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Abstract: Given the countless hours of video that are generated in surveillance environments, real-time for multi-object 
tracking (MOT) is vastly insufficient. Current MOT methods prioritize tracking accuracy in crowded 
environments, with little concern for total computational expense, which has led to a reliance on expensive 
object detectors to perform tracking. Indiscriminate use of object detectors is not scalable for surveillance 
problems and ignores the inherent spatio-temporal variation in scene complexity in many real-world 
environments. A novel MOT method is proposed, termed “Time-First Tracking”, which relies on “shallowly” 
processed motion with a new tracking method, leaving the use of expensive object detection methods to an 
“as-needed” basis. The resulting vast reduction in pixels-processed may yield orders of magnitude in cost 
savings, making MOT more tractable. Time-First Tracking is adaptable to spatio-temporal changes in tracking 
difficulty; videos are divided into spatio-temporal sub-volumes, rated with different tracking difficulties, that 
are subsequently processed with different object localization methods. New MOT metrics are proposed to 
account for cost along with code to create a synthetic MOT dataset for motion-based tracking. 

1 INTRODUCTION 

Current MOT methods are primarily “frame-first” 
tracking methods that focus on the visual details of 
each frame, instead of focusing on the information 
that changes over time like motion. A focus on 
motion first is termed “time-first” tracking in this 
paper. The MOT Challenges serve as benchmark 
datasets in MOT (Dendorfer et al., 2019, 2020; Leal-
Taixé et al., 2015; Milan et al., 2016). The datasets 
focus on short video clips with dense, largely 
homogenous target distributions. Tracking in these 
scenes is very hard and often done with Tracking-by-
Detection (TbD) methods. TbD methods join 
sequential detections together to create tracks, where 
detections are provided from a trained object detector, 
e.g., Ren et al. (2015). Sometimes visual tracking 
tools or point tracking strategies are added to improve 
tracking output (Bochinski et al., 2019; Keuper et al., 
2018) at the cost of lower processing speeds. The 
frame-first approach of object detection and motion 
estimation are computational bottlenecks that limit 
speeds to near real-time. Researchers treat real-time 
processing speeds as adequate, but London alone has 

500,000 surveillance cameras yielding more than 10 
million video hours per day; lacking dedicated 
processing per camera, real-time is vastly inadequate 
for both MOT methods and the higher-level tasks that 
could use tracking outputs as priors. 

Precise object localization may be necessary in 
complex scenes, but long-duration videos are quite 
simple much of the time. For example, a camera at a 
train station will not see the same crowd density at 
rush hour as it will at midnight, nor will it see the 
same number of people on the tracks versus the 
platforms. In uncongested scenes, imprecise motion 
estimation, such as a simple background subtraction 
routine (Zivkovic, 2004) can localize objects in place 
of detectors at a fraction of the cost. Typically, TbD 
methods struggle to use these detections because they 
are inconsistent and do not always correspond to 
single objects. The MOT Challenge datasets overlook 
these applications of TbD methods by focusing on 
“hard” videos; “easy” videos and their background 
models are not included for comparison. One may 
reason that if a tracking method can manage a hard 
scene, then it can manage an easy one. This is only 
true when cost and time constraints are ignored, 
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otherwise, researchers may consider more efficient 
solutions for easy scenes. It would be beneficial for a 
MOT method to adapt its approach to variations in 
spatio-temporal tracking complexity, so that the cost 
of the current approach is proportional to the current 
difficulty level. We introduce a proof-of-concept 
Time-First Tracking (TFT) architecture that divides a 
video into spatio-temporal sub-volumes, classified 
with different target densities, that are then processed 
with different object localization methods for 
tracking. TFT addresses two deficiencies in current 
MOT methods, which are that 1) current methods are 
not adaptable to imprecise motion estimation, which 
imposes a ceiling on processing speed and 2) current 
methods treat tracking difficulty as a spatio-temporal-
independent variable, which is unrealistic. Other 
contributions include the formation of a new tracklet 
generation method, newly proposed cost metrics for 
MOT, and code for developing a new synthetic 
motion-based MOT dataset.  

