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Abstract: Machine learning has shown impressive improvements recently, thanks especially to the results shown in 
deep learning applications. Besides important advancements in the theory, such improvements have been 
associated with an increment in the complexity of the used models (i.e. the numbers of neurons and connec-
tions in neural networks). Bigger models are possible given the amount of data used in the training process is 
increased accordingly. In medical applications, however, the size of datasets is often limited by the availability 
of human subjects and the effort required to perform human experiments. This position paper proposes the 
integration of bioinspired models with machine learning.  

1 INTRODUCTION 

During the last decade, there have been great im-
provements in machine learning applications, in the 
sense that the machine learning systems got more 
powerful and accurate. This improvement is associ-
ated with a resurgence of the use of neural networks, 
in particular of deep learning. As shown in Fig 1, the 
size of the neural networks has increased in the order 
of magnitudes during the last 40 years as has the num-
ber of samples used for the training. A massive da-
taset of training samples is not always available, how-
ever. In the case of data from human experiments, the 
reason for the difficulty in getting a huge amount of 
data lies in the effort required to perform the experi-
ments and in the fact that human data are often de-
scribed by a large number of relevant features; in 
some cases, there are more features than samples 
(Hastie & Tibshirani, 2004). For this reason, when 
working with human data, regularization is of pri-
mary importance. Deep learning systems are finding 
application in the analysis of human movements 
(Abdu-Aguye & Gomaa, 2019b, 2019a) and, while 
the results are promising, the field is still at the begin-
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ning and hence the possibilities are still to be fully ex-
plored. In this position paper, we will present exam-
ples that show the advantage of integrating models in 
the analysis of human experiments. The particular 
case of human and humanoid posture control is pre-
sented and some examples will be discussed. The ap-
plication of ML to human posture control analysis is 
already a research topic, for example to design diag-
nostic tools in a clinical setup (Costa et al., 2016). The 
issue will be shown from the point of view of both the 
analysis of human data and the control of humanoid 
robots’ balance. Modern research on human and hu-
manoid posture control already uses mathematical 
models (Alexandrov et al., 2017; Boonstra et al., 
2014; Engelhart et al., 2014; Goodworth & Peterka, 
2018; Mergner, 2010; Pasma et al., 2014; van 
Asseldonk et al., 2006; H van der Kooij et al., 2007; 
Herman van der Kooij et al., 2005). The presented 
models are designed to describe, and in some cases 
predict, human behavior in specific experiments, and 
they incorporate hypotheses about neural movement 
control and empirical findings. It comes natural when 
applying machine learning to also try to integrate the 
knowledge represented by such models with the 
adaptability of the learning systems. The examples  
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Figure 1: Increase of dataset sizes and numbers of neurons of the neural network through the last 70 years in comparison with 
recent posture control and balance applications. On the left (green dots) the number of samples in several datasets used in 
machine learning applications, on the right (green squares) the number of neurons in neural networks developed during the 
years (from the Perceptron to GoogleNet). The graphs are adapted from (Goodfellow et al., 2016) where the complete list of 
NN architectures presented in the figure is available. The red marks represent the number of samples or subjects used in recent 
applications (on the left plot) and the size of the neural network in the respective solution (right plot). Specifically, the star 
represents (Jafari et al., 2019), the cross  Lippi (2018), and the dot (Lippi et al., 2020). It is evident how the three posture 
control examples rely on smaller datasets and smaller architectures compared to the possibilities of deep learning at the state 
of the art. 

presented in the following will try to cover different 
applications (i.e. classification, control, and system 
identification) and show the advantages of the inte-
gration of modelling and learning. The methods used 
in the two examples are on-line linear regression and 
deep learning (convolutional neural network); they 
are presented not with the intention to compare dif-
ferent ML methods but to show how posture control 
models can be integrated in different set-ups. 

