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Abstract: To better model several artificial intelligence and combinatorial problems, classical Constraint Satisfaction
Problems (CSP) have been extended by considering soft constraints in addition to crisp ones. This gave rise to
a Valued Constraint Satisfaction Problems (VCSP). Several real-world artificial intelligence and combinatorial
problems require more than one single objective function. In order to present a more appropriate formulation
for these real-world problems, a generalization of the VCSP framework called Multi-Objective Valued Con-
straint Satisfaction Problems (MOVCSP) has been proposed.
This paper addresses combinatorial optimization problems that can be expressed as MOVCSP. Despite the
NP-hardness of general MOVCSP, we can present tractable versions by forcing the allowable valuation func-
tions to have specific mathematical properties. This is the case for MOVCSP whose dual is a binary MOVCSP
with crisp binary valuation functions only and with a weak form of Neighbourhood Substitutable Valuation
Functions called Directional Substitutable Valuation Functions.

1 INTRODUCTION

Constraint Satisfaction Problems (CSP) provide a
general and convenient framework to model and solve
numerous combinatorial problems including tempo-
ral reasoning (van Beek and Manchak, 1996), com-
puter vision (Schlesinger, 2007). . . In the standard
CSP framework, the constraints are defined by crisp
relations, which specify the consistent combinations
of values. With these relations, one can force some
pairs of intervals to overlap, and any plan that does
not meet this requirement is considered as inconsis-
tent even though the intervals are very close.

However, one may need to express various de-
grees of consistency in order to reflect the specificity
of the problem at hand. The valued constraint sat-
isfaction problems (VCSPs) approach (Schiex et al.,
1995) is intended to model such situations. A VCSP
consists of a set of variables taking values in discrete
sets called domains. A valued constraint is defined
through the use of a valuation function. The role of
a valuation function is to associate a degree of desir-
ability to each combination of values. The problem is
to find an assignment of values to variables from their
respective domains with an optimal cost.

a https://orcid.org/0000-0002-4748-4773

The computational complexity of finding the optimal
solution to a VCSP has been largely studied in many
works and several classes of tractable VCSPs, that
is, VCSPs that are solvable in polynomial time, have
been identified and solved. Tractability is obtained by
limiting the set of allowed valuation functions and or
by detecting some desirable properties exhibited by
the problem structure (Cohen et al., 2008a; Cohen
et al., 2008b; Greco and Scarcello, 2011; Cohen et al.,
2012; Cooper and Zivný, 2011; Cooper and Zivný,
2012; Helaoui and Naanaa, 2013; Helaoui et al.,
2013; Cooper et al., 2016; Carbonnel and Cooper,
2016).

However, in real-world situations like the dis-
crete time/cost trade-off problem (Vanhoucke, 2005;
Debels and Vanhoucke, 2007; Tavana et al., 2014),
one may need to express multiple objectives to opti-
mize in order to reflect the specificity of the problem
at hand (Greco and Scarcello, 2013).

Incorporating conflicting objective functions di-
vide the solution set into dominated and non-
dominated solutions. With reference to Pareto, Non
Dominated Solutions (NDS) are solutions where we
cannot improve further the attainability of one ob-
jective without degrading the attainability of another,
which means that a compromise should be found.
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Table 1: The Π project.

Tasks Prede- choice 1 choice 2 choice 3
cessors

TA – (15,10) (9,25) (3,50)
TB TA (15,10) (12,30) (6,90)
TC TA (15,10) (9,35) (6,60)
TD TA (30,20) (24,50) (21,80)
TE TB,TC (15,10) (9,30) (3,60)
TF TD,TE (15,10) (12,58) (6,250)

Example 1. DISCRETE TIME COST TRADE OFF
PROBLEM (DE ET AL., 1997).
Let Π be a project defined as follows:
Π is comprised of 6 tasks: TA, TB, TC, TD, TE and TF .
The predecessors of each task are defined by column
”Predecessor” of Table 1.
The various options of the executions times and the
relatives costs of each tasks are given in columns
3, 4 and 5. For instance, Task TA could be exe-
cuted in 15 time units with cost 10 or in 9 time units
with cost 25 or even in 3 time unit but the cost rise
to 50. Solving the problem amounts to finding, for
each task, one choice such that both global costs and
global makespan are optimized and the precedence
constraints are satisfied.

