigated an extension (modification) of the 
Spatial Pooler is proposed, which ensures the better 
stability of the algorithm. 

2 METHODS 

To analyse the stability of the Spatial Pooler, an 
instance of the SP with the set of common parameters 
was created (see table 1).   
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Table 1: Spatial Pooler parameters. Set of parameters 
shown in the table are commonly used when working with 
the Spatial Pooler. 

Parameters Value
INPUT BITS 200 
COLUMNS 2048 
GLOBAL_INHIBITION true 
NUM_ACTIVE_COLUMNS_PER_ 
INH_AREA 

2% (40) 

STIMULUS_THRESHOLD 0.5 
SYN_PERM_INACTIVE_DEC 0.01 
SYN_PERM_ACTIVE_INC 0.01 
SYN_PERM_CONNECTED 0.1 
MIN_PCT_OVERLAP_DUTY_CYCLES 0.001 
MIN_PCT_ACTIVE_DUTY_CYCLES 0.001 
POTENTIAL_RADIUS 1024 
DUTY_CYCLE_PERIOD 100 
MAX_BOOST 10 

Most experiments were done with 2048 columns. In 
this specific case, the scalar encoder was used to 
encode input scalar values that are presented to the 
Spatial Pooler during the learning process. As an 
input, values between 0 and 100 were used. Before 
presenting an input to the Spatial Pooler, every input 
value was encoded with 200 bits, each value is 
encoded with 15 non-zero bits. Figure 1 shows a few 
examples of encoded scalar values. 

For more detailed information about the meaning 
of all parameters please see (Dobric, 2018).  

The first row in Figure 1 represents the value ‘0’ 
and second-row the value ‘1’. The input value is on 
right and the corresponding SDR is on left. Yellow 
colour in the figure represents zero-bits and the grey 
colour represents the non-zero bits. Grey dots on left 
represent set of active columns after encoding of the 
given input. 

The Spatial Pooler algorithm implements a 
boosting of columns inspired by homeostatic 
plasticity mechanism (Turrigiano and Nelson, 2004), 
(Davis and Graeme, 2006). This mechanism 
influences excitation and inhibition balance of neural 
cells and is likely important for maintaining the stable 
cortical state. The functional stability of neural 
circuits is achieved by homeostatic plasticity. It keeps 
in balance the network excitation and inhibition and 
coordinates changes in circuit connectivity (Tien and 
Kerschensteiner, 2018).  

Excitation mechanism in HTM is implemented 
explicitly by algorithms Spatial Pooler and Temporal 
Memory by setting cells inactive or predictive state. 
Moreover, Spatial Pooler provides two inhibition 
algorithms: Global Inhibition and Local Inhibition.  
Inhibition algorithms control which cells around the 

currently processing cell must be activated or 
inhibited. 

The boosting in the Spatial Pooler tracks the 
column activity and makes sure that all columns are 
uniformly used across all seen patterns. Because this 
mechanism is continuously active, it can perform the 
boosting of columns that already build learned SDRs. 
Once that happens the Spatial Pooler will briefly 
“forget” some learned patterns. If the forgotten 
pattern is presented again to the SP, it will start 
learning it again.  

To analyse the learning behaviour of the Spatial 
Pooler, a set of input patterns was presented to the SP 
instance in many iteration steps.  

 

 

Figure 1: Examples of two input values encoded by the 
scalar encoder (right) and their corresponding Sparse 
Distributed Representation (left) encoded by the Spatial 
Pooler. 

Every input pattern is encoded by Spatial Pooler into 
SDR represented as a set of indices of active columns 
𝐴௞ of the given pattern in the iteration k.  
In every learning step of the same pattern, the 
similarity between SDR in step k and the step k+1 is 
calculated as shown in equation 1. 

