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Abstract: Gamma-ray reconstruction from Cherenkov telescope data is multi-task by nature in astrophysics. The image
recorded in the Cherenkov camera pixels relates to the type, energy, incoming direction and distance of a parti-
cle from a telescope observation. We propose γ-PhysNet, a physically inspired multi-task deep neural network
for gamma/proton particle classification, and gamma energy and direction reconstruction. We compare its
performance with single task networks on Monte Carlo simulated data and demonstrate the interest of recon-
structing the impact point as an auxiliary task. We also show that γ-PhysNet outperforms a widespread analysis
method for gamma-ray reconstruction. Finally, we study attention methods to solve relevant use cases. All the
experiments are conducted in the context of single telescope analysis for the Cherenkov Telescope Array data
analysis.

1 INTRODUCTION

Gamma-ray astronomy is the astronomical observa-
tion of the most energetic photons (above 100 keV)
produced by violent astrophysical phenomena (super-
nova remnants, gamma-ray bursts, active galactic nu-
clei, etc.) and potentially by dark matter annihilation.

When these high-energy particles enter the atmo-
sphere, they interact with its dense matter producing
a particle shower. As illustrated in Figure 1, Imaging
Atmospheric Cherenkov Telescopes (IACTs) observe
the Cherenkov radiation (Hillas, 1985) emitted by this
shower. Their large mirrors collect the light to form
an image recorded by a high sensitivity camera usu-
ally made of photomultipliers. The gamma shower
then appears as an ellipsoid.

Since the first IACT, the Whipple observatory
constructed in 1968, many others have been built
(e.g., H.E.S.S., MAGIC or VERITAS), mainly as ar-
rays of telescopes to make the most of the stereo-
scopic techniques. The Cherenkov Telescope Ar-
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Figure 1: Imaging Atmospheric Cherenkov Telescope.

ray (CTA), the next generation of IACTs, will im-
prove sensitivity by a factor of 10 while also increas-
ing accuracy in gamma-ray detection. To achieve
these improvements, CTA will be composed of∼ 100
telescopes of three different sizes with very high-
speed cameras (telescope readout event rate in kHz
range[0.6,10]). When in full operation, CTA will pro-
duce 210 PB of raw data per year to be analyzed in
real time and then reduced and compressed to 3 PB
before archiving. Moreover, thanks to an improving
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knowledge of the telescopes and thus better analysis
algorithms, all the data already acquired will be re-
processed every year.

The Large Size Telescope 1 (LST1 (Ambrosi
et al., 2013)) is the first prototype installed at the
Northern CTA site in La Palma. It has been de-
signed to detect gamma rays with an energy between
30 GeV and 3 TeV, which is especially interesting for
the study of transient phenomena such as gamma-ray
bursts recently observed for the first time by IACTs
(Abdalla et al., 2019). During this preparation phase,
analysis methodologies are developed on simulated
data that make method comparison possible.

The purpose of the image analysis is to estimate
the energy and direction (as altitude and azimuth) of
the primary particle and to separate the gamma rays
from the cosmic ray background, mainly composed
of protons. This step is complex because cosmic rays
can generate very similar images and the signal-to-
noise ratio is typically lower than 1/1000. The anal-
ysis method is then driven by the gamma detection
in a high background noise and the regression of its
parameters in big data context. Moreover a sensitive
and real-time reconstruction will allow tracking and
discovering new astrophysical phenomena.

Several approaches have been considered in the
past to perform this analysis. The most common was
developed by A. M. Hillas (Hillas, 1985). It charac-
terizes the ellipsoid image by its moments up to sec-
ond order. To improve the sensitivity, these param-
eters have been combined with multivariate analysis
methods, relying on boosted decision trees or random
forests (Fiasson et al., 2010). Such approach will next
be referred to as Hillas + RF. However, this approach
doesn’t take into account the strong interdependence
between the energy, the arrival direction, the virtual
impact point on the ground of the particle and the im-
age produced (i.e., pixel intensity, shower shape and
position) that make the reconstruction multi-task by
nature. State-of-the-art methods (de Naurois and Rol-
land, 2009), named Template analysis, are based on
a pixel level comparison relying on a likelihood be-
tween a bank of image templates and the recorded
images. However, they are very slow (Parsons et al.,
2016) and each telescope of the array needs a huge
database of templates, which is not tractable for CTA
real-time analysis.