The multi-objectives valued constraint satisfaction
problems (MOVCSP) presented in (Ali et al., 2019) is
intended to model such situations. A Multi-objectives
VCSP consists in a VCSP where the goal is to find an
assignment of values to variables, from their respec-
tive domains, with an optimal multi-objectives valua-
tions. Solving a problem with several multi-objective
functions is commonly referred to as multi-objective
problem. The goal is to compute the best set of com-
promise solutions called Pareto borders.

Furthermore, interchangeability and substitutabil-
ity are two techniques that have been initially intro-
duced for CSP (Freuder, 1991). In (Lecoutre et al.,
2012), Neighbourhood Substitutability has been ex-
tended to VCSP. A decomposition directional sub-
stitutability algorithm that applies when the stud-
ied problem does not satisfy the conditions of inter-
changeability or substitutability has been proposed in
(Naanaa, 2008; Naanaa et al., 2009) respectively for
CSP and CSOP : a VCSP with Crisp binary Con-
straint.

In this paper, we present tractable versions of
MOVCSP by forcing the allowable valuation func-
tions to have specific mathematical properties. This
is the case for MOVSCP whose dual is a binary crisp
MOVCSP with crisp binary valuation functions only
and with Directional Substitutable Valuation Func-
tions. We denote this MOVCSP class by L(MODS).
We also take advantage of the discovered tractable

class to conceive a decomposition scheme for general
MOVCSP.

The paper is organized as follows: the next Sec-
tion introduces MOVCSP. In Section 3 we study Soft
Directional Substitutable MOVCSP. We conclude in
Section 4.

2 MULTI-OBJECTIVE VCSP

In a MOVCSP, and as for a VCSP (Schiex et al.,
1995), for each objective j = 1,2, . . . ,k, we assume
a set E j of possible valuations which is a totally or-
dered with a minimal element ⊥ j and a maximal ele-
ment > j. In addition, we need k monotone operators
⊕ j, j : 1, . . . ,k. These components can be gathered in
k valuation structures each of which can be specified
as follows:

Definition 1. A valuation structure S j is the triple
S j = (E j,⊕ j,� j), where

• E j is a set of valuations for the objective function
j;

• � j is a total order on E j;
• ⊕ j is commutative, associative and monotone bi-

nary operator.

Once the valuation structure S is specified, the
multi-objective valued constraint satisfaction problem
(MOVCSP) can be defined as follows:

Definition 2. A multi-objective valued constraint sat-
isfaction problem denoted (MOVCSP) is defined by
the tuple (X ,D,C,S) such as:

• X is a finite set of variables;
• D is a finite set of value domain, such that Dx ∈D

denotes the domain of x ∈ X.
• S = (S1, . . . ,Sk), where each S j is a valuation

structure of objective j;
• C is a set of valued constraints. Each constraint

is an ordered pair (σ,Φ), where σ ⊆ X is the
scope of the constraint and Φ is a k-functions
vector 〈φ1, . . . ,φk〉, where each function φ j is
from Πx∈σDx to E j.

The arity of a multi-objective valued constraint is the
size of its scope. The arity of a MOVCSP is the max-
imum over the arities of all its constraints.

To simplify the notation, and if there is no confu-
sion, we will denote each⊕ j by⊕, each� j by� and
each φ j by φ.

The valuation of an assignment t that assigns val-
ues to a subset of variables V ⊆ X is obtained by
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Φ(t) = ⊕
(σ,φ1)∈C,σ⊆V

φ1(t ↓ σ), . . . ,
⊕

(σ,φk) ∈ C,σ⊆V

φk(t ↓ σ)


(1)

Where t ↓ σ denotes the projection of t on the vari-
ables of σ. Hence, an optimal solution of a MOVCSP
on n variables is a n-tuple t such that Φ(t) is optimal
over all possible n-tuples.

In order to simplify the notation we denote
v1, . . . ,v|σ| by vσ.

Definition 3. Let t1 and t2 two solutions.

• We say that solution t1 dominates solution t2
(t1 �D t2) if, for each objective j, we have⊕

(σ,Φ)∈C

φ j(t1 ↓ σ) �
⊕

(σ,Φ)∈C

φ j(t2 ↓ σ)

with at least one objective, we have a strict in-
equality.