2 EXAMPLES 

2.1 The Disturbance Identification and 
Compensation (DEC) Model for 
Posture Control 

The examples presented in this section will make use 
of a bio-inspired posture control model, the DEC 
(Mergner et al., 2003). A brief description of the 
model is provided as an introduction to the following 
examples for a more in-depth description see Lippi & 
Mergner (2017), where the DEC is implemented as a 
modular control system for humanoid robots. The 
DEC control is designed to a describe how human 
postural control mechanisms interact with movement 
execution control. A schema of the DEC control is 
shown in Fig. 2 (top), The components of the control 

are: (A) A servo control loop for each degree of free-
dom. The controller is a PD controller, or PID in some 
implementations (the block "C" in Fig 2.). The con-
trolled variable consists either of the joint angle, the 
orientation in space of the above joint, or the orienta-
tion in space of the centre of mass of the whole body 
above the controlled joint. The control is imple-
mented in a modular way, and each module performs 
sensor fusion and control. (B) Multisensory estima-
tion of external disturbances, i.e. rotation and transla-
tion of the supporting link or support, contact forces, 
and field forces such as gravity. The disturbance esti-
mates are fed into the servo so that the joint torque 
compensates on-line for the disturbances while exe-
cuting the desired movements. 

 The disturbance compensation mechanism al-
lows the system to use a low loop gain and thus stable 
control in face of neural time delays, or, in case of 
humanoid control, of delays due to signal transmis-
sion or low sample rate (Ott et al., 2016). The refer-
ence input to each module determines its postural 
function, e.g. maintaining a given orientation of the 
supported link (either in space or with respect to the 
supporting link), or maintaining the COM above its 
supporting joint. Modules exchange information with 
neighbouring modules, i.e. those mechanically inter-
connected. 
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2.2 Online Learning for the Posture 
Control of the Lucy Robot 

Small human/humanoid datasets may suffice to use 
linear learning systems. As an example, our previous 
work (Lippi, 2018) shows how the nonlinear DEC 
model can be integrated with a linear learning system 
to make it capable of controlling human posture con-
trol. The challenge here was represented by the 
closed-loop nature of the posture control, i.e. by the 
fact that the body is intrinsically unstable and the con-
trol is always active. The machine learning process is 
then based on data that are influenced by the use of 
the learned predictor itself. Therefore, an on-line 
training approach was proposed. It improved the con-
trol of the body sway without endangering control 
stability. In Fig. 2 the structure of the bioinspired pre-
dictor is shown. The ML model was a rather simple 
linear model, implemented in a way so that it could 
learn incrementally as the robot was balancing. 

In particular, previously and here the learning sys-
tems are trained to predict the COM sway  𝛼஻ௌ, with 
an anticipation of  𝑇௣௥௘ௗ ൌ  70 ms.  The inputs taken 
into account are the previous sensory-based values for 
the body sway angle 𝛼௕௦ and the reference value 𝑦௜ ൌ
𝛼ത஻ௌ (sampled at previous steps). Every 10 ms an input 
vector is constructed using delayed versions of the in-
put signals:  

𝑥௜ ൌ
ሾ𝛼௕௦ሺ𝜏ሻ 𝛼௕௦ሺ𝜏 െ ∆𝑡ሻ 𝛼௕௦ሺ𝜏 െ 2∆𝑡ሻ 𝛼ത஻ௌሺ𝜏 െ ∆𝑡ሻ 𝛼ത஻ௌሺ𝜏 െ ∆𝑡ሻ 𝛼ത஻ௌሺ𝜏 െ
2∆𝑡ሻሿ  

where  𝜏 ൌ 𝑡௜ െ 𝑇௣௥௘ௗ and ∆t is set to 64 ms. The 
predictor has the structure of an affine application, 
where the parameter to be learned are the elements of 
the transformation matrix. Specifically, the disturb-
ance to be predicted at the time i, 𝑦௜ can be arranged 
in a vector of target values 𝑌 ൌ ሾ𝑦ଵ 𝑦ଶ  ⋯ 𝑦௡ሿ, and the 
observed input is integrated into the matrix 

𝑋 ൌ ൤𝑥ଵ
் 𝑥ଶ

் … 𝑥௡
்

1 1 1
൨     (1) 

The weight matrix is computed as 𝑊 ൌ 𝑌𝑋ற, us-
ing the pseudoinverse operation that can be imple-
mented on-line. The values used to build X and Y are 
affected by the prediction, as shown in Fig. 2. 