In this paper, we propose a deep multi-task ar-
chitecture, named γ-PhysNet, for single telescope
gamma event reconstruction (i.e., gamma/proton
classification, energy and arrival direction recon-
struction) from IACT simulated data. Based on Con-
volutional Neural Networks (CNNs), the proposed
model has an inference rate close to the LST1 ac-

quisition rate, above 2.5kHz. We demonstrate the in-
terest of multi-task learning for IACT data analysis
and show that our architecture outperforms the wide-
spread Hillas + RF analysis method, in particular on
direction reconstruction and gamma/proton classifica-
tion that are critical to improve the sensitivity of the
telescope. We then study several attention mecha-
nisms for the proposed architecture in two different
configurations to address relevant use cases.

2 RELATED WORK

2.1 Deep Learning for Imaging
Atmospheric Cherenkov Telescope
Data

Over the past decade, deep learning has emerged as
the leading approach in many computer vision tasks,
including image classification (Touvron et al., 2019),
semantic segmentation (Yuan et al., 2020) and object
detection (Zhang et al., 2020). Recently, some effort
has been made to explore deep learning techniques
to solve astrophysical problems (Kim and Brunner,
2016; Brunel et al., 2019). IACT data analysis isn’t
out of step, from muon image analysis (Feng et al.,
2016) to gamma event reconstruction of CTA data or
other IACTs. Nieto et al. (Nieto et al., 2017) probe
very deep networks for gamma/proton classification.
Reference (Mangano et al., 2018) presents a narrower
CNN to solve gamma/proton classification, and en-
ergy and direction regression tasks. Shilon et al.
(Shilon et al., 2019) propose a combination of a CNN
and a Recurrent Neural Network, denoted CRNN, to
solve the same tasks in stereo-analysis (using several
telescopes). To solve the real data discrepancy issue,
Parsons et al. (Parsons and Ohm, 2019) propose to
combine IACT images and standard method param-
eters. These papers present promising results, espe-
cially for gamma/proton classification. However, they
have handled the different reconstruction problems as
single tasks, without considering their strong interde-
pendence.

2.2 Multi-Task Learning

Multi-task learning (MTL) is a learning paradigm
which aims to improve the generalization (Caruana,
1997) of learned models. Former approaches (Thrun,
1996) have shown that transferring knowledge across
related tasks improves the generalization with fewer
data. MTL helps the model focus on features that
are relevant for all tasks. Recent methods based on
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CNN have shown remarkable results on pose estima-
tion (Pavllo et al., 2019) or instance segmentation (He
et al., 2017).

In MTL, the tasks to address are trained simulta-
neously, using a partially shared representation. In
hard parameter sharing architectures, the most fre-
quently used, a whole part of the network is shared
between all tasks (Ruder, 2017). The shared part is
generally the encoder (Luvizon et al., 2018) or its first
layers (Iizuka et al., 2016). In soft parameter sharing
architectures (Cao et al., 2018), each task is learned
with its own network. However, some additional lay-
ers are shared and constrained in order to encourage
their weights to be similar.

Balancing the tasks is critical. For most of the
MTL related papers (Luvizon et al., 2018; Ren and
Jae Lee, 2018), this is done, when specified, by hand.
This handcrafted weighting needs an extensive op-
timization process to find optimal ones. However,
adaptive methods have been proposed in order to au-
tomatically balance task importance. Kendall et al.
(Kendall et al., 2018) model the homoscedastic un-
certainty for each task and use it as a proxy for task
balancing. Reference (Chen et al., 2018) proposes to
weight the tasks in order to balance their loss gradient
with regard to the last common layer. This leads to pe-
nalizing predominant tasks and encouraging weaker
tasks. Guo et al. (Guo et al., 2018) use learning
progress signals as key performance indicators to pri-
oritize difficult cases at both task and example level.
Sener et al. (Sener and Koltun, 2018) consider MTL
as a multi-objective optimization to achieve Pareto
optimality for each task scale factor.