• We say that t1 and t2 are two Non Dominated So-
lutions (NDS) if there are two objectives j and j′

∈ k, such that⊕
(σ,Φ)∈C

φ j(t1 ↓ σ) �
⊕

(σ,Φ)∈C

φ j(t2 ↓ σ) ∧

⊕
(σ,Φ)∈C

φ j′(t2 ↓ σ) �
⊕

(σ,Φ)∈C

φ j′(t2 ↓ σ)

This allows us to define a partial order between the
dominated solutions.

Lemma 1. �D is transitive.

Proof Lemma: According to the Definition 3, we
have:

• (i) t1 �D t2 if and only if for each objective j⊕
(σ,Φ)∈C

φ j(t1 ↓ σ) �
⊕

(σ,Φ)∈C

φ j(t2 ↓ σ)

• (ii) t2 �D t3 if and only if for each objective j⊕
(σ,Φ)∈C

φ j(t2 ↓ σ) �
⊕

(σ,Φ)∈C

φ j(t3 ↓ σ)

• (i) and (ii) imply that for each objective j⊕
(σ,Φ)∈C

φ j(t1 ↓ σ) �
⊕

(σ,Φ)∈C

φ j(t3 ↓ σ)

Hence t1 �D t3.

Example 2. We will return to the same DTCT project
Π presented in Example 1. This project Π can be
modelled as a bi-objectives VCSP P1 defined such
that:

1. X is a finite set of variables such that each xi is a
task i;

2. D = {v1,v2,v3} is a set of finite domains, where
vchoice ∈D denotes the value vchoice of the variable
xi;

3. S = (E,⊕,�) is a fair valuation structure, where
⊕ is the sum and E the set of integers.

4. C is a set of valued constraints. Each
unary valued constraint C1 is an ordered pair
(〈xi〉 ,Φ(vchoice) = 〈φd(vchoice),φc(vchoice)〉).

We get P1 =
(X ,D,S ,(〈xi〉 ,Φ))

The predecessors2 of each task are defined in the sec-
ond column of Table 2. The valuation functions of the
bi-objectives VCSP P1 are given in columns 3, 4 and
5.

Table 2: The bi-objectives VCSP P1 = Π.

X Predecessors Φ(v1) Φ(v2) Φ(v3)
xA – (15,10) (9,25) (3,50)
xB xA (15,10) (12,30) (6,90)
xC xA (15,10) (9,35) (6,60)
xD xA (30,20) (24,50) (21,80)
xE xB,xC (15,10) (9,30) (3,60)
xF xD,xE (15,10) (12,58) (6,250)

3 TRACTABLE CLASS FOR
MOVCSPs

If it is more easy to generalize tractability from VCSP
to MOVCSP with Soft Neighbourhood Substitutable
Valuation Functions only. What about MOVCSP with
a weak form of Soft Neighbourhood Substitutable
called Soft Directional Substitutable Valuation Func-
tions? In this section, we present tractable class for
MOVCSPs that take advantage of Soft Directional
Substitutable Valuation Functions.

3.1 The Power of a Binary Crisp
MOVCSP

We present the power of a binary MOVCSP with crisp
binary valuation functions only motivated by the fact
that

1. Any binary MOVCSP with only modular binary
functions and any crisp binary functions can be
transformed in polynomial time to an equivalent

2In graph theory, the precedence constraints of P1 are
satisfied by using RANK algorithm in order to give the vari-
ables order of execution.
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binary MOVCSP with crisp binary valuation func-
tions only.

2. The dual problem of any MOVCSP is a binary
MOVCSP with crisp binary valuation functions
only.

We define a binary CSOP as a binary VCSP such that
binary valuations are only in {⊥,>}. A binary MOC-
SOP is a binary MOVCSP such that binary valuations
are only in {⊥ j,> j} for each objective j.

Let, for each objective j, φ j : D×D′ −→ E j be a
binary function which is not necessarily modular. In
the following, we show that restricting the first argu-
ment of φ j to specific subsets of D yields a family of
modular binary functions.

Definition 4. Let, for any objective j, φ j : D×D′ −→
E j be a binary function and let a,b be in D. We say
that a and b are modular with regard to all φ j, a∼Φ b,
if and only if the restriction of all φ j to {a,b}×D′ is
modular.