2 RELATED WORK 

Tracking methods require object localization 
methods to measure object states. Object localization 
can be either detection-based or motion-based. Object 
detection is the identification of a specific type of 
object with a trained system, e.g., Felzenszwalb et al. 
(2010), Redmon et al. (2016), Ren et al. (2015), or 
Sadeghi & Forsyth (2014). These methods achieve 
good performance on benchmarks like PASCAL 
VOC (Everingham et al., 2014), but are expensive 
and rely on dedicated hardware to reach real-time 
speeds (Canziani et al., 2017). Alternatively, motion 
estimation methods can localize moving objects by 
finding where in the frame pixel values are changing; 
motion estimation is not object specific and varies in 
precision, from the pixel to the region level. 

2.1 Motion Estimation 

Here, “imprecise motion estimation methods,” are the 
class of methods that use statistical background 
models and/or frame differencing methods to first 
detect foreground areas in a frame and then separately 
track detections over time to infer regional motion. 
These approaches are computationally cheap, but 
often inaccurate in unconstrained environments 
where there are crowds or illumination changes. 
Gaussian Mixture Models (GMMs) (Wren et al., 
1997) are used to generate a statistical model for each 
pixel’s intensity values; uncommon values are 
foreground, while common values are background. 

GMMs can be adjusted over the course of a video 
(Stauffer & Grimson, 1999; Zivkovic, 2004). In 
general, the quality and complexity of motion 
estimation in stationary cameras range from dynamic 
GMMs to the simplest frame-difference methods, 
e.g., Migliore et al. (2006), Singla (2014), and Zhan 
et al. (2007). Sobral & Vacavant (2014) and W. Kim 
& Jung (2017) overview the various methods and 
relevant datasets that exist in the field today.  

“Precise motion estimation methods” explicitly 
estimate motion at the pixel level instead of the region 
level. Optical flow methods and their analogues 
(Farnebäck, 2003; Horn & Schunck, 1981; Lucas & 
Kanade, 1981) are primary examples, which analyze 
local changes in brightness patterns from frame-to-
frame and create vector fields to describe the motion 
of each pixel. Optical flow methods remain a front 
end for a large body of computer vision tasks. 
However, due to their complexity and high attention 
to detail, they are generally slower than real-time 
(Simonyan & Zisserman, 2014; Zhang et al., 2016). 

2.2 Tracking Methods 

MOT methods are designed to maintain/update 
multiple tracks and correctly assign new detections to 
the appropriate tracks. The MOT Challenges and UA-
DETRAC (Wen et al., 2020) are benchmarks for 
tracking performance, where trackers are evaluated 
according to the now common tracking metrics from 
Bernardin & Stiefelhagen (2008) and Li et al. (2009). 
These benchmarks have encouraged significant 
progress in TbD techniques, which share many 
concepts with data association, a mature field of 
research. Works such as Multiple Hypothesis 
Tracking (MHT) (Reid, 1979) and Joint Probabilistic 
Data Association (JPDA) (Fortmann et al., 1983) are 
early examples of systematic mathematical solutions 
to tracking that are still applicable, but slow. Recent 
efforts have improved the efficiency of MHT and 
JPDA (C. Kim et al., 2015; Rezatofighi et al., 2015), 
but they are still slower than real-time (Bewley et al., 
2016). To increase speeds, some methods have been 
adapted to link small groups of detections,  
“tracklets,” rather than individual detections, e.g., 
Benfold & Reid (2011), Dicle et al. (2013), Huang et 
al. (2008), and Perera et al. (2006). 

MOT can also be made into a graphical problem, 
where detections are nodes and interactions between 
detections are edges (Bansal et al., 2004; Tang et al., 
2015; Wen et al., 2014). These methods calculate 
trajectories by balancing the cost between local pairs 
of detections and the total cost of the graph. “Network 
flow” methods, e.g., Berclaz et al. (2011) and 

Time-First Tracking: An Efficient Multiple-Object Tracking Architecture for Dynamic Surveillance Environments

603



Pirsiavash et al. (2011), are related to graphical 
approaches, but also include “sources” and “sinks,” 
which direct trajectory paths for optimization.  

