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Abstract: Nowadays, neural network models achieve state-of-the-art results in many areas as computer vision or speech
processing. For sequential data, especially for Natural Language Processing (NLP) tasks, Recurrent Neural
Networks (RNNs) and their extensions, the Long Short Term Memory (LSTM) network and the Gated Recur-
rent Unit (GRU), are among the most used models, having a “term-to-term” sequence processing. However,
if many works create extensions and improvements of the RNN, few have focused on developing other ways
for sequential data processing with neural networks in a “term-to-term” way. This paper proposes the original
Hidden Neural Markov Chain (HNMC) framework, a new family of sequential neural models. They are not
based on the RNN but on the Hidden Markov Model (HMM), a probabilistic graphical model. This neural
extension is possible thanks to the recent Entropic Forward-Backward algorithm for HMM restoration. We
propose three different models: the classic HNMC, the HNMC2, and the HNMC-CN. After describing our
models’ whole construction, we compare them with classic RNN and Bidirectional RNN (BiRNN) models for
some sequence labeling tasks: Chunking, Part-Of-Speech Tagging, and Named Entity Recognition. For every
experiment, whatever the architecture or the embedding method used, one of our proposed models has the best
results. It shows this new neural sequential framework’s potential, which can open the way to new models,
and might eventually compete with the prevalent BiLSTM and BiGRU.

1 INTRODUCTION

During the last years, neural networks models (Good-
fellow et al., 2016; LeCun et al., 2015) show im-
pressive performances in many areas, as computer
vision or speech processing. Among them, Natural
Language Processing (NLP) has one of the most sig-
nificant expansions. The Recurrent Neural Network
(Rumelhart et al., 1985; Jordan, 1990; Jozefowicz
et al., 2015) (RNN) based models, treating text as se-
quential data, are among the most often used models
for NLP tasks, especially the Long Short Term Mem-
ory network (LSTM) (Hochreiter and Schmidhuber,
1997) and the Gated Recurrent Unit (GRU) (Chung
et al., 2014). They can cover all textual applications as
word embedding (Akbik et al., 2018) or text transla-
tion (Sutskever et al., 2014). They are the most preva-
lent sequential models with neural networks, having a
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term-to-term data processing.
However, if many works have been done to cre-

ate extensions of the RNN, very few of them focused
on a different way to use neural networks to treat se-
quential data with term-to-term processing. There are
Transformer (Vaswani et al., 2017) based models, as
BERT (Devlin et al., 2018) or XLNet (Yang et al.,
2019), but they have a different structure as they catch
all the observations of the sequence in one time (under
padding limitations) and require many more parame-
ters and training power. In this paper, we only focus
on neural models with term-to-term processing.

Among the sequential models, one of the most
popular is the Hidden Markov Model (HMM)
(Stratonovich, 1965; Baum and Petrie, 1966; Rabiner
and Juang, 1986), also called Hidden Markov Chain,
which is a probabilistic graphical model (Koller and
Friedman, 2009). In this paper, we propose a new
framework of sequential neural models based on
HMM, named Hidden Neural Markov Chains (HN-
MCs), composed of the classic HNMC, the HNMC
of order 2 (HNMC2), and the HNMC with complex-
ified noise (HNMC-CN). As RNN, they are neural
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term-to-term models for sequential data processing.
Their interest is due to a new way of HMM’s poste-
rior marginal distribution computation based on the
Entropic Forward-Backward (EFB) algorithm, which
allows considering arbitrary features (Azeraf et al.,
2020) with HMM. We adapt EFB to HMM of or-
der 2 (HMM2) and HMM with complexified noise
(HMM-CN), presented in the next section. There-
fore, we present HNMC as the HMM neural exten-
sion, HNMC2 as the HMM2 one, and HNMC-CN as
the HMM-CN one.

The paper is organized as follows. The next sec-
tion presents the HMM model, its EFB algorithm,
the HMM2, the HMM-CN, and their EFB algorithms.
Then we introduce the HNMC, the HNMC2, and the
HNMC-CN models. We specify the computational
graph and related training process of the HNMC. We
also describe the differences between our proposed
models and some previous ones combining HMM and
neural networks. The fourth part is devoted to ex-
periments. We compare our models with RNN and
Bidirectional RNN (BiRNN) (Schuster and Paliwal,
1997) for different sequence labeling tasks: Part-Of-
Speech (POS) tagging, Chunking, and Named-Entity-
Recognition (NER). We implement many architec-
tures with various embedding methods to reach a
convincing empirical comparison. We only compare
with RNN and BiRNN, as the latter’s extensions to
catch longer memory information, leading to LSTM
and GRU, is discussed as the perspectives for HNMC
based models in the last section.