We note the class of MOVCSP with only modular bi-
nary functions and any crisp binary functions L2(M).
Note that

Φ ∈ L2(M) ⇔ a∼Φ b, ∀a,b ∈ D ∧ ∀ j ∈ k
(2)

Lemma 2. Let P a binary MOVCSP. If P ∈ L2(M)
then it exists a polynomial transformation ρ such that
ρ(P ) = binary MOCSOP

Proof Lemma: By applying DECOMPOSE algo-
rithm presented in (Helaoui and Naanaa, 2013) for
each objective j to any binary MOVCSP with only
modular binary functions and any crisp binary func-
tions we get a binary MOCSOP. Since DECOMPOSE
algorithm run on O(ed) (where e is the number of
constraints, and d is the size of the largest value do-
main) and it must be called for each objective j. Then
ρ can be done on O(ked). We can conclude that ρ is
a polynomial transformation.

The dual problem of a MOVCSP is a reformula-
tion of the problem that expresses each constraint of
the original problem as a variable. The dual problems
contain only unary and binary constraints and there-
fore are binary problems. Therefore, it is possible to
apply the known algorithms for such problems.

The dual problem of a MOVCSP is a reformula-
tion of the latter which considers each constraint of
the original problem as a variable. The unary con-
straint associated with such variable specifies unary
and binary costs and costs given by the unary and bi-
nary constraints of the original problem.

Binary constraints of the dual problem express
the fact that the variables common to two constraints
must have the same value.

Table 3: The valuation functions of the primal problem P2.

Φ 1 2
1 (α1,α2) (⊥1,⊥2)
2 (>1,>2) (β1,β2)

Definition 5. Let P = (X ,D,C,S) a MOVCSP. The
dual of P , denoted P ∗ is defined by (X∗,D∗,C∗,S∗)
such that:

• X∗ = C;

• D∗ is such that D∗c = {t ∈ Dx ×Dy | σ(c) =
〈x,y〉};

• S∗ = S;

• C∗ = C∗1∪C∗2 où

– C∗1 = {(〈c〉 ,φ) | c = (〈x,y〉 ,Φ) ∈ C} with
Φ(t) = Φ(t ↓ x) ⊕ Φ(t);

– C∗2 = {(〈c1,c2〉 ,Φ) | c1,c2 ∈ C ∧ σ(c1) ∩
σ(c2) 6=∅} with

Φ(t, t ′) =

 (⊥1, . . . ,⊥k)if(t ↓ σ(c1)∩σ(c2)
= t ′ ↓ σ(c1)∩σ(c2))
(>1, . . . ,>k)else

where σ(c) designates the scope of the constraint c.
As can be seen from the above definition, all binary
constraints of the dual of a MOVCSP are binary crisp
constraints. Hence the following Lemma

Lemma 3. The dual of a MOVCSP is a binary MOC-
SOP.

Example 3. Let P2 is a binary bi-Objectives VCSP
composed of three variables x1, x2 and x3. (see Fig-
ure 1). The domain Di of each variable xi is formed

2

1

2

1 2

X1 X2

X3

(β1

(α1,α2)

, β2)

1
(T1,T2)

Figure 1: P2 the Primal bi-objectives VCSP.

of two values Di = {1,2}. This bi-Objectives
VCSP has three constraints c1 = (〈x1,x2〉 ,Φ), c2 =
(〈x2,x3〉 ,Φ) and c3 = (〈x3,x1〉 ,Φ) whose valuations
functions Φ are defined in Table 3. Referring to Def-
inition 5, the dual of P2 is a problem P ∗2 defined as
follows
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Table 4: Unary cost valuation functions of the dual problem
P ∗2 .

Values (1,1) (1,2) (2,1) (2,2)
Unary- (α1,α2) (⊥1,⊥2) (>1,>2) (β1,β2)
cost Φ

• P ∗2 is a bi-objectives VCSP composed of three
variables (the constraint of P2): c1, c2 and c3. (See
Figure 2).

• The domain D j of each variable c j is formed of
four tuple values
D j = {(1,1),(1,2),(2,1),(2,2)}.

• Binary constraints in P2 become unary constraints
in P ∗2 :
– for each variable c j, the value (1,1) has a

unary cost (α1,α2), the value (1,2) has a unary
cost (⊥1,⊥2), the value (2,1) has a unary cost
(>1,>2) and it will be filtered by applying an
arc-consistency algorithm, and the value (2,2)
has a unary cost (β1,β2).

• binary constraints in P ∗2 should be added Prohibit-
ing the choice of two values of the same variable
in P2. These binary constraints are crisp as they
prohibit impossible solutions for the primal prob-
lem.

