
Similarity Measures for Visual Comparison and Retrieval of Test Data in
Aluminum Production

Nikolina Jekic1 a, Belgin Mutlu1,4, Manuela Schreyer2, Steffen Neubert2 and Tobias Schreck3

1Pro2Future GmbH, Inffeldgasse 25f, 8010 Graz, Austria
2AMAG Austria Metall AG, Lamprechtshausener Strasse 61, 5282 Ranshofen, Austria

3Graz University of Technology, Institut of Computer Graphics and Knowledge Visualisation,
Inffeldgasse 16c , 8010 Graz, Austria

4Graz University of Technology, Institut of Interactive Systems and Data Science, Inffeldgasse 16c, 8010 Graz, Austria

Keywords: Similarity Measures, Visual Analysis, Aluminum Casting.

Abstract: Monitoring, analyzing and determining the production quality in a complex and long-running process such as
in the aluminum production is a challenging task. The domain experts are often overwhelmed by the flood
of data being generated and collected and have difficulties to analyze and interpret the results. Likewise,
experts find it difficult to identify patterns in their data that may indicate deviations and anomalies that lead
to unstable processes and lower product quality. We aim to support domain experts in the production data
exploration and identifying meaningful patterns. The existing research covers a broad spectrum of pattern
recognition methodologies that can be potentially applied to elicit patterns in data collected from industrial
production. Hence, in this paper, we further analyze the applicability of different similarity measures to
effectively recognize specific ultrasonic patterns which may indicate critical process deviations in aluminum
production.

1 INTRODUCTION

The goal of an optimal manufacturing process is to
increase productivity and customer satisfaction while
minimizing cost, time, and waste. Achieving a high
quality of products while remaining competitive, re-
quires companies to continuously improve the per-
formance of their production process. Process data
may contain important information such as meaning-
ful relationships and patterns, which could help to im-
prove the quality of the production process (Yin and
Kaynak, 2015) (Thalmann et al., 2018). Yet, human
beings are overwhelmed by the amount of data be-
ing generated in such complex production processes.
Visual data analysis has proven to be one of the ef-
fective ways to tackle this problem (Soban et al.,
2016). The existing research does not only support
the exploration of the data and detect hidden pat-
terns/correlations, but they also pave the way to define
new methods for improving the production process
and increasing production number (Suschnigg et al.,
2020) (Sun et al., 2019).

The production process in the aluminum industry
is complex and time-consuming. A simplified alu-
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minum production process from the recycled raw ma-
terial up to the final products includes melting, al-
loying and further treatment, casting, homogeniza-
tion, rolling and quality control. In a nutshell, during
the cast, each batch results in several ingots. Ingots
are molds cast from molten aluminum and are suit-
able for production processing using methods such as
rolling, extrusion, and forging (Vasudevan and Do-
herty, 2012). These ingots are further rolled to plates
and sheets. Finally, to assess quality, experts perform
ultrasonic tests (UT) on rolled aluminum plates. Each
part of the production process is done in accordance
with very high-quality standards. However, due to the
complex process dynamics, the final product might
not meet them and show certain degrees of indica-
tions.

Non-metallic indications that are already con-
tained in the input material or are formed in the
foundry production process, can lead to rejects in ma-
terials after ultrasonic inspection of the final plates.
This leads to reduced capacity, longer delivery times
and higher costs. Ultrasonic testing is the last step
in the complete process chain and can not be done
directly after casting. It can therefore happen that a
product goes through the entire process, but finally
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does not meet the required standard. The causes and
the influencing factors that lead to UT indications in
the casting process are not yet fully understood.

Different groups of production parameters influ-
ence the quality of batches and ingots, and this may
be an implication that only some batches and ingots
would have specific indication patterns. Influencing
parameters can be possibly found, for example, in the
input material, in process parameters of the furnace
and casting plant, where several hundred different pa-
rameters are continuously recorded during the cast-
ing, or in the chemical composition of the different
batches. By far, most of the ingots are of good quality,
with no or very few indications, which do not lead to
rejects after ultrasonic inspection. Some are of mixed
quality, which means that some parts of the ingot are
of good quality, with very few indications, and some
parts are of poor quality with many indications. In this
case, some of the plates made from the entire ingot
are rejects after the ultrasonic testing. In certain situa-
tions, the whole ingot is of poor quality, which means
that all the plates made of the entire ingot are rejects,
whereas neighboring ingots from the same batch are
of perfect quality. The number of indications in an
ingot depends also on some product-specific parame-
ters, for example, the material of the ingot, the cast-
ing format and the format of the final product, which
makes the analysis even more difficult. Additionally,
the total number of test batches is limited, especially
if one wants to concentrate on a specific alloy and/or
format. The overall small number of indications and
rejects complicates the analysis and research even fur-
ther. Thus, in the following, we restricted the analysis
to one specific material, casting- and final-product-
format in order to lay out the methodology to the in-
clined reader.

