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Abstract: Proposed is a fundamentally new approach to manufacturing as a service based on a market of virtual things: 
parameterized products and services that can be searched, composed and optimized, while hiding the 
underlying complexity of product designs and manufacturing service networks. The approach includes (1) a 
mathematical framework, composition and decision guidance for virtual things; (2) bootstrapping the market 
with novel computational techniques and tools to reuse the distributed wealth of existing product and process 
designs by generalizing them into models of virtual things; and, (3) intelligent computational design tools for 
entrepreneurs. The goal is to catalyze the agility, accessibility and predictability of the manufacturing-
entrepreneurship ecosystem, transforming the Future of Manufacturing. 

1 INTRODUCTION 

There is a critical disconnect between entrepreneurs 
who envision new products and manufacturers who 
might build them. To bridge the disconnect, in this 
position paper we propose a fundamentally new 
approach to manufacturing as a service based on a 
market of virtual things: parameterized products and 
services that can be searched, composed and 
optimized, while hiding the underlying complexity of 
product designs and manufacturing service networks. 
Our approach bootstraps the market with novel 
computational techniques and tools to reuse the 
distributed wealth of existing product and process 
designs by generalizing them into models of virtual 
things. This will catalyze the agility, accessibility and 
predictability of the manufacturing-entrepreneurship 
ecosystem, transforming the Future of 
Manufacturing. 

Entrepreneurs use their domain knowledge and 
market insights to conceptualize innovative products, 
but may fail to realize their ideas due to insufficient 
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design and manufacturing knowledge. They lack 
agility (getting a product to market fast), access (to 
manufacturing and supply chain resources), and 
predictability. Manufacturers’ specialized knowledge 
in their vertical domains amounts to a distributed 
volume of existing expert-crafted product and process 
designs, which assure predictable outcomes. 
However, they lack agility and access to markets and 
revenue opportunities provided by entrepreneurial 
ideas outside of existing rigid supply-chain pyramids. 
As a result, both entrepreneurs and manufacturers, 
especially small and medium enterprises (SMEs), 
miss opportunities to create value. 

There has been significant research in 
manufacturing product and process design (Gingold, 
Igarashi, and Zorin, 2009; Yu, Yeung, Tang, 
Terzopoulos, Chan, and Osher, 2011; LaToza, 
Shabani, and Van Der Hoek, 2013; Shin, Kim, Shao, 
Brodsky, and Lechevalier, 2017), analysis and 
optimization (Egge, Brodsky, and Griva, 2013; Shao, 
Brodsky, and Miller, 2018). Recently, a number of 
startups have taken important complementary steps to 
bridge this gap. Companies such as Xometry offer 
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easy access to manufacturing as a virtual service, 
where entrepreneurs may enter a CAD file and 
receive a price and commitment in real time. Behind 
the scenes, this is enabled through an accurate 
predictive pricing model and a network of 
manufacturers with various capabilities, such as CNC 
machining, injection molding, and 3D printing. 
However, combining these unit processes into a 
composite manufacturing process to come up with a 
finished consumer product is out of their scope. 
Companies like Kerfed improve agility in 
manufacturing response to customer demand by 
accepting a CAD design of an assembly out of 
standard components, and performing analysis to 
discover the characteristics of its components and 
their interconnection so that they can be (semi-) 
automatically sourced from suppliers, and so that the 
assembled product could be priced for a customer 
order. Companies like Physna boost manufacturers’ 
agility in responding to customer demand by 
searching for similar CAD designs in a large design 
database using not only meta-data of existing designs, 
but also their geometric and functional properties, 
significantly simplifying the creation of a new CAD 
design via re-use. CAD/CAM software, like 
OnShape, has been widely used for product and 
process design in increasingly more diverse vertical 
domains, enabling designers to specify the blueprints 
of their idea with high precision. 

However, major challenges remain. First, 
entrepreneurs do not typically have CAD modelling 
skills; even when starting from a similar design, they 
may not understand the design complexity and intent, 
and still need to rely on professional CAD designers. 
Second, when using a fixed CAD product design for 
sourcing manufacturers, the design is typically not 
optimized to consider manufacturability and supply 
chain and manufacturing costs. Yet it is often 
possible, via small modifications to a product's CAD 
design, to make manufacturing significantly simpler 
and less expensive with little or no effect on desirable 
customer-facing product characteristics. Third, and 
perhaps most important, US manufacturers, 
especially SMEs, are still primarily selling low-
margin manufacturing capacity, because they face 
stiff competition due to lower labor costs and 
increasing quality of foreign, especially East and 
South-East Asian, manufacturing. Manufacturing 
SMEs typically do not offer new innovative products 
with high profit margins because they lack access to 
these innovative product ideas and the agility to 
respond to the market opportunities they present.  