As can be seen in Table 4 and Figure 2 P ∗2 is a bi-
objectives CSOP.

(1,1) (2,2)

(1,1)

(2,2)

(1,1) (2,2)

C1 C2

C3

(1,2)

(1,2)

(1,2)

Figure 2: P ∗2 the Dual of the bi-objectives VCSP.

3.2 Directional Substitutability for a
Binary MOCSOP

The Directional Substitutability (Naanaa, 2008) is
a weak form of Neighbourhood Substitutability
(Freuder, 1991). Initially, this concept has been de-
fined for binary CSPs. In this paper, we generalize
the concept of directional substitutability to reflect
multi-objective unary cost functions involved in bi-
nary MOCSOP.

Definition 6. The multi objective inconsistency graph
of a binary MOCSOP P is a simple graph GI(P ) in
which the vertices correspond to the k values of the
variables and edges connecting pairs of vertices rep-
resenting for each objective incompatible values.

Multi Objective Directional substitution for binary
MOCSOP, in this paper, is defined using, as a refer-
ence, an orientation of the multi objective inconsis-
tency graph of a binary MOCSOP.

Definition 7. An orientation A j of multi objective
inconsistency graph of binary MOCSOPs is an
assignment for each objective j of a direction to each
edge {φ j(a),φ j(b)} of graph resulting to the arc
(φ j(a),φ j(b)) or arc (φ j(b),φ j(a)).

The concept of multi-objective directional substi-
tutability is then a binary relation defined, in this pa-
per, as follows

Definition 8. Let P = (X ,D,C,S) is a binary MOC-
SOP, x ∈ X and a,b ∈ Dx. A value a is said
Multi Objective Directionally Substitutable (MODS)
to b with reference to A j (notation a �A j b) if for
each objective j = 1, . . . ,k:

1. for all (〈x〉 ,φ) ∈ C1, we have

φ j(a) � j φ j(b)

2. for all (〈x,y〉 ,φ) ∈ C2 et a′ ∈ Dy, we have

(φ j(a),φ j(a′)) ∈ A j ⇒ (φ j(b),φ j(a′)) ∈ A j ∧

φ j(a,a′) � j φ j(b,a′)

With reference to this definition we can define Multi-
Objective Directional Substitutable Valued Constraint
Satisfaction Problem with Crisp binary Constraints as
follows

Definition 9. Let P a binary MOVCSP. P is a bi-
nary Multi-Objective Directional Substitutable Val-
ued Constraint Satisfaction Problem with only Crisp
binary Constraints P ∈ L(MODS) if and only if
for each variable x of P and for each a,b ∈ Dx: a
is MODS to b or b is MODS to a a �A j b ∨ b �A j a

Given an orientation A j for each objective j of multi
objective inconsistency graph, the relation �A j de-
fines a total order on the domain of each variable.

Lemma 4. �A j is a total order on Dx.

Proof Lemma: �A j is trivially reflexive. We
prove that �A j is also transitive. To this end, assume
the opposite and proceed to obtain a contradiction.
Let u,v,w ∈ Dx such that for each objective j u �A j
v ∧ v �A j w This means that u �A j v ∧ v �A j w

ICORES 2021 - 10th International Conference on Operations Research and Enterprise Systems

222



but ∃ j such that u �A j w. This means that, for all
u′ ∈ Dy, we have for each objective j

φ j(u)� j φ j(v)∧ [(φ j(u),φ j(u′)) ∈ A j ⇒
(φ j(v),φ j(u′)) ∈ A j ∧φ j(u,u′)� j φ j(v,u′)] (3)
φ j(v)� j φ j(w)∧ [(φ j(v),φ j(u′)) ∈ A j ⇒

(φ j(w),φ j(u′)) ∈ A j ∧φ j(v,u′)� j φ j(w,u′)] (4)

as ∃ j such that u �A j w and � is a total order, it
must exists u′ ∈ Dy such that it must exists j where:

φ j(u)� j φ j(w)∨ [(φ j(u),φ j(u′)) ∈ A j ∧
(φ j(w),φ j(u′)) /∈ A j ∨ φ j(u,u′)� j φ j(w,u′)] (5)

From (3) and (4) we get for each objective j
φ j(u) � j φ j(w) ∧ [(φ j(u),φ j(u′)) /∈ A j ∨
(φ j(w),φ j(u′)) ∈ A j ∧ φ j(w,u′) � j φ j(u,u′)]
which contradicts (5).
Thus, �A j is transitive.
The binary relation ∼A j is defined on Dx as follows:
u ∼A j v if and only if u �A j v and v �A j u.