Grouping and recommending batches and ingots
with similar indication patterns, is highly desired to
support the end-users, i.e., material engineers in cast-
ing and rolling, in production data exploration and in-
spection of possible influencing parameters on prod-
uct quality. Distance or similarity measures are es-
sential to solving many pattern recognition problems
such as classification, clustering, and retrieval prob-
lems (Cha, 2007). There are many measures of sim-
ilarity and selecting the right one is one of the chal-
lenges encountered by researchers. Depending on the
application, some of the similarity measures do not
always have optimal behavior (Shirkhorshidi et al.,
2015). In this paper, we studied the capability of
different similarity measures to effectively recognize
specific indication patterns in production data. Fur-
thermore, we introduce a concept for visual analy-
sis and interactive pattern search in ultrasonic images

of aluminum ingots. To do so, we aim to help do-
main experts to identify specific patterns in produc-
tion data which may indicate critical process devia-
tions. Lastly, we evaluate the benefit of interactive
pattern search in ultrasonic images of aluminum in-
gots.

2 RELATED WORK

In this section, we analyze and discuss relevant work
conducted in the research areas of visual analysis for
industrial application and similarity measures.

2.1 Visual Analysis for Industrial
Application

The trend of digitalization in the industry (so-called
Industry 4.0, or also, smart production) generates
large amounts of production data. In this scenario,
domain experts are often overwhelmed by the amount
of data and unable to obtain useful information that
could help them to analyze their production pro-
cesses. Visual data analysis, in which users interact
with data to explore and analyze it, using visual dis-
plays, has been proven to be an effective approach
for gaining insight from production data (Lee et al.,
2014) (Wu et al., 2018).

A growing number of visualization solutions tar-
geting production scenarios have been presented in
recent years (Matkovic et al., 2002), (Jo et al., 2014),
(Xu et al., 2016). Recently, a survey on visualization
and visual analysis applications for smart manufactur-
ing has been published (Zhou et al., 2019). The sur-
vey provides an overview of several studies conducted
for industrial applications, with a few examples avail-
able for smart manufacturing applications in the iron
and steel industry. In an early study (Wu, 2001), the
problem of metal ingot casting and production plan-
ning is presented. This work reports that visualization
of the production schedule provides the basis for in-
teractive decision support. Zhou et al. (Zhou et al.,
2016) proposed the integration of advanced simula-
tion and visualization for the manufacturing process
addressing issues on energy, environment, productiv-
ity, safety, and quality in the steel industry.

The increasing amount of data becoming available
has to date triggered the use of visualization and de-
velopment of visual data analysis tools in a variety of
industrial domains (Liu et al., 2014). However, still
many manufacturing systems are not ready to allow
production specialists to efficiently and effectively an-
alyze growing amounts of production data, also due
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to a lack of analytics tools and interfaces (Lee et al.,
2013).

2.2 Similarity Measures

Manufacturing and various areas are becoming in-
creasingly more data-driven, which increases the ne-
cessity of identifying the similarity between datasets.
Datasets have several representations such as scalar
values, vectors, or matrices. Mathematically, there
are many measures of similarity or dissimilarity be-
tween the different forms of these datasets (Deza and
Deza, 2006). This work is partly inspired by simi-
larity techniques used for the comparison of distribu-
tions in image processing and computer vision. Sev-
eral works have supported the visual retrieval and ex-
ploration of large numbers of scatter plot images. In
(Scherer et al., 2011), feature vectors based on cor-
relation coefficients are proposed to rank and clus-
ter scatter plots for comparison. In (Behrisch et al.,
2014), a relevance-feedback approach was proposed
to learn to distinguish scatter plots of interest to spe-
cific users and tasks. In addition, in (Shao et al., 2016)
an approach to describe scatter plots by the set of lo-
cal patterns occurring was introduced and applied to
filter interesting scatter plots from a larger number of
plots. Recently, Bazan et al. (Bazan et al., 2019)
present research work on a qualitative analysis of the
similarity measures most used in the literature and the
Earth Mover’s Distance. In (Hernández-Rivera et al.,
2017) it is demonstrated how similarity metrics can be
used to quantify differences between sets of diffrac-
tion patterns. Although there exist many well-known
similarity metrics, still a selection of metrics to mea-
sure the similarity between two distributions is cru-
cial, because depending on the application, they do
not always have optimal behavior. In the following,
the discussion about qualitative analysis of different
similarity measures on the problem of grouping simi-
lar batches and ingots will be presented.

