
Securing the Linux Boot Process: From Start to Finish

Jakob Hagl1, Oliver Mann2 and Martin Pirker3

1Software Security Group, SBA Research, Vienna, Austria
2Cyber Defense Center, Kapsch BusinessCom AG, Vienna, Austria

3Josef Ressel Center for Blockchain Technologies and Security Management,
St. Pölten University of Applied Sciences, Austria

Keywords: UEFI, Secure Boot, Linux, Boot Process, Full Disk Encryption, Privacy.

Abstract: The security of the operating system is a prominent feature in today’s Linux distributions. A common security
practice is to encrypt the hard drive, to protect the data at rest. The UEFI Forum released the secure boot
specification, an optional boot process protocol that improves security during boot up on secure boot enabled
hardware. A combination of secure boot with the Linux operating system, along with full disk encryption in
an effort to implement maximum security is non-trivial. This paper explores the challenges of this undertaking
and reports on a practical evaluation with five major Linux distributions, how far they support these security
features by default and what can be improved manually.

1 INTRODUCTION

When looking back to the early days of computers,
the startup processes of different vendors were nei-
ther uniform, nor compatible, or in any way secure.
The BIOS (Basic Input/Output System) standardized
the common low-level building block(s) on a personal
computer. In an effort to further improve the boot
loader functions and features of computers, the indus-
try founded the UEFI (Unified Extensible Firmware
Interface) forum (UEFI Forum, 2019). UEFI’s mis-
sion is to improve the early code executing in every
PC, to specify a more secure boot process, with faster
boot times, improved performance and a more cost-
effective time-to-market shipment of products. One
of the many improvements and changes with UEFI
was the so-called UEFI secure boot protocol. Overall,
these developments, alongside technologies such as
full disk encryption, provide an excellent basis for se-
curing the startup process on modern computer hard-
ware. However, secure boot is as of today mainly used
by the Microsoft Windows line of operating systems,
mostly due to Microsoft’s dominating position in the
market of operating systems.
Contribution. This papers reviews the options for
deployment of UEFI secure boot in combination with
full disk encryption on five major Linux distributions:
Arch Linux, Debian, Fedora, openSUSE and Ubuntu.
On the one hand this provides an up to date overview

on what features are available on the reviewed distri-
butions by default, and on the other hand this is also
a brief guide on how to implement improvements to
these features in practice.

2 BACKGROUND

2.1 UEFI

The UEFI specification is the successor of the ear-
lier EFI (Extensible Firmware Interface) specifica-
tion from Intel. It defines a standard environment for
booting operating systems and for execution of early
pre-boot applications. The reference implementation
of the specification is TianoCore (TianoCore, 2017),
an open source implementation based on the original
“Tiano” EFI code base as donated by Intel in 2004.

With the emergence of UEFI secure boot a spe-
cific class of devices was identified by Richardson
(Richardson, 2017): Devices in UEFI class “3+” have
secure boot always enabled and boot only UEFI com-
patible boot loaders. UEFI Class 3 and higher do
not offer support for a traditional “legacy BIOS” boot
process via a compatibility support module (CSM),
and Intel planned to deprecate CSM support by 2020.

604
Hagl, J., Mann, O. and Pirker, M.
Securing the Linux Boot Process: From Start to Finish.
DOI: 10.5220/0010313906040610
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 604-610
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2.2 UEFI Secure Boot

The UEFI secure boot protocol protects the boot
process from being manipulated to launch malicious
code, before the operating system is loaded and fully
functional. When the computer system is booting and
secure boot is activated, the firmware checks every
UEFI binary or application that is loaded. It ensures
that these binaries have a valid signature, meaning
the signature is checked against a local database of
trusted certificates, or that the individual checksums
of these binaries are stored in an “allowed” list. Fur-
thermore, it checks if certificates or checksum values
are not stored in the “deny” list. If these checks are
successful, the firmware executes a binary. If not, the
firmware refuses to load a binary, therefore halts the
boot process and alerts the user.