The vast majority of leading MOT methods in the 
MOT Challenges run below 30 frames per second 
(fps) with only a few exceptions. Simple Online and 
Realtime Tracking (SORT) (Bewley et al., 2016) 
shows faster than real-time on the MOT16 dataset and 
relies on a Kalman Filter (KF) (Kalman, 1960) for 
motion estimation and the Hungarian Algorithm 
(Munkres, 1957) for detection assignment. The joint 
KF-Hungarian (KF-H) approach is a common and 
efficient method, included in MATLAB 2020b 
(2020a). Another exception is the IOU tracker 
(Bochinski et al., 2017), which builds tracks based 
solely on the overlap of detections (intersection-over-
union) between frames. This approach is extremely 
fast, running over 1,000 fps, but relies on consistent 
detections; minor temporal gaps in detections can 
cause identity switches. Bochinski et al. (2019) added 
a visual tracker to the IOU method, termed the V-IOU 
tracker, which improved accuracy but was an order of 
magnitude slower. Current works can be found in the 
recent MOT Challenges and UA-DETRAC results. 

3 METHODS 

Leveraging motion and other visual cues beyond 
bounding box proposals is an intuitive approach to 
tracking, but when used in conjunction with object 
detectors, gains in accuracy come at a high 
computational cost. Our TFT architecture aims to 
increase tracking speeds by localizing objects with 
imprecise motion estimation methods rather than 
object detection methods where possible. Motion 
detections and object detections are tracked with our 
Accumulated Motion Approximation (AMA) tracker. 

3.1 Motion Estimation 

First, the resolution is reduced to make the input 
images smaller. The specific size factor we use is 
relative to the size of the smallest object we wish to 
detect. If the smallest object is (S x S) pixels, then we 
have found that the resolution can be reduced by a 
factor of roughly S/3 so that a (3 x 3) morphological 
filter can dilate results back to the original size. This 
step greatly reduces false foreground detections but 
can merge nearby targets into a single foreground 
region. In practice, we have not reduced the 
resolution much beyond a factor of five. Next, if a 
background image is available to serve as the 
background model, we subtract the current frame 

from the background and threshold the result to make 
a black-and-white, or “binary,” frame. Otherwise, 
background modeling is performed with an adaptive 
GMM (Stauffer & Grimson, 1999) implemented in 
MATLAB 2020b (2020b), where typically, default 
parameters are used with some minor hand-tuning. 
The binary frame is processed with three simple 
morphological steps to temporally smooth the results 
and reject noise. The current binary frame is filtered 
with a (3 x 3) majority filter. Then we find the union 
of the current binary frame with the prior two binary 
frames. Lastly, another majority filter is used on the 
result of that union to produce the final binary frame. 
Foreground detections from this frame are filtered by 
size and aspect ratio thresholds, which are based on 
the size of the objects we expect to track. 

Each resulting foreground region is saved with a 
feature vector representation of φ = [x, y, f, bX, bY, w, 
h, a], which encodes the location and size of the 
bounding box that surrounds the detection: (x, y) is 
the center of the box, f is the current frame, (bX, bY) 
is the top left corner of the box, (w, h, a) is the width, 
height, and area of the box. Our approach assumes 
that with long-duration video from a particular 
camera angle, scene parameters like expected target 
size are known, camera motion is minimal, and robust 
background models can be built over time. 