𝑠 ൌ
|𝐴௞ ∩ 𝐴௞ାଵ|

max ሺ|𝐴௞|, |𝐴௞ାଵ|ሻ
 (1)

The similarity 𝑠  is defined as a ratio between the 
number of elements (cardinality) of the same active  
columns in SDRs generated in steps k and k+1 and a 
maximum number of active columns in two 
comparing steps. 

The Spatial Pooler is by definition stable if SDRs 
of the same pattern does not change for the entire life 

Improved HTM Spatial Pooler with Homeostatic Plasticity Control

99



cycle of the Spatial Pooler. In this case, the similarity 
𝑠 between all SDRs of the same pattern is 100%. 

Figure 2 shows the single input pattern presented 
to SP in more than 25000 iterations.   

Typically, Spatial Pooler learns patterns very fast. 
It requires usually no more than two to three iterations 
to learn the presented pattern. This behaviour is very 
useful for real-life application because it does not 
require a long training process.  

 
Figure 2: Unstable Spatial Pooler. SP learns the pattern and 
keeps the SDR unchanged for some iterations. When 
boosting gets active SP forgets the SDR (similarity drops) 
and starts learning again. 

The y-axis shows the similarity s of SDRs in the 
current iteration step and the previous step. The x-axis 
shows the iteration step. The similarity of 100% 
means the learned SDR does not change over time. 
After an unspecified number of iterations, the SP 
forgets the learned SDR and starts learning again. 
Every time the SDR changes, it means the learned 
SDR for that pattern is changed. Because the new 
SDR for the pattern is created, the previously learned 
one is forgotten. In that case, the similarity drops from 
100% to zero or some other value. In contrast, 
keeping the similarity on 100% means that learned 
SDR for the same input is the same for the entire 
iteration interval. If the similarity is less than 100%, 
generated SDRs of the same input are different. This 
indicates an unstable Spatial Pooler. As shown in 
Figure 2 the learned state oscillates between stable 
and unstable state during entire learning time, which 
is not a useful behaviour for real-life applications.  

This experiment clearly shows the instability of 
the Spatial Pooler, but it does not show any details 
about the encoding of the SDR. Figure 3 shows the 
same behaviour from a different point of view. It 
shows how the SDR of the same pattern is encoded in 
the first 300 iterations (cycles) on the example of a 
single input value. The Spatial Pooler generates a 
stable SDR right on the beginning of the learning 
process and keeps it stable (unchanged) for approx. 
200 iterations. After that SDR will change until the 
Spatial Pooler enters the stable state again (not shown 
in the figure) etc. 

 

Figure 3: SDR shows active columns (SDR) of the learned 
input in the first 300 iterations (cycles). The learned SDR is 
unchanged (stable) in approx. first 200 iterations. After that, 
it gets unstable. 

In the next experiment, the boosting was disabled by 
setting DUTY_CYCLE_PERIOD and 
MAX_BOOST to zero value. These two values 
disable boosting algorithm in the Spatial Pooler.  

Results show that the SP with these parameters 
produces stable SDRs as shown in Figure 4. The 
figure shows an example of a stable encoding of the 
single pattern with disable boosting algorithm. The 
SP learns the pattern and encodes it to SDR in few 
iterations (typically 2-3) and keeps it unchanged 
(stable) during the entire life cycle of the SP instance.  

By following this result, the stable SP can be 
achieved by disabling of the boosting algorithm. 
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Figure 4: Spatial Pooler generates stable SDR after the 
boosting is disabled. 

Unfortunately, without the boosting mechanism, the 
SP generates SDR-s with unpredictive number of 
active mini-columns.  

Figure 5 shows two input values ‘0’ and ‘6’. The 
x-axis represents indexes of active mini-columns, 
which participates in the encoding of the input value. 
The y-axis represents the learning iteration. The SP is 
stable if the SDR code does not change over time. As 
already mentioned, disabling of boosting will cause 
the SP to enter the stable state as shown in Figure 5. 