The local database of trusted certificates or check-
sums are stored as UEFI secure variables in the
firmware (UEFI Forum, 2020b). To change or re-
set these variables physical access is required, which
strengthens the security aspect of secure boot. On the
other hand, secure boot can be easily turned off when
an attacker has direct access to a device’s firmware
setup menu, if it is not being protected by any kind of
user authorization (Paul and Irvine, 2015).
UEFI Keys Overview. To manage and protect the
required signatures for the verification of UEFI appli-
cations and images, the UEFI specification describes
two distinct keys:

The first one is the Platform Key (PK), which is is-
sued by the Original Equipment Manufacturer (OEM)
of the hardware, when the hardware system is being
built. The instance that controls the PK can install a
new PK and update the Key Exchange Key (KEK).

The KEK is the second key and is used to pro-
tect the database from any unauthorized modification.
This key is used to sign the database or can be used
to sign executable binaries directly. Changes to the
database are only possible when both parts of the key
(public and private) are available, which means that
the KEK establishes the trust between the boot loader
and the firmware.

The KEK is issued by the operating system vendor
(mainly Microsoft) and it is possible that a system can
hold more than one KEK. OEMs use their own KEK
for signing their own UEFI drivers and applications.

The database is split up into two parts, the sig-
nature database (db) and the forbidden signature
database (dbx). The signature database holds a list
of allowed certificates or allowed checksums. Signed
UEFI binaries with a valid signature that corresponds
to a certificate that is stored in the db, are trusted by
the firmware.

The forbidden signature database contains hashes
of specific UEFI binaries, certificates, or hashes of
certificates that where revoked or compromised and
therefore should not be trusted. The execution of a bi-
nary is refused when the hash is stored in the dbx,
or the signature of the binary is stored in the dbx,
or the key that was used to sign the binary is stored
in the dbx (UEFI Forum, 2020b). An UEFI revoca-
tion list can be obtained from the UEFI Forum (UEFI
Forum, 2020a). This list contains signatures of pre-
viously approved and signed UEFI applications used
in booting systems with secure boot enabled, which
were revoked due to security incidents.

To change or reset the four UEFI variables (see
Table 1), physical access to the computer system is
required. The UEFI specification requires that these
keys should be changeable in the firmware setup by
the end user (UEFI Forum, 2020b).

Table 1: UEFI-Variables needed by UEFI secure boot.

Name Description
PK Contains the PKpub

KEK Contains all KEK keys, signed by
the PKpriv

db Contains a list of trusted certifi-
cates, signed by the KEKpriv

dbx Contains blacklisted certificates,
signed by the KEKpriv

Microsoft mandates in their “Windows 8 ready”
specification that the firmware of devices is compli-
ant with the UEFI specification, version 2.3.1 Errata
C. Furthermore, the secure boot protocol must be en-
abled when the device is leaving the OEM. A specific
Microsoft signature must be stored in the db and a Mi-
crosoft KEK key must be stored in the KEK variable.
This key is used by Microsoft to update the database
on devices from multiple different OEM’s.

The hardware specifications and policies for the
newest Windows 10 version can be found in the Win-
dows hardware developer documentation (Microsoft
Corporation, 2018).

2.3 Full Disk Encryption

Disk encryption encrypts (or decrypts) data written to
(or read from) a storage device. While an encryp-
tion of just user data is the simplest and least in-
trusive method—often this is only the user’s home
directory—it is an incomplete approach. In modern
operating systems, background processes cache and
store information also in non-encrypted areas, for ex-
ample in a swap partition or the /var or /tmp folders.
The solution is to encrypt both user and operating sys-

Securing the Linux Boot Process: From Start to Finish

605



tem data, thereby blocking unauthorized third parties
to easily access any data at rest. On the other hand, an
encryption of all data means that the encrypted parts
of the storage device must be unlocked at boot time,
to make any access possible.