3.2 AMA Tracklets 

We introduce an approach to generate tracklets in 
noisy background subtraction environments. Shown 
in Figure 1 (a), the inputs are the center locations of 
the detected foreground regions from a sequence of τ 
frames, referred to as a “Bin” of frames. AMA uses 
DBSCAN (Ester et al., 1996) to cluster foreground-
region locations for a Bin, shown in Figure 1 (b). 
Efficient indexing methods in DBSCAN avoid the  
 

 
Figure 1: Generating AMA Tracklets. (a) Detected 
foreground regions in a Bin of τ frames. (b) DBSCAN 
clustering performed on detection locations (x, y). (c) Lines 
of best fit are calculated for each cluster. (d) Missing 
detections and partial detections are filled in. 
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calculation of distances between all points (Schubert 
et al., 2017). After clusters have been formed in the 
x-y plane, the frame-dimension is re-included to 
calculate three-dimensional orthogonal lines-of-best-
fit, which are the estimated motion vectors for the 
clusters (Figure 1 (c)). AMA tracklets have the 
advantage of assigning multiple detections on one 
frame to the same cluster and filling in missing 
detections, which is shown in Figure 1 (d). This 
feature is useful in noisy background subtraction 
results, where there is not always a one-to-one match 
between objects and foreground regions. 

Eps, Minpts, and τ are the primary parameters 
used to generate tracklets. While there are systematic 
methods to finding an optimal value for eps (Satopää 
et al., 2011), with foreground detections we choose to 
set this parameter based on the half-width of the 
average object we expect to track. This imposes a 
tracking speed limitation of (eps pixels/frame). 
Minpts is two because two detections are needed to 
infer a motion vector. Empirically, we have found 
that keeping τ small, ~10 frames, solves issues with 
inconsistent detections and limits the duration of any 
clustering errors, which can be fixed by future steps. 

3.3 AMA Tracker 

A set of AMA tracklets are found for each Bin of 
frames. Sequential Bins are overlapped so that they  
 

 
Figure 2: Merging AMA Tracklets. Tracklets are created 
for each Bin. At frame n*(τ/2)+1, the bounding box from 
the middle of tracklet αj in Binn (Mj) is compared with the 
starting bounding box from tracklet αi in Binn+1 (Si). 

share frames. For example, in Figure 2, Binn contains 
detections from frames 1-8, while Binn+1 contains 
detections from frames 5-12. This was done because 
with background subtraction, foreground detections 
are inconsistent and can shift dramatically from one 
frame to the next. By sharing detections, sequential 
tracklets are easier to merge. To merge tracklets, the 
midpoints of each tracklet (Mj) in Binn are compared 
to the start points of each tracklet (Si) in Binn+1. These 
points are bounding boxes, which are compared by 1) 
verifying that ratio of intersection area to union of 
area (IOU) between bounding boxes is above a 
threshold and 2) making sure the centers of the 
bounding boxes are within a threshold distance. 
These thresholds are hand-tuned for background 
subtraction but can be selected with training when 
using object detections from a dataset. Only tracklets 
from sequential Bins are merged, which can create 
identity switches when merging fails. This is a known 
deficiency that we plan to address in the future. 

3.4 Time-First Tracking 

The TFT method is shown in Figure 3 and the details 
of each step are described in the following sections. 
All steps are repeated for each sequence of frames, or 
“Stack.” Unlike Bins, Stacks do not overlap. TFT 
intermittently measures target density and then finds 
targets with an object detector in high-density regions 
and with background subtraction in low-density 
regions. This reduces the usage of the object detector, 
which should increase overall processing speed but 
lower tracking accuracy in low-density regions. 

3.4.1 Step 1: Stack Duration 

Currently, the video is broken up into pre-defined 
Stacks, with a fixed depth of λ frames each, where λ 
is 60 frames. In the future, we plan to make λ dynamic 
so that the Stack depth can change as the speed and 
spatial distribution of targets changes. The first frame 
of each Stack is analyzed by a trained object detector, 
resulting in a set of proposed bounding boxes for the 
entire frame. 