This paper is organized as follows. In Section 2 
we overview our approach; in Section 3 we illustrate 

the approach by a real-world example. We discuss a 
range of research questions to be addressed to realize 
the new approach in Section 4, and conclude in 
Section 5.  

2 OUR APPROACH 

We propose a fundamentally new approach to, and a 
novel productivity framework for, the manufacturing-
entrepreneurship ecosystem based on bootstrapped 
markets of virtual products and services (see Figure 
1, middle funnel layer), which we collectively call V-
things. A virtual product is represented by a 
parameterized CAD design, e.g., to characterize a 
customizable consumer product, part or raw material. 
A virtual service represents a parameterized 
transformation of virtual products into other virtual 
products, e.g., to characterize a customizable 
manufacturing process, supply, transportation, 
logistics or a composed service network. Each V-
thing—product or service—is associated with an 
analytic model that describes the product and/or 
service’s feasibility and customer-facing 
characteristics (e.g., weight, durability, strength, 
volume for a product; and cost, delivery time and 
default risk for a service) as a function of the product 
and/or service’s decision and fixed parameters (e.g., 
dimensions, position of fixtures, type and properties 
of materials for a product; and settings for 
manufacturing processes, selection of and ordered 
quantities from suppliers and manufacturers). 

The purpose of the Decision Guidance System 
over a repository of V-things (Figure 1) is to enable 
manufacturers and entrepreneurs to (1) search for 
relevant V-things (products and services) in the 
market, (2) compose them into more complex V-
things (e.g., assembled products or service networks) 
and, most importantly, (3) guide decisions, activity 
that involves model training, predictions, 
optimization and trade-off analysis, i.e., 
recommending users Pareto-optimal choices on V-
thing parameter instantiation (corresponding to 
specific products and services), while eliciting and 
acting on preferences among possibly competing 
objectives, such as cost, reliability and time to market. 

To manufacturers, V-thing markets offer an order-
of-magnitude more agility in response to customer 
demand and access to entrepreneurs with ideas. More 
speculatively, V-thing markets may allow 
manufacturers to expand their business model, from 
selling low-margin manufacturing capacity to agile 
supply of high-margin on-demand products in their 
vertical markets, boosting their global 
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Figure 1: The funnel of the manufacturing/entrepreneurship ecosystem. 

competitiveness. To scale up the creation of  V-
things—products and services—beyond the 
traditional limits of generative design, we envision 
research and development of novel computational 
techniques and V-thing design tools for 
manufacturers (see bottom part of the funnel in Figure 
1). These techniques and tools will support search, 
reuse, and generalization of manufacturers’ existing 
product and process designs into models of V-things, 
leveraging their domain expertise to manufacture 
similar things. We envision an extensive use of  
repositories of examples created in a CAD system as 
well as physically scanned examples. The creation of 
new V-things will also need to leverage available V-
things in the market. We envision associating virtual 
things with multi-aspect descriptions to aid their 
discovery by entrepreneurs. 

To entrepreneurs, V-thing markets offer the 
agility to realize their ideas for a new product or 
service through flexible search, composition, 
optimization and Pareto trade-off analysis using 
available V-things, while hiding the complexity of 
underlying product designs and manufacturing 
service networks—both process and supply chain. 
We expect to design and develop Intelligent Design 
Tools for Entrepreneurs (see the top layer of the 
funnel in Figure 1), as possible extensions to existing 
CAD/CAM tools, using paradigms such as design-
by-sketch and by example, and leveraging V-thing 
markets. This agility will drive manufacturing 
demand. 