The use of the real robotic platform Lucy, with 
real noisy sensors, helped to evaluate the hypothesis 
about predictions in a real-world setup. The robust-
ness of the system was tested including an additional 
delay in the loop. The prediction system allows the 
system to stand with a delay of 60 ms, while the sys-
tem without prediction becomes unstable at 10 ms. 
The prediction system was compared with a Smith  
 

 

Figure 2: Integration of the prediction system based on a 
linear learning model. On the left the Lucy robot, a human-
oid with 14 DoF, where the system was tested. The schema 
above shows how the DEC control integrates disturbances 
estimation. In this specific case, the predicted effect is the 
gravity torque. The “prop” block represents the propriocep-
tive feedback, based on joint angles, while “disturbances 
estimation” is implemented through a sensor fusion inte-
grating proprioception and vestibular (IMU) input. The pre-
diction is compared with the measured value as shown in 
the schema below: The threshold function has the effect 
that, when the prediction and the sensor value are similar, 
the prediction is used, while the sensed value is used when 
the difference between the two is large. This approach re-
sembles a Smith predictor and the way the efference copy 
mechanism is used in modeling human behavior.  

predictor (that is based just on the model of the sys-
tem) and, as result, proved to produce a better perfor-
mance. 

2.3 How Models Can Benefit from  
Machine Learning (ML): System 
Identification with CNN 

A previous work (Lippi et al., 2020) presented a 
method for posture control parameter identification 
based on CNN. It represents an example of how ML 
can provide a tool for modelling, exploiting the 
knowledge of the posture control system in the form 
of a parametric model; the CNN identifies the param-
eters of such a model.  

Human posture control exhibits nonlinearities 
such as deadbands and gain non-linearities. Nonlinear 
models are more complex to be fitted on human data 
than linear models and, in the general case, expensive 
iterative procedures need to be used. This issue 
brought us to the idea to identify the parameters of a 
nonlinear bio-inspired posture control system, the 
DEC model using ML. The advantage lies here in the 
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fact that using the trained network is almost 
immediate, whereas training the CNN would be more 
computationally expensive.  

The training set was produced with parameters 
from uniform distributions, filtered with the con-
straint that they would produce a stable simulation. 
The number of samples can be as large as needed, be-
ing here produced through a simulation. In order to 
obtain more human-like examples, the data-set was 
enriched with samples of larger body sways. In the 
future, the CNN can also be tested a posteriori by 
comparing the distribution of the parameters it pro-
duces for the validation set with the expected distri-
bution for the real data. This can help in choosing hy-
perparameters as shown in previous works (Sforza et 
al., 2011; Sforza & Lippi, 2013). Fig. 3 schematically 
summarizes the pipeline of the work. The input of the 
network is a 2-channel picture, representing the mod-
ulus and the phase of the fft of the body sway com-
puted on time windows (in Fig.3 the two channels are 
visualized as “green” and “blue”). Because of its ar-
chitecture, i.e. training the same weights on different 
parts of the image, the CNN is able to recognize pat-
terns translated in time and in frequency. While the 
invariance in time has the obvious advantage of mak-
ing the recognition of a specific motion feature inde-
pendent from its onset in the input signal, the invari-
ance in frequency has no obvious physical interpreta-
tion. The SIP model proved to be suitable to describe 
the analysed posture control scenario, this even in the 
sub-optimal case of identifying the control parameter 
of the ankle joint in a DIP model. 

3 CONCLUSIONS AND FUTURE 
WORK 

This position paper gives two examples of the use of 
posture control models in learning. The examples 
suggest that the modeling can be useful in reducing 
the number of features used with the ML algorithm, 
simplifying the complexity of the ML system re-
quired to perform the task, or increasing the number 
of training samples using simulations to produce arti-
ficial data. 

The identification of posture control model pa-
rameters can be applied to the benchmarking of hu-
manoid robots (Lippi et al., 2019; Torricelli et al., 
2020) and to the analysis of clinical data (Exarchos et 
al., 2015). 

