Conference on Informatics in Control, Automation and 
Robotics. https://doi.org/10.5220/0007916705070516 
Alexandrov, A. V. A. V., Lippi, V., Mergner, T., Frolov, A. 
A.  A.  A.,  Hettich,  G.,  &  Husek,  D.  (2017).  Human-
inspired  Eigenmovement  concept  provides  coupling-
free sensorimotor control in humanoid robot. Frontiers 
in Neurorobotics,  11(APR).  https://doi.org/10.3389/ 
fnbot.2017.00022 
Boonstra, T. A., van Vugt, J. P. P.,  van  der  Kooij,  H.,  & 
Bloem,  B.  R.  (2014).  Balance  asymmetry  in 
Parkinson’s disease and its contribution to freezing of 
gait. PLoS One, 9(7), e102493. 
Calinon,  S.  (2016).  A  tutorial  on  task-parameterized 
movement  learning  and  retrieval.  Intelligent Service 
Robotics. https://doi.org/10.1007/s11370-015-0187-9 
Calinon, S., Guenter, F., & Billard, A. (2007). On learning, 
representing,  and  generalizing  a  task  in  a  humanoid 
robot.  IEEE Transactions on Systems, Man, and 
Cybernetics, Part B: Cybernetics.  https://doi.org/ 
10.1109/TSMCB.2006.886952 
Costa, L., Gago, M. F., Yelshyna, D., Ferreira, J., Silva, H. 
D.,  Rocha,  L.,  Sousa,  N.,  &  Bicho,  E.  (2016). 
Application  of  Machine  Learning  in  Postural  Control 
Kinematics for the Diagnosis of Alzheimer’s Disease. 
Computational Intelligence and Neuroscience. 
https://doi.org/10.1155/2016/3891253 
Deimel,  R.  (2019a).  A  Dynamical  System  for  Governing 
Continuous,  Sequential  and  Reactive  Behaviors. 
Proceedings of the Austrian Robotics Workshop. 
Deimel,  R.  (2019b).  Reactive  Interaction  Through  Body 
Motion  and  the  Phase-State-Machine.  IEEE 
International Conference on Intelligent Robots and 
Systems. 
https://doi.org/10.1109/IROS40897.2019.8968557 
Engelhart, D., Pasma, J. H., Schouten, A. C., Meskers, C. 
G. M., Maier, A. B., Mergner, T., & van der Kooij, H. 
(2014).  Impaired  standing  balance  in  elderly:  a  new 
engineering method helps to unravel causes and effects. 
Journal of the American Medical Directors 
Association, 15(3), 227--e1. 
Exarchos, T. P., Bellos, C., Bakola, I., Kikidis, D., Bibas, 
A.,  Koutsouris,  D.,  &  Fotiadi,  D.  I.  (2015). 
Management and modeling of balance disorders using 
decision support systems: The EMBALANCE project. 
Advances in Experimental Medicine and Biology. 
https://doi.org/10.1007/978-3-319-09012-2_4 
Godoy, J. C., Campos, I. J., Pérez, L. M., & Muñoz, L. R. 
(2018).  Nonanthropomorphic  exoskeleton  with  legs 
based  on  eight-bar  linkages.  International Journal of 
Advanced Robotic Systems.  https://doi.org/10.1177/ 
1729881418755770 
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep 
Learning. MIT Press. 
Goodworth,  A.  D.,  &  Peterka,  R.  J.  (2018).  Identifying 
mechanisms  of  stance  control:  a  single  stimulus 
multiple  output  model-fit  approach.  Journal of 
Neuroscience Methods, 296, 44–56. 
Hastie,  T.,  &  Tibshirani,  R.  (2004).  Efficient  quadratic 
regularization  for  expression  arrays.  Biostatistics. 
https://doi.org/10.1093/biostatistics/kxh010 
Jafari,  H.,  Nikolakopoulos,  G.,  &  Gustafsson,  T.  (2019). 
Stabilization of an inverted pendulum via human brain 
inspired  controller  design.  IEEE-RAS International 
Conference on Humanoid Robots.  https://doi.org/ 
10.1109/Humanoids43949.2019.9035019 
Lee,  H.,  Kim,  H.  J.,  &  Park,  J.  (2018).  Control  of  a 
nonanthropomorphic  exoskeleton  for  multi-joint 
assistance  by  contact  force  generation.  International 
Journal of Advanced Robotic Systems. 
https://doi.org/10.1177/1729881418782098 
Lippi,  V.  (2018).  Prediction  in  the  context  of  a  human-
inspired  posture  control  model.  Robotics and 
Autonomous Systems.  https://doi.org/10.1016/ 
j.robot.2018.05.012 
Lippi,  V.,  &  Mergner,  T.  (2017).  Human-derived 
disturbance  estimation  and  compensation  (DEC) 
method lends itself to a modular sensorimotor control 
in  a  humanoid  robot.  Frontiers in Neurorobotics, 
11(SEP). https://doi.org/10.3389/fnbot.2017.00049 
Lippi,  V.,  Mergner,  T.,  &  Maurer,  C.  (2020).  Deep 
Learning for Posture Control Nonlinear Model System 
and  Noise  Identification.  Proceedings of the 17th 
International Conference on Informatics in Control, 
Automation and Robotics - Volume 1: ICINCO,. 
Lippi,  V.,  Mergner,  T.,  Seel,  T.,  &  Maurer,  C.  (2019). 
COMTEST  Project:  A  Complete  Modular  Test  Stand 
for  Human  and  Humanoid  Posture  Control  and 
Balance.  IEEE-RAS International Conference on 
Humanoid Robots.  https://doi.org/10.1109/Humanoids 
43949.2019.9035081 
Makondo,  N.,  Rosman,  B.,  &  Hasegawa,  O.  (2015). 
Knowledge transfer for learning robot models via Local 
Procrustes  Analysis.  IEEE-RAS International 
Conference on Humanoid Robots.  https://doi.org/ 
10.1109/HUMANOIDS.2015.7363502 
Mergner, T. (2010). A neurological view on reactive human 
stance control. Annual Reviews in Control, 34(2), 177–
198. https://doi.org/10.1016/j.arcontrol.2010.08.001 
Mergner,  T.,  Maurer,  C.,  &  Peterka,  R.  J.  (2003).  A 
multisensory posture control model of  human  upright 
stance. Progress in Brain Research, 142, 189–201. 
Ott, C., Henze, B., Hettich, G., Seyde, T. N., Roa, M. A., 
Lippi, V., & Mergner, T. (2016). Good Posture, Good 
Balance: Comparison of Bioinspired and Model-Based 
Approaches for Posture Control of Humanoid Robots. 
IEEE Robotics & Automation Magazine, 23(1), 22–33. 
https://doi.org/10.1109/MRA.2015.2507098 
Paraschos,  A.,  Daniel,  C.,  Peters,  J.,  &  Neumann,  G. 
(2013). Probabilistic movement primitives. Advances in 
Neural Information Processing Systems. 
Pasma, J. H., Engelhart, D., Schouten, A. C., der Kooij, H., 
Maier,  A.  B.,  &  Meskers,  C.  G.  M.  (2014).  Impaired 
standing balance: the clinical need for closing the loop. 
Neuroscience, 267, 157–165. 
Phaniteja,  S.,  Dewangan,  P., Guhan, P., Sarkar, A., & 
Krishna, K. M. (2018). A deep reinforcement learning 
approach for dynamically stable inverse kinematics of 
humanoid robots. 
2017 IEEE International Conference 
on Robotics and Biomimetics, ROBIO 2017. 
https://doi.org/10.1109/ROBIO.2017.8324682