With full disk encryption (FDE) (Bossi and Vis-
conti, 2015) the whole disk is encrypted. The term
is also used for storage devices of UEFI capable sys-
tems where technically not all of the data on the stor-
age device is encrypted, i.e. the EFI System Partition.
The EFI System Partition stores the boot loader bina-
ries and other UEFI application binaries and therefore
must be accessible unencrypted for a system to boot.

Linux. On the Linux platform Linux Unified Key
Setup (LUKS) standardizes the key management for
encrypting whole partitions (Frühwirth, 2018). It is
the proof-of-concept implementation of TKS1, a de-
sign for secure key processing (Frühwirth, 2004). The
first version of LUKS is the reference implementa-
tion, which uses DM-crypt and the device-mapper
subsystem of the Linux kernel to implement a trans-
parent disk encryption subsystem, for on-the-fly en-
cryption and decryption (Broz, 2020).

A typical partition layout for a Linux installation
is as follows: First, an EFI system partition contains
the boot loader files. Secondly, a boot partition which
holds the Linux kernel and initramfs. Finally, one or
more primary partitions, which store the rest of the
operating system and more file systems. With com-
mon Linux distributions the installation process only
sets up an encrypted primary partition, the boot par-
tition is left unencrypted. For a FDE installation the
boot partition needs to be encrypted as well, so that
no third party can manipulate the files for booting.

The boot partition may be merged with the pri-
mary system partition into one single encrypted parti-
tion. This enhances usability and management, since
one partition requires only one crypto key. The one
drawback of this approach is that GRUB, which is
commonly used as the boot loader with Linux, un-
fortunately only supports LUKS1 format and not the
newer LUKS2. As of now no major GRUB ver-
sion was published with LUKS2 support (Steinhardt,
2020).

3 SCENARIO & ENVIRONMENT

To evaluate the most used Linux distributions for their
support of UEFI secure boot in combination with full
disk encryption, a representative selection of operat-
ing systems alongside with a unified testing environ-
ment were set up. We selected the following distribu-
tions for our evaluation: Arch Linux, Debian 10.3,

Fedora Workstation 31, openSUSE Leap 15.1 and
Ubuntu 19.10, in their base variants without any ad-
ditional modifications. Arch Linux is a “rolling re-
lease” distributions and therefore has no specific ver-
sion number, we used a snapshot image.

Virtualization is the obvious choice to provide
a unified testing environment, which brings the ad-
ditional benefit of reproducible test results, even
when conducting the practical tests on different hard-
ware. QEMU (Quick EMUlator)(QEMU, 2020)
with the hypervisor KVM (Kernel-based Virtual Ma-
chine)(KVM, 2016) was selected as the virtual en-
vironment for all tests, they provide excellent sup-
port for secure boot with OVMF (Open Virtual Ma-
chine Firmware)(Red Hat, 2015), a UEFI compatible
firmware.

4 EVALUATION

We now report on our findings with each of the five
Linux distributions. Arch Linux is first and described
in detail as it requires all steps to be done manu-
ally. The following distributions are described more
briefly, due to lack of space and as common steps and
the boot chain repeats.

4.1 Arch Linux

General. As Arch Linux does not ship with a graphi-
cal installer nor a command-line based one, an instal-
lation of a test setup is done manually. While Arch
does support booting in pure UEFI systems, the in-
stallation medium does not support secure boot out of
the box. Therefore, secure boot must be deactivated in
the firmware setup before the installation starts. Our
desired configuration requires the creation of an unen-
crypted EFI partition and two LUKS partitions. Us-
ing GRUB as second stage boot loader requires the
use of only LUKS version 1 for the boot partition. It
contains the Linux kernel and initramfs files. The sec-
ond encrypted partition is the primary root partition of
the installation. After this initial setup the installation
of the base system of Arch Linux proceeds according
to the installation guide as detailed in the Arch Wiki
(Arch Linux, 2020).
FDE. Arch supports booting from encrypted parti-
tions, this requires certain modules to be added to the
initramfs as mkinitcpio hooks. On Arch Linux the
script mkinitcpio is readily available to (re-)generate
the proper initramfs file. To bypass the kernel
passphrase prompt for the boot and root partition, two
distinct key files are necessary. These key files are