In this work, we propose a hard parameter sharing
architecture. Besides, to balance the tasks the Kendall
approach proved to be the most relevant.

2.3 Attention in Deep Learning

Attention is a mechanism that helps deep learning
model focus on relevant features based on a defined
context through trainable weights. It originates from
the natural language processing (NLP) field (Bah-
danau et al., 2015) and is the main component of
Transformer networks (Vaswani et al., 2017) that
achieve state-of-the-art performance on neural ma-
chine translation and image captioning. Parmar et
al. (Parmar et al., 2018) generalize the Transformer
architecture to image generation. Restricted self-
attention is considered to focus on local neighbor-
hoods. On the other hand, Wang et al. propose global
self-attention as a non-local operation for video clas-
sification, image segmentation, object detection and
pose estimation (Wang et al., 2018). Zhang et al.

(Zhang et al., 2019) adapt the global self-attention
for generative adversarial networks (GANs). They
use a stronger bottleneck controlled by a factor k,
denoted reduction ratio in the following. In addi-
tion, they introduce a learnable parameter to scale the
output of the attention module before summing back
with the input. While for computer vision tasks at-
tention modules are generally combined with convo-
lution blocks, Ramachandran et al. (Parmar et al.,
2019) propose stand-alone local self-attention models
for image classification and object detection.

Global and local self-attention can be considered
as spatial attention mechanisms, as they capture long-
range dependencies in data, by weighting each pixel.
On the contrary, Hu et al. (Hu et al., 2018) introduce a
lightweight channel-wise attention denoted Squeeze-
and-Excitation. The squeeze operation produces a
channel descriptor of the input and is followed by an
adaptive recalibration, the excitation, and a scale op-
eration that weights the input channels. The excitation
acts as a bottleneck parametrized by a reduction ratio.
Reference (Sun et al., 2020) proposes dual attention
for U-Net to help improve model interpretability and
robustness. It combines Squeeze-and-Excitation with
a simple spatial attention path. The latter compresses
the number of input channels to one. It then applies
a sigmoid to the resulting pixel values to produce an
attention map that rescales the output of the Squeeze-
and-Excitation.

In this paper, we compare self-attention, Squeeze-
and-Excitation and Dual Attention.

3 γ-PhysNet FOR FULL EVENT
RECONSTRUCTION

3.1 Multi-Task Architecture

We propose a MTL architecture, γ-PhysNet, to
achieve full event reconstruction from IACT data. As
computation time is crucial, this is a hard parameter
sharing architecture composed of a backbone encoder
and a physically inspired multi-task block. The net-
work is fed with two-channel IACT data (see Section
4.1 for details) and, in a single pass, separates gamma
rays from background noise, and reconstructs the en-
ergy and the arrival direction of the primary particle.
It benefits from the regression of the virtual impact
point of the particle as an auxiliary task. Even though
it is not needed by astronomers for higher-level analy-
sis, physics shows that this parameter provides mean-
ingful information to solve energy and direction re-
construction tasks.
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Relying on an extensive ablation study that we
cannot report in this paper, the backbone of γ-PhysNet
is the convolutional part of a ResNet-56 (He et al.,
2016b; He et al., 2016a), CIFAR-10 version, with
full pre-activation implemented with IndexedConv
(Jacquemont et al., 2019). IACT images can have
hexagonal pixels, as is the case for the LST cameras.
As there is no clear advantage so far (Nieto et al.,
2019) to transform them to square pixel images in
terms of performance, indexed convolutions provided
by IndexedConv package make it possible to process
directly hexagonal images.