3 INTERACTIVE PATTERN
SEARCH

Our concept supports an interactive pattern search in
ultrasonic images of aluminum ingots. The concept
contains several steps which will be explained further
in the following sections.

3.1 Data Preprocessing

To assess the quality, experts perform ultrasonic tests
on rolled aluminum plates to meet the high-quality

standards in the final products. Ultrasonic testing
(UT) is used to locate the position and size of in-
dications on rolled aluminum plates. The explana-
tion and eventual reduction of these indications is
a key priority in production process analysis. The
dataset was obtained from ultrasonic tests conducted
on cut aluminum plates with different length, width,
and thickness from the cast and rolled ingots. One of
the biggest challenges is to match the indications, de-
tected on the final plates, to the ingot length. The data
preparation was done with Pandas, one of the main
tools used by data analysts in the programming lan-
guage Python (McKinney, 2012). In the first steps,
the tasks of data reduction, cleaning and transforma-
tion were performed, i.e., selection of relevant data;
handling incomplete data, missing values and out-
liers; removing duplicates and recalculating values
from the final plates back to the original ingot. Re-
garding the measuring unit, we note that these are the
tons of tested material as an example. A single cast
ingot with dimension 450×1400×7000 mm weighs
around 12.3 tons.

Figure 1: Interactive visual data analysis solution ADAM.
Ingot visualization is composed of scatter plots and fre-
quency histograms, showing the front and the top view of
the ingot. The figures showing the front view of the ingot
were used as UT images in the user study.

3.2 Visual Data Analysis Design ADAM

Our interactive visual data analysis solution ADAM,
an acronym for Aluminum production Data Analysis
and Monitoring, is based on the ideas presented in (Je-
kic et al., 2019). For more details, we refer the reader
to this publication.

For the analysis tool ADAM and for the proce-
dure of an interactive pattern search, which will be ex-
plained in the following section, the data preparation
was a major challenge. Data from a wide variety of
data sources had to be extracted and combined, such
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as the process data from various melting and casting
furnaces, quality data such as the chemical composi-
tion of the batches, the input material and the UT test
results, together with the material due to technical re-
quirement that is generated in various process steps
along the production process. The UT indications,
that were detected in the individual final plates, to-
gether with the amount of the technical requirement,
then had to be calculated back to the exact ingot posi-
tion to make a comparison with, among other things,
the process data that were recorded and/or calculated
back to the casting length. The analysis tool ADAM
enables the user to view the exact position of the in-
dications in the ingot, that were detected in the final
plates. In the next development steps, an interactive
pattern search should enable the user to clearly dis-
play a part of the large amount of data recorded dur-
ing the casting process, where several hundred pa-
rameters are recorded in high resolution, for a large
number of ingots, which are produced. In the end, a
smaller, clearly visible group of similar ingots should
be proposed to the user, who can then compare the as-
sociated casting process data and thus could identify
possible influencing parameters. This aspect will be
dealt with in more detail in the following subsection.

The design of ADAM is shown in Figure 1. A
set of tightly linked views of production parameters
with cross-filtering capability supports the inspection
of factors possibly influencing the product quality.
Our approach was designed in an iterative develop-
ment cycle guided by domain requirements obtained
from a team of production experts. ADAM was devel-
oped using Bokeh, a Python software library (Bokeh
Development Team, 2018). Two scatter plots for vi-
sualization were selected, showing the front and the
top view of the ingot. Further, the figures show-
ing the front view of the ingot were used in the user
study. Color-coded circles (yellow, orange, and red)
in the scatter plots represent the values of indications
with specific diameters. ADAM is successfully in-
tegrated into the aluminum producer’s system land-
scape and used by domain experts several times a
week for data exploration and internal technical re-
porting. Our domain experts determined, using the
visual analysis tool ADAM for several months, target
use cases shown in Figure 2.