3 MOTIVATING EXAMPLE 

Dentists re-opening their practices after closures due 
to COVID-19 need to overcome a major exposure 
risk. Many dental procedures—those that require the 

use of a high-speed handpiece or an ultrasonic 
scaler—generate a pressurized spread of aerosol, 
which may carry microorganisms, including the novel 
coronavirus. The main mitigating solution offered by 
dental suppliers is an extra-oral suction, based on 
repurposed dust vacuums. This is too bulky, noisy, 
and expensive for a dental operator. A dentist 
entrepreneur comes up with a much smarter idea: she 
wants to repurpose an existing HVE (high-volume 
evacuation) line already available in the dental unit 
and normally used for dental suction—but not for the 
collection of aerosol in the air. What is missing is a 
specially designed funnel (Figures 2 & 3) that can be 
attached to an existing HVE line and be held in close 
proximity to the patient's mouth during a dental 
procedure. This funnel must satisfy a number of 
properties: (1) it must be of geometry and size that 
maximize the suction of aerosol (too small will not be 
effective for aerosol cloud; too big will not generate 
sufficient suction pressure); (2) it must be light, yet 
strong and autoclavable, i.e., withstand sterilization 
temperatures of 175°C; and (3) it must be attachable 
to both a cheek retractor and an external adjustable 
arm. In addition, the adjustable arm (Figure 2) must 
be designed to hold the funnel attached to the HVE 
line in the required position to enable hands-free 
operation, as well as an optional transparent shield. 
The entrepreneur dentist envisions that, if introduced 
to the market quickly, this new aerosol collection 
funnel can easily be sold for $70-80 per part, which is 
a small fraction compared to $2000-3000 per one 
bulky and noisy extra-oral suction device currently on 
the market. She and her dentist colleagues would 
certainly find this offering extremely useful and 
relatively inexpensive. 

This motivating example was found in the wild, 
suggested by a dentist in a Facebook group for 
dentists. However, that dentist’s idea would never get 
anywhere beyond a Facebook post. Xuction Dental—
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a start-up company in Virginia—invested significant 
engineering, material science and manufacturing  
expertise to implement it. 

As lead users, dentists are very familiar with their 
needs and current technologies, but are generally not 
technical in the sense of manufacturers or engineers 
(Hippel, 1988). The road to idea realization has high 
barriers to entry. Expertise is distributed and siloed: 
The entrepreneur must find product designers and 
manufacturers with whom to partner. Communication 
is difficult and tools are inaccessible: Everyone must 
communicate their capabilities and their needs to each 
other, using very different languages and 
perspectives. Entrepreneurs cannot participate in the 
digital design of the product. Product designers may 
not have access to manufacturing decisions. Siloed 
decision-making results in sub-optimal designs. 
Work is wasted: The work of designers and 
manufacturers is delivered bespoke for a particular 
product. Without opportunities for discovery and re-
use of designs and processes, productivity is 
suppressed and capacity is underused. 

In our vision, the dentist entrepreneur uses an 
accessible Intelligent Design Environment for 
Entrepreneurs (Figure 4) in collaboration with other 
innovators (such as product designers) who may 
suggest improvements. The entrepreneur creates a 
rough sketch of their product vision (e.g., the aerosol 
suction funnel) and provides some free text 
describing it. The design tool constructs a 3D model 
approximating the funnel sketch and uses it to search 
for relevant V-products (e.g., for vacuum polymer 
funnels) and associated V-services (e.g., 
manufacturer who produces them) in the V-thing 
market. The dentist explores one V-product that looks 
relevant, and the design tool displays a 3D-model of 
the V-product fitted to the dentist’s sketch. The 3D 
depiction is annotated with customer-facing 
characteristics, which can be used to express known 
constraints and objectives/criteria to be considered. 
For example, the dentist may provide funnel product 
constraints, such as the diameter of connecting hose, 
the maximum allowed weight, the minimal 
temperature of 175°C to withstand, and service 
constraints such as the number of units to be produced 
and the maximum delivery time window. She also 
chooses objectives to be considered, such as 
vacuuming efficiency, weight, cost-per-unit and 
delivery time. The design tool leverages the V-service 
and V-product analytic models and uses the Decision 
Guidance System to recommend and display a few 
Pareto-optimal alternatives in terms of the specified 
objectives while soliciting comparison responses. 
After a number of iterations, the dentist converges to 

a specific instance of a vacuum funnel and specific 
service terms. The dentist initially orders a couple of  
samples, tries them out, makes adjustments, and then 
places a production order of 10,000 units to the V-
service provider to be sold to dental practices. 

 

Figure 2: Dental aerosol funnel connected to HVE suction 
line. © Xuction Dental. 