The specificity of γ-PhysNet lies in its physically
inspired multi-task block. As illustrated in Figure 2,
it is composed of a global feature network and a local
feature network, both made of fully connected layers.
The global feature part, starting with a global average
pooling, is dedicated to energy regression as energy
can be considered as a global parameter with regard
to the input images: for a given arrival direction and
impact point, the amplitude of the acquired image is
roughly proportional to the primary gamma ray en-
ergy (Völk and Bernlöhr, 2009). The local feature
part is fed with flattened feature maps provided by the
backbone encoder. It intends to exploit local and spa-
tial information to solve gamma/proton classification,
and arrival direction and impact point regression tasks
as these reconstructed parameters are more deeply re-
lated to the shape, position and orientation of the sig-
nal in the camera.

Figure 2: Physically inspired Multi-task block.

3.2 Augmenting the Backbone with
Attention

The backbone of γ-PhysNet is composed of an initial
convolution and three stages of nine residual blocks
each. The first layer of every stage is a subsampling

performed with a strided convolution. As illustrated
in Figure 3, we insert the attention modules after ev-
ery stage to benefit from attention at each feature size
scale. Note that, in order to be compliant with our
case study, attention modules are not inserted into
backbone stages in order to limit the model complex-
ity and processing cost increase.

Figure 3: Adding attention to γ-PhysNet backbone. We in-
sert the attention modules after every stage of the ResNet-
56.

In this paper, we focus on Squeeze-and-Excitation
(SE), self-attention (SA) and dual attention (DA).

3.3 Computational Cost

The whole network, implemented with PyTorch, has
2.6×106 parameters (for LST images). Although it
has not yet been optimized for production, γ-PhysNet
inference rate on an NVIDIA V100 GPU is similar
to the telescope acquisition rate, from 2.5 to 4.5 kHz
depending on the attention method.

4 EXPERIMENTS

We first demonstrate the interest of multi-task learn-
ing for IACT data analysis on simulated data for CTA.
We also show that the proposed architecture outper-
forms a widespread analysis method. Then we study
attention mechanisms for γ-PhysNet backbone with
two data filtering configurations to address different
analysis use cases.

4.1 Dataset

For the following experiments, we use the dataset ref-
erenced as the LST4 mono-trigger Production (from
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2019/04/15), the large-scale Monte Carlo production
generated by the LST collaboration for the LST1
commissioning. This dataset is not yet publicly avail-
able. The specificity of this production is that it only
contains the data of the four LSTs of the Northern
site of CTA. It is composed of events of different
types, including diffuse gammas, gammas from point
sources (dubbed as point-like) and protons. Diffuse
events correspond to extended sources while point-
like events correspond to sources situated at a par-
ticular direction. Gammas and protons have differ-
ent simulated energy distributions, both following a
power law with a spectral index of -2, leading to an
imbalanced dataset in terms of number of events per
energy.

The dataset has been calibrated and integrated
with DL1DataHandler (Kim et al., 2019). It is sep-
arated into a training set and a test set for each event
type. The images have two channels, one for pixel in-
tensity (unit being the number of photoelectrons) and
the other containing per-pixel temporal information
(time delays from the beginning of the event recorded
by the telescope). Data amplitude is not normalized
since it is related to the energy of the detected parti-
cles (Völk and Bernlöhr, 2009). Again, we rely on
simulated data as ground truth is impossible to obtain
from real data, and real CTA data are not yet avail-
able. Moreover, it allows for an in-depth comparison
of the models.

4.2 Training

For the following experiments, we train all the mod-
els using the data from the four telescopes of this
LST4 mono-trigger dataset to provide a more accu-
rate overview of the data variability. The models are
trained on gamma diffuse events, so as to reconstruct
events coming from any directions within the field of
view, and on proton events.