The value ‘0’ is encoded with approx. 40 active 
mini-columns and the value ‘6’ is encoded with 4 
active mini-columns. This is a significant unwanted 
difference. Experiments showed that some values can 
even be encoded without any active mini-column if 
boosting is disabled. 

If the number of active mini-columns in an SDR 
for different inputs is significantly different, the 
further processing of memorized SDR-s will be 
negatively influenced. Most operations in the 
Hierarchical Temporal Memory rely on the 
calculation of the overlap between neural cells, 
synapses or mini-columns (Subutai, Hawkins, 2016). 
In that case, SDR-s with the much higher number of 
active columns will statistically produce higher 
overlaps, which is not in balance with other SDR-s 
with less active cells. 
The parameter NUM_ACTIVE_COLUMNS_PER_ 
INH_AREA defines the percentage of columns in the 
inhibition area, which will be activated by the 
encoding of every single input pattern. Inspired by the 
neocortex, this value is typically set on 2% (Hawkins, 
Subtei, 2016). By using the global inhibition in these 
experiments by the entire column set of 2048 columns 
the SP will generate SDRs with approx. 40 active 
columns. The boosting mechanism inspired by 
homeostatic plasticity in neo-cortex solves this 
problem by consequent boosting of passive mini-
columns and inhibiting too active mini-columns. As 

long the learning is occurring, the SP will 
continuously boost mini-columns. Every time the 
boosting takes a place, some learned patterns (SDRs) 
might be forgotten, and learning will continue when 
the same pattern appears the next time. 

 
Figure 5: Two SDRs with the different number of active 
mini-columns produced by Spatial Pooler with disable 
boosting. 

It can be concluded that the stability of the SP can 
be influenced by the boosting mechanism. The SP can 
enter the stable state, but it will produce SDRs with a 
significantly different number of active mini-
columns. In contrast, if boosting is enabled, the SP 
will uniformly activate mini-columns, but the 
learning will be unstable. 

Previous findings in neural sciences (Maffei, 
Nelson, Turrigiano, 2004) show that homeostatic 
plasticity boosting is only active during development 
of a newborn animal and then deactivated or shifted 
from cortical layer L4, where Spatial Pooler is 
supposed to be active. The Spatial Pooler operate on 
sensory inputs, which are commonly connected to the 
cortical layer L4 (Hawkins, Subutai and Cui, 2017). 

By following this finding, this work extends the 
Spatial Pooler algorithm and introduces the newborn 
stage of the Hierarchical Temporal Memory and 
Spatial Pooler.  

2.1 The Spatial Pooler with the  
New-born Stage 

Deactivation of the boosting in homeostatic plasticity 
in the cortical layer L4 can also be applied to Spatial 
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Pooler. It is still not clear exactly how this mechanism 
exactly works. However, by following findings in this 
area the same or similar mechanism inside of the SP 
can be adopted. Currently, in the HTM, this 
mechanism consists of boosting and inhibition 
algorithms, which operate on the mini-column level 
and not on the cell level inside of the mini-column. 
The reason for this is that SP operates explicitly on 
the population of neural cells in mini-columns and 
does not makes usage of individual cells (Yuwei, 
Subutai and Hawkins, 2017). Individual cells rather 
play an important role in the Temporal Memory 
algorithm (Hawkins, Subtei, 2016).  

The main idea in this work, with the aim to 
stabilize the SP and keep using the plasticity, is to add 
an additional algorithm to SP, which does not 
influence the existing SP algorithm. The extended 
Spatial Pooler is based on the algorithm implemented 
in the new component called Homeostatic Plasticity 
Controller. The controller is “attached” to the existing 
implementation of the Spatial Pooler. After the 
compute in each iteration, the input pattern and 
corresponding SDR are passed from the SP to the 
controller. The controller keeps the boosting active 
until the SP enters the stable state, measured over the 
given number of iterations. During this time the SP is 
operating in the so-called new-born stage and will 
produce results similar to results shown in Figure 2 
and Figure 3. Once the SP enters the stable state, the 
new algorithm will disable the boosting and notify the 
application about the state change. The controller 
tracks the participation of mini-columns overall seen 
patterns. After the controller notices that all mini-
columns are approx. uniformly used and all seen 
SDRs are encoded with the approx. the same number 
of active mini-columns, the SP has entered the stable 
state. From that moment the SP will leave the new-
born stage and continue operating as usual but 
without the boosting.  