 

Figure 3: Dental aerosol collection funnel. © Xuction 
Dental. 

 

Figure 4: The Entrepreneur Design Environment. 

The creator of the vacuum polymer funnel V-
product and associated manufacturing V-service may 
be a small injection molding manufacturer, who 
happen to produce similar products, and who decided 
to extend its business model from selling 
manufacturing (injection molding) capacity to 
wholesale of some V-products, such as on-demand 
vacuum polymer funnels. To do that, the 
manufacturer uses in-house and/or hired expertise to 
specify V-product and V-service designs, leveraging 
many specific expert-crafted CAD/CAM product and 
process designs of similar things produced in the past. 
Design Tool for V-things helps manufacturers to 
search for relevant specific designs, and generalize 
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them with analytic model, that expresses feasibility 
and customer facing characteristics such as 
vacuuming efficiency, weight, cost-per-unit and 
delivery time as a function of internal product and 
process parameters: geometry, dimensions, type and 
density of polymer material, as well as process 
settings. While this task requires expertise, even with 
the help of the V-thing Design Tool, the outcome is 
highly reusable and allows the manufacturer 
significant agility and access to otherwise unavailable 
markets, such as for the dental aerosol collection 
funnel, which can be sold at much higher profit 
margins. In turn, the manufacturer may use some 
other existing V-things in the market, e.g., polymer 
material V-product and associated V-service. The 
manufacturer of polymer material, in turn, leverages 
its expertise in designing and producing special 
polymers with unique properties, such as low density 
and the ability to withstand high temperature. Of 
course, behind V-things in the market may also be 
engineering and technology firms that want to expand 
their business model from selling consulting to 
becoming virtual manufacturers, while generating 
demand for manufacturing capacity in the external 
service network. 

4 TECHNICAL PROBLEMS 

To realize this new paradigm, we need to overcome a 
number of mathematically and computationally 
challenging research problems. 

4.1 V-things Math Framework, 
Composition, Search and Decision 
Guidance 

The framework will include mathematical 
formalization of V-things—products and services—
including their design specs, customer facing specs, 
customer requirements specs, and the notions of 
feasible and optimal parameter instantiation based on 
analytic models associated with V-things. To support 
the creation of V-things by manufacturers one needs 
to design recursive compositional models—e.g., for 
product assembly and service networks—in such a 
way that compositions would be easy (e.g., 
graphically) to specify by (non-mathematical) 
domain users, yet can be interpreted as formal 
analytic models by the system.  

We envision a virtual product to be represented by 
a parameterized CAD design, e.g., to characterize a 
customizable consumer product, part or raw material. 

A virtual service represents a parameterized 
transformation of virtual products into other virtual 
products, e.g., to characterize a customizable 
manufacturing process, supply, transportation, 
logistics or a composed service network.  Each V-
thing—product or service—is associated with an 
analytic model that describes the product and/or 
service’s feasibility and customer-facing 
metrics/characteristics as a function of the product 
and/or service’s (fixed and decision) parameters. For 
V-products, examples of customer-facing metrics 
include  external dimensions, weight, durability and 
vacuum efficiency; while examples of internal 
parameters include internal dimensions, position of 
fixtures, and type and properties of materials. For V-
services, examples of customer-facing metrics 
include cost-per-unit, total ordered quantities per 
item, delivery time, carbon emissions per unit, and 
default risk; while examples of internal parameters 
include settings for unit manufacturing processes 
(e.g., CNC machining, injection molding or 3D 
printing) and selection of and ordered quantities from 
suppliers and manufacturers. Intuitively, V-things’ 
customer-facing metrics are all that customers care 
about when selecting products and services; whereas, 
customers do not care about, or even understand, V-
thing parameters outside the set of customer-facing 
metrics. 