For reproducibility, we repeat the experiments for
all the probed configurations with six different ran-
dom seeds for parameter initialization. We use the
standard cross-entropy loss for the classification task
and the L1 loss for regression tasks. All the neu-
ral networks are trained with the same hyperparam-
eters. Indeed, a single experiment typically requires
between 4 and 40 hours (depending on the data se-
lection) on a V100 GPU hardware. Consequently, an
advanced optimization study of all the compared net-
works is not feasible at the step of the project. How-
ever, starting from the default optimized hyperparam-
eters of ResNet, extensive preliminary experiments
allowed defining a common and well-performing hy-
perparameter set. We train the models for 25 epochs

with Adam (Kingma and Ba, 2015) as the optimizer.
The learning rate is set to 10−3 and is decayed by a
factor of 10 every 10 epochs. We regularize the net-
works by applying a L2 penalty with a weight de-
cay of 10−4 on their weights. We balance the dif-
ferent tasks with the uncertainty estimation method
presented in (Kendall et al., 2018). The task weights
are also learned with Adam as the optimizer with a
learning rate of 0.025 and a weight decay of 10−4. In
gamma-ray astronomy, proton events are considered
as background noise. To prevent them from disturbing
the learning of energy and direction task for gamma
events, we rely on a masked loss method. We set to
zero the loss of the regression parameters (energy, ar-
rival direction and impact point) when particles are
protons.

4.3 Evaluation Metrics

To comply with gamma-ray astronomy standardized
practice and most common scientific use cases, we
evaluate the different configurations on gamma point-
like and proton events. Their performance on en-
ergy and direction reconstruction tasks is measured
through resolution curves. The energy resolution rep-
resents, per energy bin, the half-width of the inter-
val around 0 which contains 68% of the distribution
of the relative prediction error. The angular resolu-
tion represents, per energy bin, the angle within which
68% of reconstructed gamma rays fall, relative to their
true direction. For both, lower is better. For the
gamma/proton classification task, the overall perfor-
mance of the network is given by the area under the
ROC curve (AUC) and the F1 score.

As we repeat the experiment six times for all the
models, we illustrate the variability of these different
runs by drawing the resolution curves as surfaces, re-
ferred to as dispersion in this paper. The envelope of
the surface represents the min / max per bin and the
dots represent the average resolution per bin of the
six random seeds. This ”average” resolution is not
related to any physical reality as resolution is a statis-
tical measure of the error of a particular model. How-
ever, it gives a trend of the model performance and is
useful for readability.

4.4 Multi-Task Learning Performance

In this section we evaluate the interest of multi-task
learning for IACT data analysis, i.e., gamma/proton
classification, energy and direction regression. We
compare the proposed architecture with single task
networks (ResNet-56). We probe the importance
of the impact point regression as an auxiliary task
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by training γ-PhysNet without the impact point
task (γ-PhysNet w/o impact). We compare with a
widespread analysis method for IACTs event recon-
struction (Hillas + RF). The toolchain used, designed
relying on the open-source library cta-lstchain v0.1.0,
consists in extracting relevant image features fol-
lowed by inferring target particle parameters with ran-
dom forests using the library scikit-learn (Pedregosa
et al., 2011).

In this paper we cannot compare with (Shilon
et al., 2019) and (Mangano et al., 2018) as the ar-
chitectures presented are designed for stereo analysis
while our architecture is designed for single telescope
analysis. We neither compare with (Nieto et al., 2017)
as this work is related to a different telescope, is fo-
cused on classification and does not take into account
the temporal information.

A series of selection cuts on image amplitude,
shower size and truncated showers is applied to the
data in order to keep good quality events. These cuts
are standard in the domain and necessary for the com-
parison with Hillas + RF method that discards the bad
quality events. The training set is composed of 388k
gamma diffuse events and 236k proton events.