Future extension of ADAM will support auto-
mated data exploration tasks by automatically sug-
gesting to the user similar batches and ingots of inter-
est, and batches and ingots with atypical distributions.
Grouping batches and ingots with similar patterns are
important to investigate parameters that are possibly
influencing the quality.

3.3 Concept for Interactive Pattern
Search

The procedure for an interactive pattern search can be
divided into two main steps and some possible addi-
tional steps.

The first step includes a selection of reference in-
gots and batches. Ingots and batches with interest-
ing/atypical distribution of indications should be se-
lected automatically and suggested to the user. There-
fore, a standard distribution should be defined and
ingots/batches selected for which the corresponding
distribution of indications differs greatly from the
standard distribution.

The second step is the selection of similar ingots
and batches. Ingot and batches should be automat-
ically selected, where the distribution of the indica-
tions is similar compared to the selected reference in
the first step. Figure 3 shows the reference ingot and
the automatically selected ingots with a similar dis-
tribution. Furthermore, it should be possible to auto-
matically find ingots and batches with some specific
predefined patterns as in case of accumulation of indi-
cations at a specific location in the ingot (see Figure 2
the reference 431630). Different methods, which can
be used for similarity search, are described and eval-
uated in the next sections.

Figure 2: Three visual prominent patterns(from left to
right): 1) group of indications at specific location in the in-
got, 2) group of indications at the beginning of the casting,
3) group of indications at the end of the casting.

The third step includes the selection of conspicu-
ous signals in the process data. In this part, we con-
sider the process data corresponding to ingots/batches
selected in the second step and compare it to the pro-
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Figure 3: The first image is the reference image of aluminum ingot and the other five are the most similar images ranked by
distance measure.

cess data corresponding to other ingots/batches, to de-
tect patterns that are influencing the product quality.

Additionally, a further step in which the user can
label patterns would be possible. The user should be
able to add new patterns of interest to a list of pre-
defined patterns (for example accumulation of indi-
cations) and export it in a report. To implement the
three main steps, it is necessary to find good methods
for the similarity search and to construct a suitable
target value for the similarity search.

3.4 Definition of the Target Value:
Calculation of Different Quality
Criteria per Bin

In the following, only ingots with a thickness of
450 mm are taken into account, which represents
the largest quantity of all ingots produced. For the
calculation, we only consider indications between
1000 mm and 7000 mm. After recalculation of the
position of the indications in the ingot, the proportion
of the not tested area in the ingot depends on the plate
thickness of the final product. For the greater number
of ingots, the area between 0 and 1000 mm is not
tested, or only partly tested.

Non-weighted Bins. During several workshops and
with feedback from domain experts, we defined for
each bin width 1000 mm. According to that ingot was
divided into 6 parts (bin 1 to 6) and for each bin a
quality criterion was calculated, given as:

quality criteria =
indication area[mm2] per bin

tested material[t] per bin
(1)

The calculated area considered different plate thick-
ness groups. The result is a quality criterion for each
bin and ingot and also for each thickness group.

Weighted Bins. In many cases, it is hard to iden-
tify to which bin the indication in the ingot belongs,
e.g., if there is an accumulation of indications at the

boundary of two bins. Therefore we use a smooth-
ing procedure, which also takes into account the indi-
cations in the neighboring bin. Similar to the previ-
ous discussion, we again consider 6 bins. The po-
sition of the center of bin Bi, i = 1, ...,6 is at yi =
1000+ i · 6000

7 and the bin-width for each bin is 6000
7 .

For each bin Bi, i = 1, ...,6, the indications at casting-
length l ∈ (yi− 6000

7 ,yi+
6000

7 ) are weighted according
to the weight-function gi(l) = 1− 6 · ( 7·|l−yi|

6000 )2 + 8 ∗
( 7·|l−yi|

6000 )3−3∗ ( 7·|l−yi|
6000 )4 and the quality criterion per

bin is calculated similar to the previous calculation.