3 RESULTS 

To approve of the Spatial Pooler algorithm can be 
improved to reliably generate a stable state with the 
help of the Homeostatic Plasticity controller, the 
following experiment was designed. The experiment 
(see Listing 1) executes 25000 iterations and presents 
100 scalar values to the SP. The scalar encoder used 
in line 11 is configured with the set of parameters 
(line 5) described in Table 2. 

Every input value (0-100) will be encoded as the 
vector of 200 bits. Also, every single value from the 

specified range will be encoded with 15 non-zero bits 
as shown in Figure 1 - right. 

Listing 1: Using of improved SP - Pseudo code. 

  0 function Experiment( inputSet ) 
  1 begin ( 𝚰 ) 
  2 |   p            // Set of SP parameters. 
  3 |  hp,enp   // Set of HPC and encoder parameters 
  6 |  isStable = false 
  5 |  en←create(enp) 
  6 |  hpc ←create(hp, onStateChange);  
  7 |  sp ←create(i, hpc);  
  8 |  FOR i = 0; i<25000 
  9 |      FOREACH i IN inputSet 
10 |           // Generate SDR for the input. 
11 |           o ← sp.compute(encode(i));   
12 |           IF isStable = true  
13 |               // new-born stage exited 
14 |               // Use stable SDRs. Custom code here.  
15 |           ENDIF 
16 |      ENDFOREACH  
17 |   ENDFOR  
18 | end 
19 |  
20 | function onStateChange(state) 
21 | begin 
22 |    isStable = true // Indicate the stable state 
23 | end 
 
The instance of the Spatial Pooler (line 7) with the 
common set of parameters (line 3) has been created. 
The same configuration was used in the experiment 
described in the previous section, that produced 
results shown in Figure 2 and Figure 3.  

As next, the Homeostatic Plasticity Controller 
(line 6) is typically attached to the Spatial Pooler 
instance (line 7, second argument) and used inside of 
the compute method. 

The Homeostatic Plasticity Controller requires 
the callback function (line 6, second argument), 
which is invoked when the controller detects the 
stable state of the Spatial Pooler. The experiment is 
designed to execute any number of training iterations 
(line 8 defines 25000 iterations).  

In every iteration, the Spatial Pooler is trained 
with the whole set of input values 𝚰 ሺline 9ሻ. 

The spatial input is trained in line 11. The output 
of the training step in line 11 is an SDR code (set of 
active mini-columns) associated with the encoded 
input value i. Before presented to the Spatial Pooler, 
the input value i is encoded by the Scalar Encoder 
configured with the named set of parameters shown 
in Table 2. The encoder is represented as a function e 
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that converts the given scalar value to the binary 
array: 

𝑒: ℝ ⟶  ሼ0,1ሽ 

The computation inside of HTM operates 
exclusively on binary arrays as the neo-cortex does it. 
The existing SP compute algorithm is extended to 
invoke the Compute method of the Homeostatic 
Plasticity Controller (HPC) shown in Algorithm 1. 
The HPC computation takes places after the Spatial 
Pooler has computed the iteration. 

The HPC Algorithm 1 starts with two inputs. The 
first one is the binary array of encoded input pattern 
and the second one is the SDR as calculated by the SP 
for the given input.  

Table 2: Scalar Encoder parameters. 