4.4.1 Gamma/Proton Classification

Table 1 clearly shows that our model outperforms
the Hillas + RF analysis method in both AUC and
F1 score. More specifically, the proposed architec-
ture improves the AUC by 6.9% and the F1 score by
30.7% compared to Hillas + RF. The contribution of
multitasking in γ-PhysNet architecture is also signifi-
cant compared to the single task approach relying on
the ResNet architecture. However, the benefit of the
impact point regression as an auxiliary task is not ob-
vious for gamma/proton classification.

Table 1: AUC and F1 score of the gamma/proton classifica-
tion task for the different models.

Model AUC F1 score

Hillas + RF 0.898 0.732
ResNet-56 0.954±0.001 0.949±0.001

γ-PhysNet 0.960±0.002 0.956±0.002
γ-PhysNet 0.961±0.002 0.955±0.001
w/o Impact

4.4.2 Energy Reconstruction

Figure 4 shows that all the evaluated deep neural net-
works (DNNs) outperform the Hillas + RF method
for the energy reconstruction task. γ-PhysNet de-
creases the relative error on the energy task by up to

0.08 at high energies and up to 1.1 at 31 GeV (the
point of the Hillas + RF curve is out of the plot).
The resolution curves of γ-PhysNet and the ResNet-
56 are very close almost everywhere. However γ-
PhysNet has slightly better results below 200GeV.
At energies above 400 GeV, MTL seems to degrade
the performance, in particular without the regression
of the impact point. This can be explained physi-
cally as the particle energy is strongly correlated with
the observed intensity in the camera and the distance
from the telescope to the shower impact point. MTL
models have a higher dispersion than the single task
model.

Figure 4: Energy resolution as a function of the energy
in the LST energy range (lower is better). Comparison of
the performance on the energy regression task between the
probed models.

4.4.3 Direction Reconstruction

As for the gamma/proton classification and the energy
regression tasks, Figure 5 shows that DNNs outper-
form the Hillas + RF analysis method for the direc-
tion reconstruction task. In particular, γ-PhysNet im-
proves the performance by 0.03° to 0.3° compared to
Hillas + RF. Moreover, for this task the contribution
of MTL is significant, improving the results by up to
0.08° compared to the single task network. The pro-
posed architecture has also slightly better results with
the impact point reconstruction as an auxiliary task,
especially at higher energies (> 1TeV). Both MTL
models have a lower variability.

4.5 Impact of the Attention Mechanisms

Our experiments presented in Section 4.4 show that
the proposed architecture outperforms the widespread
Hillas + RF analysis method and that MTL improves
the performance, especially for the direction recon-
struction task. In this section we focus on atten-
tion mechanisms for the backbone of γ-PhysNet. We
evaluate the different configurations (γ-PhysNet, γ-
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Figure 5: Angular resolution as a function of the energy
in the LST energy range (lower is better). Comparison of
the performance on the arrival direction regression task be-
tween the probed models.

PhysNet SE, γ-PhysNet SA and γ-PhysNet DA) pre-
sented in Section 3.2 on the same data. To address
relevant use cases in gamma astronomy, we investi-
gate two series of selection cuts on image amplitude
and truncated showers, denoted high cuts (HC) and
low cuts (LC). These are different from Section 4.4 as
we don’t compare with Hillas + RF.

The HC consists in selecting images whose total
amplitude is higher than 1,000 photoelectrons while
higher than 50 photoelectrons for the LC. For both
we keep events whose shower is more than 80% con-
tained in the camera frame.

The HC is highly selective (training set: 121k
gammas and 75k protons), mainly at the lowest en-
ergies. The remaining events contain well defined
and bright showers. In the context of single telescope
analysis, their parameters are easier to reconstruct, in
particular their arrival direction. Models trained with
the HC can address the use case of morphological
study of extended and bright sources.

The LC is far less selective (training set: 874k
gammas and 506k protons). It is worth noticing that it
is also less selective than the standard cuts applied in
Section 4.4. It allows processing more events of lower
energy albeit of less good quality. Models trained
with the LC can possibly address three use cases.
We can analyze sources emitting photons with en-
ergy lower than 100 GeV. This is particularly relevant
to the study of extragalactic objects and gamma-ray
bursts. As a second use case, we can observe the tem-
poral variability of the flux of well-known sources.
Finally, we can also realize sky surveys to discover
new sources.