Consider an example of a manufacturing service 
network (Figure 5) for a heat sink  product (Brodsky, 
A., Krishnamoorthy, M., Nachawati, M. O., 
Bernstein, W. Z., and Menascé, 2017; Brodsky, 
Nachawati, Krishnamoorthy, Bernstein, and 
Menascé, 2019), produced by Birmingham 
Aluminum Ltd. This product is an assembly of 
aluminum and the covering plastic frame using 
accessories. Both the product and the service are 
composite. The service to produce the finished heat 
sink product (HS) involves a hierarchical service 
network, which includes supply, manufacturing and 
demand services; in turn, manufacturing is also a 
service network, composed of aluminum plate 
contract manufacturer, smelting, HS base production 
line, HS base contract manufacturer and HS 
production line. In turn, HS production line is a 
service network composed of HS shearing, anodizing, 
CNC machining, quality inspection, and final 
assembly, etc. The challenge here is to avoid hard-
wired and time-consuming development of analytic 
models for every composition of V-products (like the 
assembled heat sink) and V-services (like the heat 
sink service network). To address this challenge, one 
needs to design (re-usable) recursive compositional 
models—across both product assembly and service  
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Figure 5: Example of manufacturing service network for heat sink product. 

network compositional hierarchies—in such a way 
that compositions would be easy to specify (e.g., 
graphically) by (non-technical) domain users, yet can 
be interpreted as formal analytic models by the 
system. To achieve this goal, we envision leveraging 
techniques from the Factory Optima system, which 
was designed and developed for NIST (Brodsky, 
Krishnamoorthy, Bernstein, and Nachawati, 2016; 
Brodsky et al, 2017; Brodsky et al, 2019; Brodsky, 
Shao, Krishnamoorthy, Narayanan, Menascé, and 
Ak, 2016), but which has not considered 
parameterized or composed product designs. 

While searching for V-things in the market 
repository is conceptually similar to searching for 
regular products and services, it is fundamentally 
different and more challenging computationally. Just 
a match between a user requirement spec and a 
particular V-thing customer facing spec is a constraint 
satisfaction problem, which, like the corresponding 
optimization problem, may be both non-linear and 
combinatorial in high-dimensional space.  

To scale up online optimization for practical size 
problems within manageable computational time, one 
idea is to design pre-processing algorithms that 
generate differentiable surrogates for (combinatorial 
components of) analytic models used in optimization 
problems. To scale-up search for V-things, we will 
need to design offline pre-processing algorithms to 
generate bounding polyhedral set approximations that 
are amenable to efficient (multi-dimensional) 
indexing techniques for search. Another major 
challenge we need to overcome has to do with the fact 
that composable and modular analytic models—
against which optimization is applied—are expressed 
using object-oriented code (e.g., in Python); yet the 
best mathematical programming algorithms require, 
as input, a closed-form-arithmetic (“white-box”) 
optimization model (as opposed to simulation-like 
“black-box” model). This can be done by leveraging 

and further developing symbolic computation 
techniques to machine generate closed-form-
arithmetic optimization models from software code in 
order to use the best existing, as well as develop 
extensions to, mathematical programming algorithms 
(Brodsky and Wang, 2008; Brodsky and Luo, 2015). 

4.2 Design Tools for Virtual Things for 
Manufacturers 

The goal is to design computational techniques to 
generalize manufacturers’ existing designs (products 
and services) as V-things. Bootstrapping the v-things 
repository involves identifying its decision 
parameters and analytic models that express 
feasibility and customer-facing characteristics as a 
function of these parameters. The challenge is that 
black-box data-driven approaches may fail to find 
straightforward and reliable shape designs or 
governing equations. To solve this problem, we 
envision the need to leverage and extend the 
techniques of program synthesis (Solar-Lezama, 
2008) to enable the creation of analytic models by 
non-programmers, resulting in “grey-box” models 
that are partly physics-based and partly data-driven. 
Since there are many model and non-decision 
parameter alternatives, we envision the use of 
machine learning algorithms to train, validate, and 
select the best model alternatives. 

We propose example-based techniques for 
generating parametric CAD models. Rather than 
requiring manufacturers to re-train with a new design 
tool, we envision the need to analyze a set of existing 
shapes and semi-automatically find parameters to 
define a family of shapes comprising a V-product. For 
example, an engineer with CAD experience could 
create multiple instances of a design with their 
favorite CAD tool. Alternatively, a machine operator 
can create multiple variations of a physical object. We 
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envision the need to analyze and filter these shapes 
and propose variables. For example, parameters could 
be continuous like repeated lengths, which may 
appear in whole multiples, or discrete like symmetry 
relationships or choice of materials. 

We envision developing approaches for enabling 
users to author models expressing performance 
characteristics of v-things, such as strength, stability, 
manufacturing expense and feasibility, and material 
waste. The metrics associated with each v-thing can 
be used for e.g., Pareto front discovery and 
optimization. The metrics can measure mass, strain 
under load, manufacturing material waste, torque, etc. 
Users can design finite element simulations involving 
the part. Importantly, it is desirable for metrics to be 
differentiable when possible, allowing their use in 
gradient-based optimization applications (e.g., 
decision guidance, Pareto front discovery, and deep 
learning). 