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

606



placed into the second LUKS key slot for the respec-
tive partition, so each partition can be unlocked with
either a password (slot 1) or a key (slot 2). Both key
files have to be compiled into the initramfs. On boot
GRUB asks the user for the password to load the ker-
nel and initramfs from the first encrypted partition.
The initramsfs contains the two keys and the boot pro-
cess continues without any further user input.
Secure Boot. We use the so-called shim boot loader
as the first stage boot loader that validates and then
chain-loads GRUB. Shim can be used on every UEFI
compliant computer system, as it is signed by the Mi-
crosoft UEFI CA and therefore shim is trusted and
executed by the UEFI firmware when secure boot is
enabled.

The next step is to create a MOK (Machine Owner
Key), which signs the files of GRUB and the kernel.
A certificate signed by exactly that key is then stored
into the shim controlled MOK list.

The GRUB boot loader also has support for the
shim lock module. This module forces GRUB to only
load trusted modules and files, if they are not embed-
ded inside the core.img of GRUB. Therefore, this re-
quires a GPG-key for signing all files that are inside
/boot. The public part of the GPG-key and the nec-
essary modules for verifying files are embedded into
GRUB by the reinstallation process for the GRUB bi-
nary. The resulting new GRUB binary is signed with
the MOK, and every file in the boot directory is signed
with the private part of the GPG-key. This means that
even the initramfs is validated by GRUB when load-
ing the kernel. Additionally, the kernel image must
now be signed with the private MOK key. The last
step is to configure a new UEFI boot record that points
to the shim binary.

After the installation is finished, we enable secure
boot in the firmware setup and start the boot process.
Now secure boot first validates the firmware, then fol-
lows the boot record to executes the shim binary, shim
then validates and executes the GRUB binary, and
the Linux kernel will only be loaded when its signa-
ture is valid. Therefore the chain of trust spans from
the UEFI firmware through the boot process to the
Linux kernel. The chain could even be extended fur-
ther, by enabling the Linux kernel lockdown mode,
where only signed kernel modules are permissible to
be loaded.

4.2 Fedora

General. Fedora features UEFI boot support since
version 11, which was released on June 2nd 2009.
The installation process relies on a Live Desktop en-
vironment. The graphical installer of Fedora includes

the option of an encrypted primary partition, there-
fore no additional configuration needs to be done re-
garding this feature. After the installation completes
and the machine reboots, the boot partition of Fedora
is not encrypted while the primary partition, which
holds the root filesystem partition and the swap vol-
ume, is encrypted with LUKS2.
Secure Boot. The installation program creates a boot
entry called Fedora, which references the shim bi-
nary on the EFI system partition. During the boot
process shim validates and chain loads the GRUB2
binary grubx64.efi, which is signed by the Fedora Se-
cure Boot CA key. After the user selects a kernel entry
from the GRUB2 menu, GRUB validates the kernel
file and loads both, the kernel and initramfs, files into
memory. The initramfs file however is not validated
by GRUB2. All kernels that are built and shipped by
the Fedora Project are already pre-signed with the Fe-
dora Secure Boot CA key. The kernel modules are
signed by a temporary key that is generated during
the build phase. It is not saved, a new key is used with
each kernel build (Boyer et al., 2013). The kernel is
started in lockdown mode.
FDE. To also encrypt the first partition hosting /boot,
the initial step is a backup of the contents of the
boot partition (e.g. to the home directory of the root
user). Then the partition is unmounted, reformatted as
LUKS1 encrypted partition, with an Ext4 filesystem
with the same UUID that was used by the original un-
encrypted partition. This avoids changes to /etc/fstab.
The /etc/crypttab requires a new entry for the new
boot partition. Finally, the original /boot contents can
be restored.