As detailed in Section 2.3, the probed attention
methods have a hyperparameter to control their bot-
tleneck, denoted reduction ratio. Relying on an ex-
tensive ablation study, we use the reduction ratio pre-

sented in Table 2 for the three attention mechanisms
and the two selection cuts. Noteworthy, depending on
the selection cuts we apply, the best reduction ratio
per attention mechanisms varies.

Table 2: Selected reduction ratio for the three attention
methods and the two selection cuts.

Attention HC LC

Squeeze-and-Excitation 2 4
Self-Attention 12 12
Dual Attention 8 16

4.5.1 High Cuts

Table 3 shows that all three attention methods and the
model without attention have similar results on the
classification task. For the energy and direction re-
gression, Figure 6 and Figure 7 present the results
of the different methods in the range 100 GeV to
3 TeV as the selection filters discard most events be-
low 100 GeV. On the energy reconstruction task, all
the attention methods probed have a better average
performance than the model without attention. Their
results are also less spread. In particular, the dual at-
tention mechanisms performs clearly better on aver-
age, improving the resolution up to 0.055. Its dis-
persion is four times smaller than the one of self-
attention. The model without attention spreads ten
times more. On the direction reconstruction task,
γ-PhysNet with the Squeeze-and-Excitation and the
dual attention mechanisms outperform the other mod-
els, in average performance and in dispersion. In par-
ticular, they improve the resolution by 0.02° on most
of the energy range of interest, achieving a resolution
of 0.1° with a dispersion of 0.01°.

Table 3: High Cuts. AUC and F1 score of the gamma/proton
classification task for the different models.

Model AUC F1 score

γ-PhysNet 0.990±0.001 0.981±0.001
γ-PhysNet 0.991±0.001 0.981±0.000
SE[2]
γ-PhysNet 0.989±0.001 0.980±0.001
SA[12]
γ-PhysNet 0.991±0.001 0.982±0.001
DA[8]

4.5.2 Low Cuts

With the low cuts, γ-PhysNet with the self-attention
method performs slightly worse on the classifica-
tion task, as shown in Table 4. The other models
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Figure 6: High cuts. Energy resolution as a function of
reconstructed energy. Comparison of the different attention
mechanisms for γ-PhysNet. The surface represents the min
/ max envelope per bin and the dots represent the average
resolution per bin of the six seeds.

Figure 7: High cuts. Angular resolution as a function of
reconstructed energy. Comparison of the different attention
mechanisms for γ-PhysNet. The surface represents the min
/ max envelope per bin and the dots represent the average
resolution per bin of the six seeds.

have comparable results within the standard deviation
range. For the energy and direction regression, Figure
8 and Figure 9 present the results in the same energy
range as for the high cuts for easy comparison. More-
over, below 100 GeV all models have similar perfor-
mance on both tasks. On the energy reconstruction
task, the models with Squeeze-and-Excitation and
dual attention perform better. They improve the re-
sults up to 0.03, in particular at high energies. All the
networks with attention have significantly less spread
results. On the direction reconstruction task, again
the models with Squeeze-and-Excitation and dual at-
tention have better performance, improving the reso-
lution up to 0.02°. All the models have similar disper-
sion in their results.

Table 4: Low Cuts. AUC and F1 score of the gamma/proton
classification task for the different models.

Model AUC F1 score

γ-PhysNet 0.882±0.001 0.932±0.003
γ-PhysNet 0.883±0.002 0.931±0.002
SE[4]
γ-PhysNet 0.879±0.003 0.930±0.001
SA[12]
γ-PhysNet 0.882±0.001 0.932±0.002
DA[16]

Figure 8: Low cuts. Energy resolution curves of the differ-
ent attention mechanisms for γ-PhysNet. The surface repre-
sents the min / max envelope per bin and the dots represent
the average resolution per bin of the six seeds.