2 HIDDEN MARKOV MODEL

2.1 Description of the HMM

The Hidden Markov Model is a sequential model cre-
ated sixty years ago and used in numerous applica-
tions (Rabiner, 1989; Li et al., 2000; Brants, 2000). It
allows the restoration of a hidden sequence from an
observed one.

Let x1:T = (x1, ...,xT ) be a hidden realization
of a stochastic process, taking its values in ΛX =
{λ1, ...,λN}, and let y1:T = (y1, ...,yT ) be an observed
realization of a stochastic one, taking its values in
ΩY = {ω1, ...,ωM}. The couple (x1:T ,y1:T ) is a HMM
if its probabilistic law can be written:

p(x1:T ,y1:T ) = p(x1)p(y1|x1)p(x2|x1)

p(y2|x2)...p(xT |xT−1)p(yT |xT )

The probabilistic oriented graph of the HMM is given
in figure 1.
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Figure 1: Probabilistic oriented graph of the HMM.

2.2 The Entropic Forward-Backward
Algorithm for HMM

There are different ways to restore a hidden chain
from an observed one using the HMM. With the Max-
imum A Posteriori criterion (MAP), one can use the
classic Viterbi (Viterbi, 1967) algorithm. About the
Maximum Posterior Mode (MPM), one can use the
classic Forward-Backward (Rabiner, 1989) (FB) one.
However, both Viterbi and FB algorithms use proba-
bilities p(yt |xt), making them impossible to consider
arbitrary features of the observations (Jurafsky, 2000;
Sutton and McCallum, 2006), especially the output of
a neural network function. To correct this default, the
Entropic Forward Backward (EFB) algorithm speci-
fied below computes the MPM using p(xt |yt) and can
take into account any features (Azeraf et al., 2020).
This makes possible the neural extension of the HMM
we are going to present.

For stationary HMM we consider in the whole pa-
per, the EFB deals with the following parameters:

• π(i) = p(xt = λi);

• ai( j) = p(xt+1 = λ j|xt = λi);

• Ly(i) = p(xt = λi|yt = y);

The MPM restoration method we consider consists
of maximization of the probabilities p(xt = λi|y1:T ).
They are given from entropic forward α and entropic
backward β functions with:

p(xt = λi|y1:T ) =
αt(i)βt(i)

∑
N
j=1 αt( j)βt( j)

(1)

Entropic forward functions are computed recursively
as follows:

• For t = 1:

α1(i) = Ly1(i)

• For 1≤ t < T :

αt+1(i) =
Lyt+1(i)

π(i)

N

∑
j=1

αt( j)a j(i) (2)

And the entropic backward ones:

• For t = T :

βT (i) = 1
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Figure 2: Probabilistic oriented graph of the HMM of order
2.

• For 1≤ t < T :

βt(i) =
N

∑
j=1

Lyt+1( j)
π( j)

βt+1( j)ai( j) (3)

One can normalize values at each time in (2) and (3)
to avoid underflow problems without modifying the
probabilities’ computation.

2.3 EFB Algorithm for HMM of Order
2

In this paragraph, we describe an extension of EFB
above to HMM2, which allows to catch longer mem-
ory information than the HMM. The probabilistic law
of (x1:T ,y1:T ) for the HMM2 is:

p(x1:T ,y1:T ) = p(x1)p(x2|x1)p(x3|x1,x2)...

p(xT |xT−2,xT−1)p(y1|x1)p(y2|x2)...p(yT |xT )

Its probabilistic graph is given in figure 2.
We introduce the following notation to present the

EFB algorithm for HMM2:

a2
i, j(k) = p(xt+2 = λk|xt = λi,xt+1 = λ j)

The EFB algorithm for HMM2 is the following:

• For t = 1:

p(x1 = λi|y1:T ) =
∑ j α2

2(i, j)β2
2(i, j)