Parameters Value 
W – Bits for coding of the single value 15 

N – Input bits  200 

MinVal 0 

MaxVal 100 

On the beginning, the algorithm does not perform any 
change in the SP. This period is called the newborn 
stage. The Homeostatic Plasticity Controller will 
disable the boosting in the Spatial Pooler after the 
minimum required the number of iterations m is 
reached (line 15). When the iteration number is larger 
than m, the boosting is disabled by setting parameters 
DUTY_CYCLE_PERIOD and MAX_BOOST to 
zero. These parameters update the boost factors for 
every single column in every iteration. The boost 
factors are used in the Spatial Pooler to increase the 
number of connected synapses (overlap) of inactive 
columns. Increased overlap of inactive column 
improves the chance of the column to become active.  

After disabling of boosting the algorithm starts 
tracking all seen patterns and their associated SDRs. 

To avoid the saving of entire input dataset 
internally, the function ℎ𝑎𝑠ℎ  calculates the hash 
value (line 6) over the sequence of bits of the input in 
the current iteration. The calculated hash-value is a 
sequence of bytes defined as a set H.  

In line 8 the tuple of the input’s hash value H and 
the number of active columns of the corresponding 
SDR is associated with the set Ε. The set Ε 
remembers p tuples of every input.  

As discussed in the previous section, the goal is to 
keep the number of active columns (non-zero bits) 
uniform across all generated SDRs. The value 𝛿 is the 
average change of the number of active cells per SDR 
in the interval p (line 9).  

Algorithm 1: Computation in HPC. 

01 input:   i  // Set of neural cells. I.e. sensory input. 
02 output: o // Set of active columns - SDR  
03 configuration:  
04 b // SP max boost 
05 d // SP min pct. overlap duty cycles                      
06  begin  
     | // Calculate the hash value of the input of N bits. 
07 | H ← ℎ𝑎𝑠ℎ(i);  
     | // Calculate the sum of active columns in SDR 
08 | Ε ← ሺH, ∑ 𝑖௞ሻ୑

୩ୀ଴  𝑜௞ ∈ 𝒐)  
     | // The average change of num. of the act. columns 
09| 𝛿 ←  

ଵ

௣
∗ ∑ |୮ିଵ

௞ୀ଴ ℇு௞ െ ℇுሺ௞ାଵሻ| ℇு ∈  Ε 

    | // Calculate the correlation. 
10| 𝑐 ൌ  𝑐𝑜𝑟𝑟ሺ𝒐′, 𝒐ሻ | 𝒐′ ∈ ℋ 
    | // Store input-hash and SDR pair 
11| ℋ←ሺH, oሻ      
     | // Increment the counter of stable iterations for i.  
12| Γ← γு ൅ 1ሾ𝛿 ൌ 0, 𝑐 ൐  𝜃|0.9 ൏ 𝜃 ൏ 1, γு ∈  Γሿ 
     | // Fire stabe state event  
13| StableState ሾγு ൌ 𝜏, ∀ γு ∈  Γ, 𝜏 ∈ 𝐍ሿ 
     | // Reset the counter of stable iterations for i.  
14| Γ← 0ுሾ𝑐 ൑ 𝜃|0.9 ൏ 𝜃 ൏ 1.0ሿ 
     | // Disable boost after specified num. of iterations.  
15| boost=off ሾ𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ൐ൌ  𝑚 ሿ 
16| end 
 

The interval p is the number of previous iterations 
used to calculate the 𝛿 . In most experiments, this 
value was set to five.  

The value 𝛿  is calculated as an average sum of 
deltas  ℇு௞ െ ℇுሺ௞ାଵሻ in the last p iterations for the 
given input hash value H.  
 

𝛿 = 
ଵ

௣
∗ ∑ |୮ିଵ

௞ୀ଴ ℇு௞ െ ℇுሺ௞ାଵሻ| ℇு ∈  Ε 

 
Having this value zero is the first condition of the 

stability of the new Spatial Pooler. This value is zero 
if the number of active columns of the SDR of the 
same input does not change over time defined by the 
number of iterations p. 