Lemma 5. ∼A j is an equivalence relation on Dx.

Thus, each domain Dx can be divided into subsets
Dx = Dx,1 ∪ . . . ∪ Dx,s such that the elements of
each Dx,Q, k = 1, . . . ,s they are all comparable, that
is to say, that for any a,b ∈ Dx,Q, we have a �A j b
or b �A j a. Each Dx,Q is a chain of value totally or-
dered by �A j .
In each chain Dx,Q, we can distinguish the subset of
directional dominant elements denoted by D+

x,Q.

D+
x,Q = {a ∈ Dx,Q | ∀ b ∈ Dx,Q,a �A j b} (6)

3.3 Tractability of the Directional
Substitutable MOCSOP Class

In what follows, we study the tractability of binary
MOCSOP.
The following approach identifies a tractable class of
binary MOCSOP which is based on the Directional
Substitutable functions.
We denote that if P is in L(MODS) then it is with
Directional Substitutable Valuation Functions only.

Theorem 1. The class of binary Multi-Objective
Directional Substitutable Valued Constraint Satis-
faction Problem with only crisp binary constraint
(L(MODS)) is tractable.

Proof Theorem 1. First we will make P arc-
consistent. Then, we show that by selecting a
dominant element (see (6)) of each domain value,
an optimal solution is obtained. This means that
any n-tuple t ∈ Πx∈X D+

x is an optimal solution.
Referring to the Definition 8 and the fact that the
function Φ is computable in polynomial time, this

selection can be done in polynomial time.
Suppose that t ∈ Πx∈X D+

x is not an optimal solution.
This means that t is inconsistent or that Φ(t) is not
dominate.
Suppose that t is inconsistent. Therefore t must
include, at least, a pair of incompatible values. Let
a ∈ D+

x and b ∈ D+
y such a pair. Since a and

b are inconsistent, for each objective j such that
(φ j(a),φ j(b)) ∈ A j {φ j(a),φ j(b)} must be an arc of
GI(P ). As a result, we must have for each objective j
(φ j(a),φ j(b)) ∈ A j or (φ j(b),φ j(a)) ∈ A j.
Assume without loss of generality that
(φ j(a),φ j(b)) ∈ A j, (otherwise we can reason
on φ j(b) rather than φ j(a) and obtain the same
result). It follows that (∀ j) φ j(a,b) = > j, and
since a ∈ D+

x then for all a′ ∈ Dx, we must have
(∀ j) φ j(a′,b) = > j. This means that (∀ j) b has
no support in Dx and so that P is not arc-consistent,
hence a contradiction.
Suppose now that Φ(t) is not dominant, therefore
t ′ ∈

⊕
x∈X Dx such that Φ(t ′) ≺ Φ(t). Since the

values of the function Φ(t) are obtained from those
of φ(t ↓ x) using a monotone operator there must be
x ∈ X such that t ↓ x = a∧ t ′ ↓ x = a′ and ∃ j such
that φ j(a′) ≺ j φ j(a). It follows that a /∈ D+

x ), hence
a contradiction.

3.4 Usefulness of Directional
Substitutable MOVCSP Class

Given a MOVCSP P not in a Directional Substi-
tutable MOVCSP class (L(MODS)), is-it possible to
use L(MODS) class to solve P ? A problem decom-

Function ORDER+(φ,D+
x ,v,A j) : v̄

D+
x ← D+

x \ v
v̄←∅
while D+

x do
u← MINCOST(φ,D+

x )
D+

x ← D+
x \u

Order← true
for u′ ∈D do

for v ∈ v̄ do
for j ∈ k do

if
φ j(v,u′)�A j φ j(u,u′)∧φ j(v)� j

φ j(u)∨φ j(v,u′)�A j

φ j(u,u′)∧φ j(v)� j φ j(u) then
Order← false
break

if Order then v̄← v̄∪{u}
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position scheme for MOVCSPs that takes advantage
of Directional Substitutable Valuation Functions even
when the studied problem is not limited to these Func-
tions can be solved within a backtrack-based search.
The Algorithm DS–MOEDAC

1. computes P ′ the dual of P (line 1)

2. computes the subset of directional dominant ele-
ments denoted by D+ (line 2)

3. in order to update the Pareto set of non dominated
solution s∗, according to Definition 3 and Lemma
1, if a solution s dominates one solution si from
s∗, deletes si from s∗ and adds s to s∗ (lines 3, 4).