3.4.2 Steps 2 & 3: Sub-volume Creation 

Detections from the first frame of a Stack are used to 
determine the spatial boundary between high- and 
low-density regions. We input target locations to 
DBSCAN to differentiate between high-density areas 
(clusters) and low-density areas (noise): eps is hand-
tuned and minpts = 3. In high-target-density areas, it 
is hard to accurately localize objects. Clustered points  
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Figure 3: Current TFT Architecture. (Step 1) Split the video into Stacks, each containing λ frames. Run an object detector on 
the first frame of the Stack. (Step 2) Analyze object-detection density for the first frame of a Stack and then split the frame 
into two regions (high/low density). (Step 3) Keep spatial boundaries constant for all frames in the Stack to create sub-
volumes. Pass pixels from the hard sub-volume to an object detector and pixels from the easy sub-volume to a background 
subtraction routine. (Step 4) Utilize separate trackers for the separate sub-volumes and merge the results. (Step 5) After each 
Stack is analyzed, connect tracks from adjacent Stacks to create contiguous tracks. 

are given a “hard” label, while noise points are given 
an “easy” label. A naïve Bayes classifier is fit to the 
labeled locations. The classifier predicts labels for a 
grid of test points to form a single bounded hard 
region. The procedure for region segmentation is an 
area for future work.  

Spatial boundaries are currently kept constant for 
each frame of a Stack, creating two sub-volumes with 
different target density levels. In the hard sub-
volume, a trained object detector, e.g. Faster R-CNN 
(Ren et al., 2015), is used to localize objects for 
tracking. In the easy sub-volume, the background 
subtraction method from section 3.1 is used to detect 
moving objects. In the future we plan to expand TFT 
to handle multiple hard sub-volumes extruded in any 
direction, instead of being held in place. 

3.4.3 Step 4: Tracking in Sub-volumes 

The TFT architecture is setup to use two separate 
tracking methods for different sub-volumes, which 
allows current TbD methods to be easily adapted. In 
testing, we have implemented different combinations 
of the AMA tracker, a MATLAB (2020a) KF-H 
tracker, and the IOU tracker (Bochinski et al., 2017). 
Easy sub-volumes are the target of the AMA tracker, 
since noisy, imprecise results are expected here, but 
the AMA tracker can operate in both sub-volumes, 
with different parameters. When AMA uses object 
detections as inputs, eps and the IOU merge threshold 
are selected through training instead of being based 
on object size. Tracks are computed independently in 
each region and can begin in one region and terminate 

in another. Such tracks are merged with proximity 
and directional constraints to create a single set of 
tracks for a Stack. 

3.4.4 Step 5: Connecting Stacks 

To connect tracks between sequential Stacks, end 
points from tracks in Stackn are compared to start 
points of tracks in Stackn+1 using IOU overlap and 
centroid distance thresholds. This is an expedient way 
to connect Stacks, but it is fragile to inter-frame 
inconsistencies. This is an area that will be further 
explored in future work. 

3.5 Evaluation Criteria 

In addition to the common metrics from Bernardin & 
Stiefelhagen (2008) and Li et al. (2009), we propose 
estimating detector-processing time by assuming a 
fixed speed, rather using a timed value, to avoid 
introducing hardware specific results. We find this 
reasonable, considering a range of detectors run 
between 1-200 fps, e.g., Cao et al. (2019), Redmon et 
al. (2016), Ren et al. (2015), and Sadeghi & Forsyth 
(2014). We estimate detector time (DT) for a 
particular video as 

DT (s) = (nF * PixF) / (DS) (1)

where nF is the total number of frames in the video, 
PixF is the fraction of pixels of the video that were 
processed by the object detector, and DS is the 
assumed detector speed in frames per second. If 
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detections from every full frame of the video are used, 
PixF = 1. Scaling detector time by PixF may not be 
exact in practice, due to overhead and architectural 
constraints, but it is a simple gauge of detector usage. 

4 RESULTS 

Preliminary results for the AMA tracker include an 
average MOTA score of 40.3 on the MOT17 training 
dataset with eps = 20, minpts = 2, IOU merge 
threshold of 0.65, and a distance threshold of 2*eps. 
The average processing speed on a computer with a 
2.4 GHz Intel i9 CPU is roughly 3,000 fps, excluding 
the time for object detections. The IOU tracker 
achieves an average MOTA of 47.4 at 4,000 fps, and 
a MATLAB KF-H tracker achieves an average 
MOTA of 46.9 at 900 fps. 