The second condition for stability of the Spatial 
Pooler is the achieving of the constant SDR for every 
input seen by the Spatial Pooler during the entire 
training process. For this reason, the set ℋ is used to 
keep tuples (H,o) of input hash values and their SDRs. 
SDRs of inputs in upcoming iterations override the 
previously-stored tuple of the current input. There is 
always a single tuple (H,o) for every input inside of 
ℋ. Tuples in ℋ are used to calculate the correlation 
between previous and the current SDR of the given 
input (lines 10, 11).   
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If the correlation between the last SDR 𝒐′ and the 
new (current) SDR 𝒐 of the given input i is larger then 
the specified threshold 𝜃 (typically near 100%) and 
the first condition 𝛿 ൌ 0 is fulfilled, then the counter 
of stable iterations of the given input i is incremented 
(line 12).  

The second condition that corresponds to the 
stable state of the Spatial Pooler is fulfilled if the γு 
(number of stable iterations) reach the defined 
threshold 𝜏 (line 13) for every seen input during the 
training process. In most experiments, the chosen 
value was between 15 and 150. Every time the 
correlation value is less than threshold 𝜏 the counter 
of stable iterations γு for the given input is reset.  

After entering the stable state all generated SDR-
s should remain unchanged for the entire lifetime of 
the Spatial Pooler instance. The SP is defined as 
stable if both described conditions are satisfied: 

- uniform number of active cells in all SDRs and  
- required number of stable iterations for all SDRs 

is reached. 
The implementation of the algorithm of HPC 

(Dobric, 2020) continues to track the stability after 
the SP has reached a stable state.  

Some experiments show that SP can also get 
unstable shortly after entering the stable state. If that 
happens the unstable state will get stabilized soon in 
typically few iterations. This behaviour is still under 
investigation. 

 

Figure 6: Spatial Pooler in the stable state representing two 
SDRs of two input pattern examples with the activated 
Homeostatic Plasticity Controller. 

The experiment in Listing 1 was executed many 
times (1000+) for various configurations and input 
patterns previously discussed in this section.  

As mentioned, the described Homeostatic 
Plasticity Controller algorithm is injected in the 
Spatial Pooler in line 7 in Listing 1. 

Results show that the extended Spatial Pooler 
with HPC algorithm gets always stable with the 
uniformly distributed number of active columns for 
all SDRs.    

Figure 6 shows SDRs of two coincidently used 
spatial input samples. Values ‘0’ and ‘1’ are both 
encoded with the stable SDR after approx. 300 
iteration. As shown in the figure, generated SDRs are 
unstable in the first 300 hundred iterations. Active 
columns which encode SDRs are in first 300 steps 
continuously changed. This iteration interval is called 
HTM new-born stage and it is defined by the 
parameter m (line 15). In this stage the boosting is 
active and SDRs of all inputs are changing during the 
learning process. 

After 300 cycles the HPC disables the boosting 
and SDRs converge to very quickly to the stable state, 
which remains during the life cycle of the Spatial 
Pooler. In this experiment, tests were done with up to 
30000 iterations. The SP remains stable with one 
exception. As already mentioned, the SP can 
sometimes leave the stable state shortly after entering 
it. This instability is according to the design of the 
HPC algorithm caused changed SDR of the currently 
processing input. The HPC will in this case reset the 
counter of stable iterations for the given input 
(line14), which will declare the SP as unstable. When 
this exception occurs, the learning can continue until 
the SP enters the stable state again for the entire life 
cycle of the SP instance. This unwanted behaviour 
occurs when the chosen number of minimum required 
iterations m is too small. Choosing larger values form 
solves this exceptional behaviour but it takes a longer 
time to leave the newborn stage and enters the stable 
state. Application developers should choose a 
reasonable value for their specific use case. Even if 
this value is not ideally selected, the HPC will notify 
the application when the SP gets instable. With this, 
any required action can be performed inside of the 
application. 