The GRUB configuration also needs to be updated
accordingly, however a reinstallation of the GRUB2
binary is not necessary since the EFI build of GRUB2
already includes the needed modules, such as verify,
cryptodisk and luks support (Doron et al., 2020).

Just like with other distributions, to avoid a sec-
ond passphrase prompt by the kernel, the kernel re-
quires a key in the initramfs to unlock both the boot
and the root partition. Fedora uses the program dra-
cut to generate a new initramfs image. The key file
to be embedded in the initramfs can be placed via in-
stall items. After a rebuild of the initramfs and a re-
boot, only GRUB2 asks for the boot partition LUKS
passphrase. The kernel unlocks the partitions with the
key file embedded in the initramfs image.

4.3 OpenSUSE Leap

General. OpenSUSE implemented the support for
UEFI in openSUSE 12.2, which was released on
September 5th 2012, and an experimental support for

Securing the Linux Boot Process: From Start to Finish

607



secure boot in openSUSE 12.3, which was released on
March 13th 2013. OpenSUSE, just like Fedora, uti-
lizes a graphically guided installation process. Sup-
port for full disk encryption is available out-of-the-
box: openSUSE does not utilize a separate unen-
crypted boot partition, therefore all steps necessary
for encryption of the main partition are performed by
the graphical installation process. After completion
of the installation process and reboot of the (virtual)
machine, first GRUB2 asks for the LUKS passphrase,
and then the kernel asks a second time.
Secure Boot. OpenSUSE uses shim, the same way as
Fedora. It chain-loads a GRUB2 binary that is signed
by the openSUSE secure boot CA key, which is em-
bedded into the trust database of shim. GRUB2 un-
locks the primary partition and validates the kernel
file, then loads the kernel and initramfs file into mem-
ory. The initramfs file is not validated. The validation
of the kernel is successful since all kernels are signed
with the openSUSE secure boot key. The chain of
trust ends here, since the kernel does not enforce any
further restrictions, like the kernel lockdown mode.
The kernel loads any kernel module, without valida-
tion.
FDE. The use of only one encrypted partition has one
major downside, the partition can only use LUKS1
format, as GRUB2 does not (yet) support unlocking
of LUKS2 partitions. Therefore openSUSE cannot
take advantage of the newer LUKS2 format.

As openSUSE already stores /boot on the en-
crypted main partition, all that needs to be done is
to create and embed a key file into the initramfs to
omit a second passphrase prompt at boot time. This
key file creation works the same way as on Fedora, as
openSUSE also relys on dracut to build the initramfs.

4.4 Ubuntu

General. Ubuntu supports booting on UEFI based
systems since version 11.10, released on October 13th
2011. Ubuntu utilizes a graphical installation pro-
gram, just like Fedora, which includes the option of an
encrypted primary partition, therefore no additional
configuration needs to be done. After the installation
finishes, the (virtual) machine reboots and the kernel
prompts for the passphrase for the encrypted primary
partition. The disk is partitioned the same way as on
Fedora: an EFI system partition, an unencrypted boot
partition, and an encrypted primary partition, using
LUKS2.
Secure Boot. The UEFI firmware first loads shim,
which is signed by Microsoft’s UEFI CA. Shim vali-
dates and chain-loads the GRUB2 binary grubx64.efi
that is stored on the same partition. GRUB2 is signed

by the Ubuntu UEFI key that is embedded into the
shim trust database. GRUB2 validates the kernel and
loads the necessary files from the boot partition. The
initramfs file is not validated. All kernels and kernel
modules that are built and shipped by Canonical are
signed with the Canonical UEFI key. The kernel is
started in lockdown mode.
FDE. To encrypt /boot, the same principle applies as
with Fedora’s boot partition. First backup the original
content, create an encrypted LUKS1 partition, then
restore the files and reconfigure GRUB2 to unlock the
partition during startup. A key file embedded into the
initramfs avoids a second passphrase prompt from the
kernel during boot.