Rather than requiring knowledge of 
programming, which manufacturers may not possess, 
we envision creating novel end user programming 
techniques which enable performance models to be 
created through examples. To solve this problem, one 
idea is to use “grey-box” models that are partly 
analytical or physics-based and partly data-driven. To 
do that one can leverage and extend the techniques of 
program synthesis (Solar-Lezama, 2008) to enable 
the creation of analytic or physics-based models with 
meaningful parameters by non-programmers. The 
resulting programs will have an overly large set of 
parameters. We propose to put the user in charge of 
suggesting and filtering possible parameters to be 
user-facing. To do this, one can explore Programming 
by Demonstration approaches (Cypher and Halbert, 
1993; Lieberman, 2001). Users can describe 
examples of performance for specific inputs or mark 
measurements (solo or repeated) and components 
with a symmetry relationship. Since there are many 
model and non-decision parameter alternatives, we 
will use machine learning regression and 
classification algorithms to train, validate, and select 
the best model alternatives. It is also important to 
explore ways in which shapes and performance 
characteristics can be visualized, helping 
communicate the effects of choices on the model. 

Manufacturer’s knowledge and experience in 
manufacturing also make them uniquely well-suited 
to create v-services for a v-product's creation. The v-
service for manufacturing a v-product entails 
sourcing raw materials and arranging the 
manufacturing process. We propose to leverage our 
prior work using flow diagrams to specify v-services. 
This will be integrated into the v-thing designer, 

allowing manufacturers to design a shape's 
parameters simultaneously with its manufacturing 
process. To enable manufacturers, who are not 
expected to be programmers, to design the analytical 
models for the v-services, we envision the use and 
exploration of Programming by Demonstration 
approaches (Cypher and Halbert, 1993) (see End-
User Authoring of Performance Analytic Models). 

4.3 Intelligent Computational Design 
Tools for Entrepreneurs 

Intelligent computational design tools for 
entrepreneurs and their collaborators must enable 
them to turn ideas into virtual things and then into 
prototypes without having expertise in CAD or 
engineering. We envision intuitive search approaches 
based on sketching, similar-product search, and 
assembly-based modelling to enable entrepreneurs to 
find and compose virtual things within the 
marketplace intuitively. Such approaches will also 
encourage the reuse and adaptation of existing virtual 
things to unleash their potential. The computational 
design tools driven by decision guidance will also 
perform optimization and Pareto trade-off analysis to 
automatically suggest design alternatives. 
Entrepreneurs will be able to select between 
alternatives, providing preferences which the system 
uses to iteratively elicit the utility function and use it 
to generate new alternatives, and collaborate with the 
tools in the ideation process. 

Sketching is a natural, straightforward way of 
expression for illustrating creative ideas. Compared 
to using traditional, sophisticated CAD software (e.g., 
3ds Max) for creating 3D model designs, which 
requires a steep learning curve to master, it is much 
easier for people to sketch their ideas on a tablet. A 
sketch-based design interface allows people to focus 
on envisioning the design of their products rather than 
operating the sophisticated interface of CAD 
software. There are many challenges in creating a 
convenient and effective sketch-based design interface. 
One challenge is due to the irregularity of sketches: 
most people are not artists and they can only sketch 
their ideas roughly. One approach to tackle this 
problem is to devise machine learning approaches for 
inferring a clean and valid design from a user’s 
sketches. Recent work using generative adversarial 
networks (GAN) for inferring 3D models from 
sketches provides a promising solution (Guérin, Digne, 
Galin, Peytavie, Wolf, Benes, and Martinez, 2017; 
Portenier, Hu, Szabó, Bigdeli, Favaro, and Zwicker, 
2018). Sketch-based interfaces have also been 
proposed for creating furniture designs (Xie, Xu, 
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Mitra, Cohen-Or, Gong, Su, and Chen, 2013) (Figure 
6).  

 
Figure 6: A sketch-based interface for furniture design. 