∑k ∑ j α2
2(k, j)β2

2(k, j)

• For 2≤ t ≤ T :

p(xt = λi|y1:T ) =
∑ j α2

t ( j, i)β2
t ( j, i)

∑k ∑ j α2
t ( j,k)β2

t ( j,k)

The entropic forward-2 functions α2 are computed
with the following recursion:

• For t = 2:

α
2
2( j, i) = Ly1( j)a j(i)

Ly2(i)
π(i)

• And for 2≤ t < T :

α
2
t+1( j, i) = ∑

k
α

2
t (k, j)a2

k, j(i)
Lyt+1(i)

π(i)
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Figure 3: Probabilistic oriented graph of the HMM-CN.

And the backward-2 functions β2 with the following
one:

• For t = T :

β
2
T ( j, i) = 1

• And for 2≤ t < T :

β
2
t ( j, i) = ∑

k
β

2
t+1(i,k)a

2
j,i(k)

Lyt+1(k)
π(k)

2.4 HMM-CN and Related EFB

This paragraph describes the new HMM-CN model
with related new EFB. It is another extension of
HMM aiming to improve its results. Its probabilistic
oriented graph is presented in figure 3.

In this case, the hidden sequence is still a Markov
chain, and the conditional law of the observation
yt given x1:T depends on xt−1,xt , and xt+1, imply-
ing stronger dependency with the hidden chain. The
HMM-CN has the probabilistic law:

p(x1:T ,y1:T ) = p(x1)p(x2|x1)p(x3|x2)...p(xT |xT−1)

p(y1|x1,x2)p(y2|x1,x2,x3)...p(yT |yT−1,yT )

To present the EFB algorithm for HMM-CN, we set:

• I j,y(i) = p(xt+1 = λi|xt = λ j,yt = y)

• J j,y(i) = p(xt = λi|xt+1 = λ j,yt+1 = y)

The goal of the EFB algorithm is to compute
p(xt = λi|y1:T ), using I j,y(i) and J j,y(i) above, we
show1:

p(xt = λi|y1:T ) =
αCN

t (i)βCN
t (i)

∑ j αCN
t ( j)βCN

t ( j)
,

with the entropic forward-cn functions αCN computed
with the following recursion:

• For t = 1:

α
CN
1 (i) = Ly1(i)

• And for 1≤ t < T :

α
CN
t+1(i) = ∑

j
α

CN
t ( j)I j,yt (i)

Lyt+1(i)Ji,yt+1( j)
π( j)a j(i)

(4)

1Proofs of the EFB algorithms for HMM2 and HMM-
CN are available here.
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And the entropic backward-cn functions βCN com-
puted with the following one:

• For t = T :
β

CN
T (i) = 1

• And for 1≤ t < T :

β
CN
t (i) = ∑

j
β

CN
t+1( j)Ii,yt ( j)

Lyt+1( j)J j,yt+1(i)
π(i)ai( j)

(5)

3 HIDDEN NEURAL MARKOV
CHAIN FRAMEWORK

3.1 Construction of the HNMC

To extend the HMM considered above to the HNMC,
we have to model the three functions, π, a, and L,
with a feedforward neural network function modeling
Lyt+1 (i)

π(i) a j(i). This neural network function has yt+1

concatenated with the one-hot encoding of j as input,
and outputs a positive vector of size N. To do that,
we use a last positive activation function as the expo-
nential, the sigmoid, or a modified Exponential Linear
Unit (mELU):

f (x) =
{

1+ x if x > 0
ex otherwise.

Then, we apply the EFB algorithm for sequence
restoration. The first step of the algorithm is per-
formed thanks to the introduction of an initial state,
which can be drawn randomly or equals to a constant
different from 0. Therefore, we have constructed the
HNMC, a new model able to process sequential data
in a “term-to-term” way with neural network func-
tions.

We can stack HNMCs to add hidden layers, simi-
larly to the stacked RNN practice, to achieve greater
model complexity. The output of a first HNMC based
EFB restoration layer becoming the input of the next
one, and so on, applying the EFB layer after layer.
For example, a computational graph of a HNMC com-
posed of four layers is specified in figure 4. In the
general case, we have K +2 layers:

• An input layer y;
• K hidden layers h(1),h(2), . . . ,h(K);
• An output layer x.