4.5 Debian

General. Debian supports booting from an UEFI
based firmware since Debian Wheezy (7.0), which
was released on May 4th 2013. With the included
graphical installer one can configure an encrypted pri-
mary partition, just like on Fedora and Ubuntu. Af-
ter the installation of the base system the (virtual)
machine reboots. On boot the kernel asks for the
LUKS passphrase for the encrypted primary parti-
tion. The disk is split up the same way as on Fedora
and Ubuntu: An EFI system partition, an unencrypted
boot partition, and an encrypted primary partition, us-
ing LUKS2.
Secure Boot. The Debian installation process creates
a boot entry called debian, which points to shim64.efi.
Shim validates and chain loads the GRUB2 binary
grubx64.efi, which is signed with the Debian UEFI
key. Both shim and GRUB2 are stored on the EFI
system partition. GRUB2 validates the kernel, the
initramfs file is not validated. The kernel and all its
modules are signed by the Debian UEFI key. The
lockdown mode of the kernel is active if secure boot
is active.
FDE. Since Ubuntu is built on the Debian architec-
ture, the process of setting up an encrypted boot par-
tition is approximately the same as described in Sec-
tion 4.4.

5 DISCUSSION

Encryption of all partitions on a computer system pre-
vents third parties from tampering around with data
stored on it. The secure boot protocol from the UEFI
specification detects unauthorized changes to the boot
chain, by validating every step that is involved in the
process.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

608



Table 2: Summary of the state of all features on the tested distributions. (3) means that the feature works out-of-the-box, (7)
means that the feature does not work out-of-the-box.

Distribution UEFI boot Secure Boot Full Disk Encryption Chain of Trust to Kernel
Arch Linux 3 7 3 3
Debian 3 3 7 3
Fedora 3 3 7 3
openSUSE 3 3 3 7
Ubuntu 3 3 7 3

We have analyzed and tested five major Linux dis-
tributions: Arch Linux, Debian 10, Ubuntu 19.10, Fe-
dora Workstation 31 and openSUSE Leap 15.1. For a
compact overview of our results see Table 2. We are
happy to report all distributions support booting from
an UEFI firmware.

The implementation of secure boot is generally
realized with shim, the secure boot compatible first
stage boot loader from the Fedora Project. Shim
chain-loads a second stage boot loader in the form of
GRUB2, who is signed by the individual distributions
certificate authority. Booting further, the kernel image
is validated by the second stage boot loader.

Ubuntu, Debian and Fedora offer the so-called
lockdown mode, a way for the chain of trust to reach
up to the kernel space by limiting the access to modify
the kernel itself. On openSUSE the lockdown mode
is not enforced. The chain of trust ends with GRUB2
validating the kernel image.

On Arch Linux the user has to install the whole
system manually. This makes an installation with
secure boot and full disk encryption the most time-
consuming. On the other hand, the implementation of
Arch Linux also validates the initramfs, in contrast to
the other tested distributions.

Per default none of the tested distributions offer
the functionality of using a key file to unlock the en-
crypted root partition, though every tool/program that
is necessary for this feature is already installed in the
base installation of Ubuntu, Debian, Fedora and open-
SUSE. Only openSUSE supports an encrypted /boot
folder per default, with the disadvantage that only
LUKS1 can be used on the encrypted root partition.