From the point of view of control applications, 
synergies between machine learning and posture con-
trol can find applications in the control of wearable  
 

 

Figure 3: The pipeline of the learning problem is presented 
in Lippi et al.( 2020). The simulated scenario represents a 
subject standing on a tilting support surface. The tilt profile 
is a pseudo-random ternary sequence (PRTS) function for 
all the simulations. The parameters of the simulations are 
generated randomly and the output of the simulation is the 
profile of the body COM sway. The training process, aim-
ing to identify the parameters, "reverses" the relationship 
between the data: body sway, here transformed into a pic-
ture, is the input, and the parameters, centred around the 
mean and divided by the variance of the training set ('Nor-
malization' block) are the target output. The identification 
is formally a regression problem. 

robots. Fig. 4. shows an example presenting the hy-
pothetical structure of the control system for a full-
body exoskeleton. The actuated ankle joint and the 
fact that the robot’s geometry prevents the user from 
having direct contact with the support surface implies 
that the robot has to balance by itself. The balance and 
posture control issues specific to legged humanoids 
apply also to wearable robots. This implies the com-
plication of physical interactions between the robot 
and the human. The figure provides a map of possible 
applications of the ML approaches presented in the 
examples (Section 2) for the components of the exo-
skeleton control.  

Besides posture control and balance, a wearable 
robot poses issues that have not been covered by the 
presented examples and can still be solved with 
proper integration of models and ML. Specifically, a 
transparent transfer of voluntary movements between 
the user and the robot requires the mapping of 
trajectories between different kinematic structures, 
even if the user’s joints are not necessarily coincident 
with those of the robot (Godoy et al., 2018; Lee et al., 
2018). Machine learning techniques provide means to 
also solve such problems (see for example (Makondo 
et al., 2015). Learning trajectories and libraries of 
trajectories associated with tasks, e.g. gait, can be 
achieved by exploiting models for movement 
representation such as movement primitives 
(Paraschos et al., 2013; Schaal et al., 2005; Schaal, 
2006) and the algorithms to generalize and transfer 
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them. For tasks  
 

 

Figure 4: Hypothetical configuration of a user wearing a full-body exoskeleton. The block diagram shows the two mechanical 
components of the system (robot and user) as two separate blocks to highlight how their interaction is mediated by control 
systems that can be tuned using machine learning and thereby can benefit from the integration of modeling. The robot model 
"exos model” can integrate a learning process like the one presented in (Lippi, 2018). The control system parameters can be 
tuned accordingly. The haptic feedback that the robot here produces, "physical interaction" block, could be designed on the 
basis of human sensor fusion in order to map the behavior of the robot to match the perception of the user (for example, the 
robot should be in equilibrium when the user perceives himself as being in equilibrium). For this purpose, using a model of 
the user's posture control, the "user model", can be beneficial. On the other hand, such a model can also be used to anticipate 
the user's movements in the block "intention recognition", which is used to provide commands to the control system of the 
robot. Both the "Exos model” and the “User model” can be identified by means of machine learning (Lippi et al., 2020).  

such as manipulations, where reaction forces may 
reasonably be more important than the trajectories 
themselves, models representing the stiffness of the 
robot (e.g. Calinon, 2016; Calinon et al., 2007) or 
specifications of the particular mechanical variables 
(torques, velocity positions, etc.) involved in the task 
can be used (Deimel, 2019b, 2019a). In all these cases 
the models have a powerful regularization effect, in 
that a model of human motor behavior can be learned 
from a few samples, or even just a single sample 
(Schaal, 2006).  

The topic of reinforcement learning (RL) has not 
been considered in specific examples. RL is a popular 
way to solve problems where a measure of success 
can be formalized (e.g, body sway amplitude, number 
of falls of a robot) but the desired output may not be 
explicitly available. An example can be the closed-
loop control in section 2.2 and in general the problem 
of humanoid balance (e.g. in Phaniteja et al., 2018; 
Vuga et al., 2013; Yang et al., 2017). As RL relies on 
the exploration of a space of possible control policies 
it can benefit substantially from training in 
simulations (where making a mistake is not 
expensive) and hence it can exploit posture control 
models.  

Overall, we contend that the proposed examples 
suggest that knowledge of human behaviour models 
(be they bio-inspired or just descriptive of a given 
outcome) as well as models of human sensorimotor 
functions are crucial for the analysis of human 

behavioural data. The models may provide powerful 
tools for the control of humanoid robots. Both the 
functionality of the bio-inspired models and the 
modern ML techniques will benefit from being 
mutually integrated. 
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