Figure 7 shows this exceptional behaviour. The 
HPC was configured in this experiment to use very 
low minimum iteration required value m=25. This is 
typically a very short new-born stage. The SP has not 
enough time to uniformly activate all columns. The 
SP entered the stable state but, in some iterations, 
some mini-columns get deactivated and some new 
mini-columns get activated.  The red arrow in the 
figure shows that last instability iteration. After the 
iteration marked with the arrow, the SP gets stable 
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and remains stable. The figure shows 100 iterations 
only due to the limited space. 

 

Figure 7: Spatial Pooler soon after entering the stable state 
become instable for some input patterns. After a few 
iterations, the SP become stable again and it remains in the 
stable state. 

4 CONCLUSIONS 

The Hierarchical Temporal Memory algorithm is 
inspired by the neo-cortex and implements many 
known features that have roots in neuro-sciences. 
Nowadays many results show that the algorithm is 
very flexible and can solve different kind of 
problems. However, the reverse engineering of the 
neo-cortex is still a complex and unsolved task. Many 
design decisions in the algorithm base on assumptions 
and work in progress. This paper focuses on the 
instability issue of the HTM Spatial Pooler algorithm, 
which has a task to memorize spatial patterns in an 
unsupervised way. As discussed, the original Spatial 
Pooler already integrates some sort of homeostatic 
plasticity mechanism discovered in previous work in 
neurosciences. However, the existing solution causes 
instability in the learning process, which makes very 
difficult to build applications. This work briefly 
documented the named issue and offered the solution 
by extending the existing SP algorithm with the new 
component called Homeostatic Plasticity Controller. 
The extended version of the SP is motivated by 

finding in neurosciences, that documents the activity 
of this mechanism during the development of the 
species. Inspired with this finding the new 
Homeostatic Plasticity Controller defines the 
newborn stage of the Spatial Pooler. In this stage, the 
SP stimulates the boosting of mini-columns and first 
allows the instability in the learning process.  After 
the specified number of iterations, the HPC switches 
off the boosting and waits for the SP to enter the 
stable state. With this approach the SP converges to 
the stable state and applications can be notified about 
the state of the SP. This improves the quality of the 
learning of the SP and enables the implementation of 
more reliable solutions. Another work in progress in 
this context is related to the design of the parallel 
version of the HTM. The new HPC algorithm needs 
to be validated for parallel implementation (Dobric, 
Pech, Ghita and Wennekers, 2019). 
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APPENDIX 

All experiments described in this paper are 
implemented in C#/.NET Core 31. The Hierarchical 
Temporal Memory framework with the Spatial Pooler 
used in experiments is based on the open-source 
project NeocortexApi. The source code and 
documentation can be found at the GitHub (Dobric, 
GitHub, 2018). 

The experiment related to the stability of the 
Spatial Pooleris implemented in a form of the 
UnitTest inside of the Microsoft Unit Testing 
framework integrated in Visual  Studio. The test used 
for the stability experiment is called 
SpatialPooler_Stability_Experiment_3. It is 
implementedin the source file SbStability.cs. This 
code generatesthree output CSV files:-
ActiveColumns.csv,  

-ActiveColumns-plotlyinput.csv and  
-Oscilations.csv.  
ActiveColumns files hold the same information in 

a slightlydifferent format than ActiveColumns-
plotlyinput.csv. Bothfiles contain active columns 
(SDR) for every trained digit in every iteration. 

ActiveColumns-plotlyinput.csv can be used as the 
input for the Python script to generate diagrams that 
represent activecolumns shown in figure 6. 

The script used go generate the diagram is called 
draw_figure.py and can be found at the following 
location: 
/Python/ColumnActivityDiagram/draw_figure.py 

Further information about running the script can 
be foundin the Pyhton script 

The file Oscilations.csv file is used to generate the 
diagramshown in Figure 1. This diagram was 
generated by Microsoft Excel. 
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