We consider that (H(1), Y ), (H(2), H(1)), ...,
(H(K), H(K−1)), are HMMs, and the last layer H(K)

is connected with the output layer x thanks to a feed-
foward neural network function denoted f . Finally,
we compute for each t ∈ {1, . . . ,T}, xt from y1:T as
follows:

y1 y2 y3 y4 y5

h(1)1 h(1)2 h(1)3 h(1)4 h(1)5

h(2)1 h(2)2 h(2)3 h(2)4 h(2)5

x1 x2 x3 x4 x5

Figure 4: Computational graph of the HNMC with two hid-
den layers.

1. Computing h(1) from y1:T using EFB;

2. Computing h(2) from h(1) using EFB, considering
h(1) as the observations; then compute h(3) from
h(2) using EFB, ...

3. Computing h(K) from h(K−1) using EFB, consid-
ering h(K−1) as the observations;

4. Computing xt = f (h(K)
t ), xt is the output vector of

probabilities of the different states at time t.

Let us notice that, from a probabilistic point of view,
this stacked HNMC can be seen as a particular Triplet
Markov Chain (Pieczynski et al., 2003) having K +2
layers, and our restoration method would be an ap-
proximation of this model.

Thus, the HNMC can be used as a sequential
neural model with term-to-term processing, like the
RNN. However, unlike the latter, the HNMC uses all
the observation y1:T to restore xt , whereas the RNN
uses only y1:t . One can use the BiRNN to correct this
default, consisting of applying a RNN from right to
left, another one from left to right, then concatenate
the outputs.

3.2 Neural Extension of HMM2 and
HMM-CN

Neural extensions of HMM2 and HMM-CN follow
the same principles as for HMM. For the HMM2, we

model a2
k, j(i)

Lyt+1 (i)
π(i) with a feedfoward neural func-

tions with a positive last activation function, taking as
input yt+1 and the one-hot encoding of (k, j). This
model is denoted HMNC2.

Concerning the HMM-CN, we use two different

neural functions: one to model
Ji,yt+1 ( j)

π( j) , and the other

one to model I j,yt (i)
Lyt+1 (i)

a j(i)
, with the relevant inputs,

and positive outputs. This model is denoted HMNC-
CN.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

1016



3.3 Learning HNMC based Models’
Parameters

To learn the different parameters of each of our new
models, we consider the backpropagation algorithm
(LeCun et al., 1988; LeCun et al., 1989) frequently
used for neural network learning. Given a loss, for ex-
ample the cross-entropy LCE , θ a parameter of one of
the model’s functions, and a sequence y1:T , we com-
pute ∂LCE

∂θ
with gradient backpropagation over all the

intermediary variables. Then, we apply the gradient
descent (Ruder, 2016) algorithm:

θ
(new) = θ−κ

∂LCE

∂θ

with κ the learning rate.
As for any neural network architectures, we can

apply the gradient descent algorithm for HNMC
based models. Therefore, we can create different ar-
chitectures and combine them with other neural net-
work models as Convolutional Neural Networks (Le-
Cun et al., 1999) or feedforward ones.

3.4 Related Works

The combination of HMM with neural networks starts
in the 1990s (Bengio et al., 1994), focusing on the
concatenation of the two models. Nowadays, few
papers deal with the subject. The closest model
to HNMC is the neural HMM proposed in (Tran
et al., 2016). However, the proposed method is not
EFB based, and neural networks model different pa-
rameters from those considered in this paper. In-
deed, they model p(yt |xt = λi). This implies a sum
over all the possible observations to be computed,
which considerably increases the number of param-
eters for NLP applications, where observations are
words. It also avoids the combination with em-
bedding methods, aiming to convert a word into a
continuous vector. Moreover, the proposed training
method is based on the Baum-Welch algorithm with
Expectation-Maximization (Welch, 2003), or Direct
Marginal Likelihood (Salakhutdinov et al., 2003), so
the ability to create various architectures as it is done
with RNN is not trivial. It focuses on unsupervised
tasks, which is not the case for HNMC. Compara-
ble works can be found in (Wang et al., 2017; Wang
et al., 2018). Therefore, the proposed HNMC, based
on different neuralized parameters with gradient de-
scent training and aiming a different objective, is an
original way to combine HMM with neural networks.