6 CONCLUSION

Unfortunately, as can be seen in Table 2 none of the
evaluated Linux distributions provides support for all
of the possible security features out-of-the-box. We
assume that the majority of the user-base most likely
does not care, and will not invest the effort to imple-
ment missing ones when using one of these distribu-
tions. It remains to be seen if either all distributions
will implement all the features one day by themselves,

or if users will show more interest and demand that
they are implemented. As the Linux world is contin-
uously improving, maybe at the time of reading these
lines this has already happened?

A potential future work would be the analysis of
TPM (Trusted Platform Module) integration into the
boot chain. The TPM can be used to host the key to
the encrypted primary partition and the TPM would
release the key only if the components in the chain
of the boot process have not been tampered with.
The challenges of TPM-based keys and integration of
them into the boot process of major Linux distribu-
tions will be revisited in a future paper.

ACKNOWLEDGEMENTS

The work presented in this paper was done at the Josef
Ressel Center for Blockchain Technologies and Secu-
rity Management (BLOCKCHAINS), St. Pölten Uni-
versity of Applied Sciences, Austria.

The financial support by the Christian Doppler
Research Association, the Austrian Federal Ministry
for Digital, and Economic Affairs and the National
Foundation for Research, Technology and Develop-
ment is gratefully acknowledged.

REFERENCES

Arch Linux (2020). Arch linux wiki - installa-
tion guide. https://wiki.archlinux.org/index.php/
Installation guide.

Bossi, S. and Visconti, A. (2015). What users should know
about full disk encryption based on LUKS. In Cryptol-
ogy and Network Security, pages 225–237. Springer.

Boyer, J., Fenzi, K., Jones, P., Bressers, J., and
Weimer, F. (2013). Fedora 18 - uefi secure boot
guide. https://docs.fedoraproject.org/en-US/
Fedora/18/pdf/UEFI Secure Boot Guide/Fedora-
18-UEFI Secure Boot Guide-en-US.pdf.

Broz, M. (2020). dm-crypt: Linux kernel device-
mapper crypto target. https://gitlab.com/cryptsetup/
cryptsetup/-/wikis/DMCrypt.

Doron, B., Jones, P., and Canillas, J. M. (2020). In-
clude several modules in the efi build of grub2

Securing the Linux Boot Process: From Start to Finish

609



for security use-cases. https://fedoraproject.org/wiki/
Changes/Include security modules in efi Grub2.

Frühwirth, C. (2004). Tks1-an anti-forensic, two level, and
iterated key setup scheme.

Frühwirth, C. (2018). Luks1 on-disk format specification
version 1.2.3.

KVM (2016). Kernel virtual machine. https://www.linux-
kvm.org/page/Main Page.

Microsoft Corporation (2018). Windows hardware
compatibility program specifications and policies.
https://docs.microsoft.com/en-us/windows-hardware/
design/compatibility/whcp-specifications-policies.

Paul, G. and Irvine, J. (2015). Take control of your pc with
uefi secure boot. Linux Journal, (257):58–72.

QEMU (2020). Qemu - a generic and open source machine
emulator and virtualizer. https://www.qemu.org/.

Red Hat, I. (2015). Open virtual machine firmware (ovmf)
status report. http://www.linux-kvm.org/downloads/
lersek/ovmf-whitepaper-c770f8c.txt.

Richardson, B. (2017). Last mile barriers to remov-
ing legacy bios. https://uefi.org/learning center/
presentationsandvideos/.

Steinhardt, P. (2020). GRUB: disk: Im-
plement support for LUKS2. https:
//git.savannah.gnu.org/cgit/grub.git/commit/?id=
365e0cc3e7e44151c14dd29514c2f870b49f9755.

TianoCore (2017). Tianocore. https://https:
//www.tianocore.org/.

UEFI Forum (2019). Uefi faqs. https://uefi.org/faq.
UEFI Forum (2020a). Uefi revocation list file. https:

//uefi.org/revocationlistfile.
UEFI Forum (2020b). Unified extensible firmware interface

specification version 2.8 (errata a). https://uefi.org/
specifications.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

610