3.5 Analysis of Similarity Measures of
Distributions

There are many measures of similarity that, depend-
ing on the application, do not always have optimal be-
havior. In many different application domains, there
are several ways to define the nearness between distri-
butions. A distance is defined as a quantitative mea-
surement of how far apart two entities are. The sim-
ilarity and the dissimilarity represent, respectively,
how alike or how different two distributions are. If
distributions are close, they will have high similarity
and if distributions are far, they have a low similarity.
To consider the similarity between ingots, in our case
represented as scatter plots, we calculated 1-d his-
tograms of the indications the length of the ingot and
then compared histograms based on their distance.
The smaller the distance between the histograms, the
higher the similarity of the scatterplots. There are
quite a few ways to apply distance metrics to com-
pare histograms. We tested six different and popu-
lar distance measures: Euclidean distance, Manhat-
tan distance, Chebyshev distance, Cosine similarity,
Correlation distance and Bray-Curtis distance (Cha,
2007) (Deza and Deza, 2006). To assess the applica-
bility of these measures in detecting similar patterns
in ultrasonic images of aluminum ingots (in the fur-
ther text: UT images) we have performed a user study
where we have asked the domain experts to evaluate
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the results of our method. We used the results of this
study to measure the accuracy of our approach.

4 USER STUDY AND RESULTS

In this section, we present a discussion of the first re-
sults achieved with our method, including examples
to demonstrate the value of our findings. To demon-
strate an evaluation of our approach, we conducted
a study with four domain experts who represent the
target user group. The reference result set and tar-
get use cases (see Figure 2) for our assessment were
obtained by our domain experts using the visual ana-
lytics tool ADAM. Hence, to create the ground truth
against which to evaluate, we use a set of queries cap-
turing typical analysis tasks. We are specifically inter-
ested to evaluate the applicability of similarity mea-
sures with a specific focus on domain tasks to detect
similar patterns in UT images of aluminum ingots.

4.1 Initial Results

For the pattern search in UT images of aluminum in-
gots, we consider data with the restrictions type of
material x, casting plant y, thickness 450 mm, and
width 1400 mm. Figure 2 shows visually prominent
patterns regarding the casting length. Ingots should
be automatically selected, where the distribution of
the indications is very similar compared to a selected
reference pattern. If the material is not free of indica-
tions, the standard behavior is that most of the indi-
cations appear at the beginning of the casting length
and the number of indication decreases towards the
end. During visual data exploration using ADAM, do-
main experts noticed that atypical distributions occur
in some batches. Consequently, they wanted to find
similar batches that appeared over time to analyze and
link these cases with production parameters from the
casting process. In the next section, we provide an
evaluation based on capturing ground truth from do-
main users.

4.2 Data Labeling

Data labeling is important for many practical appli-
cations. To evaluate our approach we created three
classes, established by the similarity of the figures to
the reference image from 1 to 3 (similar, partially sim-
ilar, not similar). To set the border values which are
used for data labeling we performed the first part of
the user study. As this is not a generated dataset, but
a real production dataset, the labeling borders were
verified by our domain experts. The dataset contains

Figure 4: UT ingot images used in the first part of user
study- data labeling.

1200 UT images of ingots. We calculated different
distances measures for the complete dataset. A subset
of 50 selected pairs of ingots were presented to the
domain experts. Each of the 50 images contained a
reference ingot compared against another ingot (Fig-
ure 4). Data samples were carefully selected based
on different patterns discovered during the acquired
experience in using the ADAM tool. It may happen
that for one reference ingot multiple similar ingots
exist as well as that only a few similar ingots exist.
The results were compared with the different distance
measures of the sample ingots. Finally, we managed
to define the border values between similar, partially
similar and not similar based on the results of the do-
main experts. The border values depend on the dis-
tance measure taken into account. Data labeling is a
very difficult task, where domain experts may be un-
certain about their answers. The problem with man-
ual labeling is that the labels generated are usually
subjective and can easily be biased towards the user’s
personal opinions. In our case, the accuracy between
labeling among users i.e., interrater reliability was ap-
proximately 75%. In future work, we will consider
other methods to improve labeling.

4.3 User Study

For each task, 30 figures representing UT images of
ingots are given to test users. Our domain experts
were asked to rank the similarity of the figures to the
reference image from 1 to 3 (similar, partially similar,
not similar). Results from experts are compared with
results from interactive similarity search. The dataset
containing 1200 UT images of ingots was considered
for the evaluation of our approach. To compare the
different methods (distance measures), UT images of
ingots were ranked by similarity to one specific refer-
ence ingot using different distance measures and la-
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Table 1: Accuracy of different distance measures for the
reference ingot image 9883520.