4 EXPERIMENTS

This section presents some experimental results
comparing the RNN, the BiRNN, the HNMC, the
HNMC2, and the HNMC-CN. After some prelimi-
nary presentations of the different tasks and the word
embedding process, we create different architectures
for all the models and test them for sequence labeling
applications. Motivations to the choice of comparing
our models with RNN and BiRNN are discussed in
perspectives.

4.1 Sequence Labeling Tasks

We select sequence labeling applications as they are
the most intuitive tasks to apply a sequential model
in the NLP framework. It consists of labeling ev-
ery word in a sentence with a specific tag. We apply
the different models to POS Tagging, Chunking, and
NER, which are among the most popular sequence la-
beling applications.

The POS tagging consists of labeling every word
with its grammatical function as noun (NOUN), verb
(VERB), determinant (DET), etc. For example, the
sentence (Batman, is, the, vigilante, of, Gotham, .)
has the labels (NOUN, VERB, DET, NOUN, PREP,
NOUN, PUNCT). The accuracy score is used to eval-
uate this task.

Chunking consists of segmenting a sentence with
a more global point of view than the POS tagging. It
decomposes the sentence by groups of words linked
by a syntactic function, as a noun phrase (NP), a verb
phrase (VP), an adjective phrase (ADJP), among oth-
ers. For example, the sentence (The, worst, enemy,
of, Batman, is, the, Joker, .) has the following chunk
tags (NP, NP, NP, PP, NP, VP, NP, NP, O). O denotes
a word having no chunk tag. The F1 score is used to
measure the performance of this task.

The objective of the NER is to find the different
entities in a sentence. Entities can be the name of
a person (PER), of a city (LOC), or of a company
(ORG). For example, the sentence (Bruce, Wayne, ,,
a, citizen, of, Gotham, ,, is, the, secret, identity, of,
Batman, .) can have the entities (PER, PER, O, O,
O, O, LOC, O, O, O, O, O, O, PER, O). The entity
set depends on the use-case, and one can it change
according to the objective. As for Chunking, the F1
score is used to evaluate the performances of a model.

For our experiments, we use three reference
datasets: Universal Dependencies English (UD En)
(Nivre et al., 2016) for POS Tagging, CoNLL 2000
(Tjong Kim Sang and Buchholz, 2000) for Chunk-
ing, and we use general entites with the CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) dataset for
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Table 1: Results of the different models for POS Tagging, Chunking, and NER, for the Architecture 1 - the model only.

Architecture 1
RNN BiRNN HNMC HNMC2 HNMC-CN

POS Ext UD 88.40%±0.02 91.38%±0.04 90.98%±0.03 91.33%±0.04 92.62%±0.04
Ch GloVe 00 86.68±0.08 90.76±0.55 87.77±0.13 88.18±0.04 92.02±0.03
NER FT 03 81.91±0.14 82.62±0.56 83.41±0.10 83.49±0.06 87.49±0.19

Table 2: Results of the different models for POS Tagging, Chunking, and NER, for the Architecture 2 - the model followed
by a feedforward neural function, the hidden size is denoted HS.

Architecture 2
RNN BiRNN HNMC HNMC2 HNMC-CN HS

POS Ext UD 89.84%±0.04 93.07%±0.05 92.77%±0.06 93.01%±0.04 93.29%±0.05 50
Ch GloVe 00 93.85±0.06 95.02±0.11 95.43±0.09 95.59±0.13 95.36±0.07 32
NER FT 03 84.53±0.21 87.52±0.13 88.22±0.13 88.47±0.05 89.40±0.03 20

Table 3: Results of the different models for POS Tagging, Chunking, and NER, for the Architecture 3 - two models stacked,
the hidden size is denoted HS.

Architecture 3
RNN BiRNN HNMC HNMC2 HNMC-CN HS

POS Ext UD 89.20%±0.09 92.80%±0.21 92.73%±0.12 92.97%±0.08 93.36%±0.03 50
Ch GloVe 00 93.13±0.14 94.91±0.09 95.53±0.13 95.59±0.06 95.40±0.14 32
NER FT 03 85.10±0.12 88.68±0.31 88.02±0.19 88.66±0.33 89.37±0.12 20

NER2.