For most people, it is much simpler to design a 
virtual service or product guided by suggestions. For 
example, when renovating homes, people often refer 
to a magazine showing many examples of home 
renovation projects to get inspiration, rather than 
designing from scratch. Akin to this, we envision 
suggestive design interfaces to help entrepreneurs 
with design. For instance, consider the design of a 
chair. A suggestive user interface may work like this: 

1) The user first specifies the high-level goals of 
the chair design, such as the style (e.g., classic or 
modern?), context of use (e.g., a dining chair or a desk 
chair?), physical properties (e.g., dimensions, 
weights), and functionalities (e.g., adjustable?). The 
user may also sketch his or her rough idea or provide 
an existing similar design. 

2) According to the user’s specification from step 
(1), the system samples a number of feasible design 
solutions that match with the user’s preference;  

3) The user chooses one of the suggestions;  
4) The user may modify the suggested design to 

better match with the user envisions;  
5) The system generates new suggestions based 

on the specified modifications.  
6) Repeat steps (3) to (5) until the user obtains a 

desired final design. 
Here, the research challenge lies in inferring what 

the user wants from the high-level description or 
rough sketch in step 1). A promising strategy to 
overcome such a challenge involves applying a data-
driven approach to learn statistical patterns of design 
from a large database of existing designs. For 
example, given a database of 3D chair designs, one 
can train machine learning classifiers to determine 
perceptual shape style similarity (Lun, Kalogerakis, 
and Sheffer, 2015). Given a rough sketch or a 
partially finished chair design, a suggestive interface 
can infer and recommend possible full designs 
according to styles and assembly schemes learned 
from existing chair designs (Xie et al, 2013). 

Another promising strategy to help entrepreneurs 
create designs is assembly-based 3D modeling. The 

idea is to provide users with simple primitive shapes 
that they can assemble into a complex object. 

Another promising strategy to help entrepreneurs 
create designs is assembly-based 3D modeling. The 
idea is to provide users with simple primitive shapes 
that they can assemble into a complex object. Akin to 
the furniture design of IKEA, the algorithm 
automatically decomposes a furniture product (e.g., a 
chair) into a number of manufacturable, modular 
components which customers can easily assemble 
into the full products. Compared to the traditional 
approach of creating 3D objects from scratch using 
low-level mesh or primitive manipulation tools in 
CAD software, assembly-based modeling is much 
simpler to learn and perform. 

A major research challenge of realizing assembly-
based modeling lies in designing a set of compatible 
primitive shapes that the user can conveniently 
assemble into many objects. A trivial solution is to 
design a set of very general-purpose primitive shapes, 
like LEGO bricks of different dimensions, which give 
a high-degree of freedom and hence high flexibility 
with respect to the objects they can assemble. 
However, it typically takes many very general-
purpose primitive shapes to assemble a desired 
object, and hence the physical assembly process 
could be time-consuming and complex. 

To tackle such challenges, we will employ a 
recently devised approach called “hands-on 
assembly-based modeling” (Duncan, Yu, and Yeung, 
2016). The key idea is to create an algorithm to 
automatically extract and generate a set of 
compatible, interchangeable, and semantically 
meaningful primitive shapes given a set of existing 
objects. Such primitive shapes can be used for 
assembling many variations of the original objects. 
Given a small set of chair 3D models, which can be 
easily found on the Internet, the algorithm 
automatically decomposes the chairs into a set of 
compatible, interchangeable, and 3D-printable 
primitive components—such as legs, bases, and 
backs—that a lay user can easily assemble into 
different new chairs. 

It is important to impose physical and functional 
constraints on the generated primitive shapes, as well 
as the final product assembled using these primitive 
shapes. Such constraints have practical implications. 
For example, realized as virtual products that are 
traded on our platform, the primitive shapes should be 
compact and regular to facilitate manufacturing, 
packaging, and transportation; while the final object 
assembled should possess desirable physical 
properties (e.g., the assembled chair must be sturdy).  
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5 CONCLUSIONS 

We envision new design environments and markets 
for virtual things as the bridge over the gap between 
unmatched entrepreneurial initiatives and 
manufacturing capabilities of the value creation 
ecosystem today. The goal is to catalyze the agility, 
accessibility, and predictability of the ecosystem. As 
discussed in Section 3, significant research problems 
need to be overcome, including (1) V-things Math 
Framework, Composition, Search and Decision 
Guidance; (2) Design Tools for V-things for 
Manufacturers; (3) Intelligent Computational Design 
Tools for Entrepreneurs. 
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