Distance measures Non-weighted Weighted
Euclidean distance 0.77 0.63
Manhattan distance 0.73 0.63
Chebyshev distance 0.73 0.57

Cosine similarity 0.73 0.73
Correlation distance 0.73 0.73
Bray-Curtis distance 0.5 0.56

beled to the three classes (explained in the previous
subsection). Additionally, for every task, we showed
to the user a selection of ingots with similar patterns
obtained from our method as in Figure 3.

In the first task, domain experts needed to rank UT
images of ingots based on similarity regarding the ref-
erence UT image. The first reference UT image was
9883520 (Figure 3). In this case, the pattern contains
indications at the beginning of casting length. The
results of comparison with different binning extrac-
tion (non-weighted and weighted bins) are presented
in Table 1. The ultimate goal of our method is the
ability to predict the target class determined by the
user. The highest accuracy in detecting similar pat-
terns is achieved with Euclidean distance using the
non-weighted quality criteria. However, we have a
certain number of UT images classified not correctly
(see Figure5). A confusion matrix was used for the
purpose of distinguishing between different classes
and see which classes actually cause confusion. What
looks promising is that for the similarity measure with
the highest accuracy i.e. euclidean distance there is
only one UT ingot image belonging to class similar,
classified as not similar class. Considering different
methods for class labeling in future work could im-
prove accuracy.

Figure 5: Confusion matrix for non-weighted bins.

Table 2 shows the accuracy of the results for the
second reference UT image of the ingot. The pattern
in reference 431630 (Figure 2) contains an accumula-
tion of indications in a small area of the ingot.

The highest accuracy in detecting similar pat-
terns is achieved with Chebyshev distance using the

Table 2: Accuracy of different distance measures for the
reference ingot image 431630.

Distance measures Non-weighted Weighted
Euclidean distance 0.6 0.63
Manhattan distance 0.63 0.63
Chebyshev distance 0.6 0.67

Cosine similarity 0.57 0.6
Correlation distance 0.6 0.57
Bray-Curtis distance 0.27 0.23

weighted quality criteria. Euclidean distance, with
the highest accuracy in the previous task, and Cheby-
shev distance come from the same family of dis-
tances(Minkowski distance family). We have earlier
discussed that if an accumulation of indications is ex-
actly between two bins, patterns may be recognized
better using the weighted quality criteria. In this case,
the accuracy is lower than the accuracy for the refer-
ence 9883520. One explanation for this is that in the
case of an accumulation of indications in a small area,
the user sometimes can not estimate the actual amount
of indications, while the distance measure calculation
highly depends on the quality criteria per bin. An-
other explanation could be that in this specific case,
the border of labeled classes should be considered fur-
ther.

In the end, we showed to our domain experts UT
images ranked by distance measure as in Figure 3.
Domain experts report the five UT images ranked by
the Minkowski distance family, showed good results
for both reference ingots. Domain experts agree that
the use of such methods could allow them to gather
information to identify specific patterns, distribution
of indication, and correlation with process data. An
important requirement for analyzing ultrasonic test
data is an extensive professional and domain-specific
knowledge of users. However, we need to be care-
ful as the similarity is subjective and is highly depen-
dent on the domain and application. The user study
showed promising results in detecting specific ultra-
sonic patterns. Regarding the similarity measures,
the Minkowski distance family provided the highest
recognition rates among the distances used in this
work.

5 SUMMARY AND FUTURE
WORK

Selecting the right distance measure is one of the chal-
lenges encountered by professionals and researchers
when attempting to apply different methods in real-
world applications. The variety of similarity mea-
sures can cause confusion and difficulties in choos-
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ing a suitable measure. The performance of similarity
measures may vary depending on different datasets.
In this paper, we studied a quantitative comparison for
different similarity measures on UT images of ingots.
The aim of this study was to clarify which similarity
measures are more appropriate and applicable when
searching for specific ultrasonic patterns. Further, we
conducted interviews with domain experts in the anal-
ysis of UT indications images comparison and used
this feedback to define a ground truth for our eval-
uation. We provided a discussion and demonstrated
the possible insights enabled by our approach and its
potential to support production data exploration.

Future work includes investigation of process data
corresponding to groups of similar ingots and batches,
and potentially discovering key influential parameters
in the process data. As future work, we also want
to include advanced multidimensional data visualiza-
tions, to support pattern detection and parameter cor-
relation. Furthermore, automatic classification of cer-
tain quality patterns, based on interactively provided
expert examples, is considered an interesting future
extension of an existing visual analytics solution.
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