4.2 Word Embedding Methods

A sentence is composed of textual data; this type of
data cannot be the input of feedforward neural net-
work functions. Indeed, these functions have as in-
put a numerical vector or scalar. Our experiments’
first step consists of a pre-processing task to convert a
word into a numerical vector, called word embedding,
or word encoding. In order to make our conclusions
independent from embedding, we use three different
embedding methods: GloVe (Pennington et al., 2014),
FastText (Bojanowski et al., 2017), and EXT encod-
ing (Komninos and Manandhar, 2016).

4.3 The Different Architectures

To compare the different models for the different se-
quence labeling tasks, we implement three architec-
tures for each model:

• Architecture 1: only the model;

2All these datasets are freely available: UD En
on the website https:/universaldependencies.org/#language-
, CoNLL 2000, for example, with NLTK (Loper and
Bird, 2002) library, and CoNLL 2003 after a demand on
https:/www.clips.uantwerpen.be/conll2003//ner/

• Architecture 2: the model followed with a feed-
forward neural network function, equivalent of the
figure 4 with the layers (y,h(1),x) for the HNMC;

• Architecture 3: two models stacked, equivalent of
the figure 4 with the layers (y,h(1),h(2)) for the
HNMC.

4.4 Experimental Details

Every model is programmed in python using PyTorch
(Paszke et al., 2019) library for automatic differentia-
tion, and Flair library (Akbik et al., 2019) for word en-
coding. The loss function is the cross-entropy. All the
different parameters are modeled with feedforward
neural networks without hidden layers, equivalent to
the logistic regression. About the activation functions,
the HNMC based models always use mELU. For the
RNN and BiRNN, we use them as usual, with hyper-
bolic tangent functions. Every model uses the soft-
max function at the end of the architecture to out-
put probabilities. We use Adam optimizer (Kingma
and Ba, 2014) for all experiments, with a mini-batch
size of 32. For architecture 1, the learning rate equals
0.005. We use different learning rates for the differ-
ent layers for the other architectures: 0.05, then 0.005.
This configuration gives the best experimental results
for every model.
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4.5 Results

For each architecture, we realize three experiments:
POS Tagging with UD En using EXT (POS Ext
UD), Chunking with CoNLL 2000 using GloVe (Ch
GloVe 00), and NER with CoNLL 2003 using Fast-
Text (NER FT 03). Each experiment is done five
times; we report the mean and the 95%-confidence
interval in Table 1, Table 2, and Table 3, with the dif-
ferent sizes of hidden layers, denoted HS.

First of all, we can notice that HNMC is al-
ways better than RNN. It is certainly because HNMC
uses all the observations to restore any hidden vari-
able, making it a bidirectional alternative to the RNN
without increasing the number of parameters, which
are slightly equivalent. As expected, the HNMC2
achieves better results than the HNMC, and therefore
the RNN. However, HNMC2 does not reach BiRNN
scores, except in some cases, especially for Chunking.

Another interesting comparison concerns HNMC-
CN and BiRNN. Indeed, the HNMC-CN achieves
better results than the BiRNN for every experiment. It
is a promising result, as prevalent models as BiLSTM
and BiGRU are based on the BiRNN. Therefore, the
HNMC-CN can be an alternative to the BiRNN for
sequence labeling applications. These different re-
sults, comparing HNMC based models with RNN and
BiRNN, show the proposed sequential neural frame-
work’s potential.

5 CONCLUSION AND
PERSPECTIVES

We have presented the HNMC framework, a new fam-
ily a sequential neural models, introducing the classic
HNMC, the HNMC2, and the HNMC-CN. We have
compared these three models with the RNN and the
BiRNN ones. On the one hand, the HNMC achieves
better results than the RNN with an equivalent num-
ber of parameters. On the other hand, the HNMC-CN
has achieved better results than BiRNN for the differ-
ent sequence labeling tasks.

As a promising perspective, we can extend the
HNMC-CN with long-memory methods, as BiRNN
is extended to BiLSTM and BiGRU. Therefore, these
extensions of HNMC-CN are expected to compete
with BiLSTM and BiGRU. It is a challenging per-
spective, as these models are the most prevalent ones
for sequential data processing.
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