4. calls the Function ORDER+ to identify in O(ked3)
(where k the number of objectives and e is the
number of constraints) a tractable sub-problem P ′′
of P ′ such that P ′′ is in L(MODS). (line 5) For a
value v there may be more than one v̄ partitions.
As a result, we can use any partition strategy. For
example, the partition that promotes values which
minimize cost.

5. calls the Function MOEDAC∗ presented in (Ali
et al., 2019) to compute Pareto-based Soft Arc
Consistency.

This decomposition scheme can be distinguished by
the possibility of instantiating variables by assigning
to each one of them a subset of values in L(MODS)
instead of single values for the P ′.
Example 4. Let P3 is a bi-Objectives binary VCSP
composed of three variables x1, x2 and x3. (see Fig-
ure 3). The domain Di of each variable xi is formed

(α1,α2)

x1 x2

x3

a

b

a

b

a b

(α1,α2)

(β1,β2)(β1,β2)

(α1,α2) (β1,β2)

Figure 3: P3 in a bi-objectives L(MODS) class.

of two values Di = {a,b}. This bi-Objectives
VCSP has three constraints c1 = (〈x1,x2〉 ,Φ), c2 =
(〈x2,x3〉 ,Φ) and c3 = (〈x1,x3〉 ,Φ) whose valuations
functions Φc are defined in Table 5. We suppose that
for the both objectives j = 1,2 α j � β j Referring
to the Definition 9 P3 is in a bi-objectives L(MODS).
Referring to the orientation A given in Figure 3 and
referring to the proof of Theorem 1, if we affect the

Algorithm 1: DS–MOEDAC∗(P,Y,s∗) : s∗.

1 P′ ← DUAL(P)
if Y ′ =∅ then

2 s← D+(P′)
ADD← FALSE
for ∀si ∈ s∗ do

if s≺D si then
3 s∗← s∗ \ si

ADD← TRUE

if ADD then
4 s∗← s∗∪ s

else
x← SELECT(Y ′)
while true do

v← MINCOST(φ,D+
x )

5 v̄←ORDER+(φ,D+
x ,v,A j)

D+
x ← D+

x \ v̄
P′′← P′

6 P′′← MOEDAC∗(P′′)
if ∅ ∈D then break
else s∗← DS–MOEDAC∗(P′′,Y \{x},s∗)

Table 5: The valuation functions of P3.

φ(v1,v2) = φ(v1,v3) a b
a (⊥1,⊥2) (>1,>2)
b (>1,>2) (⊥1,⊥2)

φ(v2,v3) a b
a (⊥1,⊥2) (⊥1,⊥2)
b (⊥1,⊥2) (>1,>2)
φ(vi=1,2,3) a b

(α1,α2) (β1,β2)

value a to each variable xi we get the optimal solution
of P3 since for each variable xi: a �A j b.

Let P a MOVCSP. We deduce the tractability of
MOVCSPs through their duals.

Corollary 1. The MOVCSP P is tractable if

Dual(MOVCSP) = P ′ ∈ L(MODS)

Proof Corollary 1. From Lemma 3 the
Dual(MOVCSP) is MOCSOP. By Theorem 1 we
have that L(MODS) is a tractable class of MOCSOP.
This means that the MOVCSP P such that Dual(P ) =
P ′ ∈ L(MODS) is tractable.

4 CONCLUSION

In this paper we have proposed a Soft Directional
Substitutable based Decompositions for MOVCSP.
Despite the NP-hardness of MOVCSP we have pre-
sented a tractable classes by forcing the allowable val-
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uation functions to have specific mathematical prop-
erties. This is the case of MOVCSP classes MOVC-
SPs with Directional Substitutable Valuation Func-
tions only (L(MODS)). As usefulness of L(MODS)
MOVCSP class even when the studied problem is not
limited to these functions, we have proposed a Direc-
tional Substitutable decomposition algorithm. As a
natural extension of this work, in order to validate the
practical use of L(MODS), we will compare a prob-
lem decomposition scheme for MOVCSPs that uses
Pareto-based Soft Arc Consistency only with a de-
composition scheme witch, in addition, takes advan-
tage of L(MODS).
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