These speeds are two orders of magnitude faster 
Than most published methods on the MOT Challenge 
and are only possible because visual features beyond 
object detections are ignored. This points to a need to 
decouple appearance-based tracking methods from 
motion-based tracking methods. A tracking method 
that ignores visual features would view a video frame 
like a background subtracted frame, where the 
detections are the only inputs. This is visualized in the 
top row of Figure 4, where a frame from a MOT 
Challenge video is beside a blank frame filled with 
the same object detections. Background subtraction 
can produce similar but less consistent bounding 
boxes, as shown in the second row of Figure 4 with a 
frame from the VIRAT dataset (Oh et al., 2011). 
Binary videos like this can be programmatically 
constructed, greatly expanding the number of labeled 
scenes for researchers to use. We have constructed a  
 

 
Figure 4: Ignoring Visual Features. In the top row, object detections are shown from a MOT Challenge video; detections are 
shown in yellow on the left and as white boxes on the right. In the middle row, foreground detections via background 
subtraction are shown from a VIRAT video; detections are shown in green on the left and as white boxes on the right. In the 
bottom row, a frame sequence is shown from our synthetic video, with the AMA tracker results overlaid. 
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tool to create these synthetic tracking videos, which 
model overhead, stationary cameras. Frames from an 
example video are shown in the bottom row of Figure 
4 with the AMA tracker results overlaid. We plan to 
create a dataset where the number of targets can be 
varied, noise can be added, and false positives can be 
simulated. We are interested in comparing tracking 
methods across cross-sections of the dataset, e.g., 
measuring how processing speed varies with the 
number of targets. 

TFT is designed for long duration videos from a 
stationary camera that exhibit variable target 
densities. Most MOT-oriented datasets are composed 
of short clips, do not contain background models, and 
primarily model high-target-density scenes, making 
the full datasets poor benchmarks for this approach. 
Qualitative results on one of the few overhead videos 
from the MOT Challenge are shown in the left 

column of Figure 5. The hard regions are shown in 
red and change location throughout the video. In the 
right column of Figure 5, another example is shown 
from a video in the VIRAT dataset using Aggregate 
Channel Feature detections (Dollar et al., 2014). The 
PixF value for the MOT Challenge video and the 
VIRAT video is 0.36 and 0.19, respectively. If a 
detector runs at 30 fps, the estimated detector time 
would be 12.6 and 4.7 seconds, respectively. Were 
the detector run on every full frame of the video (as 
usual), the estimated detector-processing time would 
increase to 35 and 25 seconds, respectively. The 
increase in speed of TFT comes with the introduction 
of visible tracking errors, e.g., track 179 in the left 
column of Figure 5. The aim of our future work is 
quantifying the trade-off between accuracy and cost, 
making the TFT architecture more dynamic, and 
processing more real-world videos. 

 
Figure 5: Qualitative Results for TFT. The frames in the left column come from a MOT Challenge video and the frames on 
the right column come from a VIRAT video. The hard region is the red shaded box, while the easy region is outside the box 
with foreground detections shown in green. Tracking errors are introduced in easy region, e.g., track 179 in left column.  
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5 CONCLUSIONS 

In long-duration videos, hard and easy scenes are not 
separate problems and spatial target distribution can 
be quite non-homogenous. Access to dedicated 
hardware may be limited in surveillance settings, so 
MOT methods must prioritize efficiency and avoid 
the indiscriminate use of frame-first methods. The 
TFT architecture relies on cheap background 
modeling to handle scenes with simple tracking 
complexity, while reserving frame-first methods to an 
as-needed basis. We also show an adaptation of 
DBSCAN for MOT in our AMA tracker. Current 
work is aimed at building a new dataset for motion-
based tracking methods, providing an extensive 
quantitative evaluation of our methods, and 
expanding the AMA and TFT methods to improve 
tracking errors after the first-pass track proposals 
have been made, e.g., Jarrett et al. (2019). 
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