Figure 9: Low cuts. Angular resolution curves of the differ-
ent attention mechanisms for γ-PhysNet. The surface repre-
sents the min / max envelope per bin and the dots represent
the average resolution per bin of the six seeds.

5 DISCUSSION

5.0.1 Contribution of Multi-Task Learning to
Gamma Astronomy

The comparison between γ-PhysNet and the
widespread Hillas + RF method presented in Section

Multi-Task Architecture with Attention for Imaging Atmospheric Cherenkov Telescope Data Analysis

541



4.4 shows that neural networks, in particular MTL,
dramatically improve the performance of IACT data
analysis. Improvements in energy resolution will
allow producing more detailed spectra, bringing
more constraints on sources modeling. Improving
the angular resolution and the classification will
both improve the signal-to-noise ratio, thus allowing
the detection of fainter sources in a significant way.
Studies of extended sources at very high energies are
quite recent. However, the studies made by H.E.S.S.
show extended emissions corresponding to angular
separation going from 0.05 degrees (corresponding to
H.E.S.S. angular resolution) (Aharonian et al., 2019)
to 0.3° (Hoppe et al., 2009). These values show
that the gains obtained in angular resolution, even
compared to the single task ResNet-56 (up to 0.08°),
could make the difference between observing a point
source and an extended source. This then allows for
morphological studies, bringing important insights
on the physics of these sources. Further, γ-PhysNet’s
results are consistent with ImPACT (Parsons et al.,
2016), a template-based method, and 500 times
faster.

5.0.2 Contribution of Attention

The principal lesson of the study on attention meth-
ods for γ-PhysNet presented in Section 4.5 is that
all attention methods help to reduce the variabil-
ity of the results and thus to improve the robust-
ness of the models. Another interesting insight is
that the self-attention mechanism, although the more
complex, constantly underperforms. On the other
hand, Squeeze-and-Excitation and dual attention sig-
nificantly improve both energy and direction recon-
structions task performance compared to γ-PhysNet
without attention.

5.0.3 Real Data Discrepancy

Although we have high quality simulations to train
γ-PhysNet, real data will certainly differ from simu-
lated data. In (Shilon et al., 2019) Shilon et al. have
shown that for H.E.S.S., the angular resolution was
significantly degraded when a CNN was applied to
real data, with a loss of about 0.04° compared to sim-
ulated data. In future work, we plan to use real data as
soon as they are available to improve the performance
of our architecture. Since ground truth is difficult to
obtain from real data, GAN approaches could help to
build up relevant feature representations of the real
data. It has been successfully applied to light curve
analysis in (Pasquet et al., 2019). Moreover, a phase
of improvement of the simulation will be conducted

when real data are available. We expect our model to
benefit from the updated simulation.

6 CONCLUSION

In this paper we have presented γ-PhysNet, a phys-
ically inspired deep multi-task architecture for sin-
gle telescope IACT full event reconstruction. Our
model exploits the multi-task nature of IACT events
to perform gamma / proton classification, energy
and arrival direction reconstruction, outperforming
the widespread Hillas + Random Forest analysis on
Monte Carlo simulated data. Our extensive exper-
iments show that MTL in the context of CTA data
analysis achieves better performance than single task
networks. We have then realized a study on attention
mechanisms with two different selection cuts to ad-
dress relevant use cases. Our experiments show that
attention improves the performance and the robust-
ness on energy and direction regression tasks.

The contribution of our multi-task architecture
also lies in its speed as a substantial gain is expected
by using a single network instead of one for each of
the three tasks. Speed is actually a strong requirement
to enable real-time source and transient event detec-
tion as well as alert broadcasting to other observato-
ries.

ACKNOWLEDGEMENTS

We gratefully acknowledge financial support from
the agencies and organizations listed here: www.cta-
observatory.org/consortium acknowledgment. This
project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 653477,
and from the Fondation Université Savoie Mont
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