Towards Verifying GOAL Agents in Isabelle/HOL

Alexander Birch Jensen®?

DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Richard Petersens Plads, Building 324, DK-2800 Kongens Lyngby, Denmark

Keywords:

Abstract:

Agent Programming, Formal Verification, Proof Assistants.

The need to ensure reliability of agent systems increases with the applications of multi-agent technology. As

we continue to develop tools that make verification more accessible to industrial applications, it becomes an
even more critical requirement for the tools themselves to be reliable. We suggest that this reliability ought not
be based on empirical evidence such as testing procedures. Instead we propose using an interactive theorem
prover to ensure the reliability of the verification process. Our work aims to verify agent systems by emdedding
a verification framework in the interactive theorem prover Isabelle/HOL.

1 INTRODUCTION

A key issue in deployment of multi-agent systems is
to ensure its reliability (Dix et al., 2019). We ob-
serve that testing does not translate well from tradi-
tional software to multi-agent technology: we often
have agents with complex behavior and the number
of possible system configurations may be intractable.

Two leading paradigms in ensuring reliability are
formal verification and testing. The state-of-the-art
approach for formal verification is model-checking
(Bordini et al., 2006) where one seeks to verify de-
sired properties over a (generalized) finite state space.
However, the process of formal verification is often
hard and reserved for specialists. As such, we find
that testing has a lower entry-level for ensuring reli-
able behavior in critical configurations. Metrics such
as code coverage help solidify that the system is thor-
oughly tested. Even so, reliability of testing stands or
falls by the knowledge and creativity of the designer.

In our work, we focus on formal verification. We
lay out the building blocks for a solid foundation of
a verification framework (de Boer et al., 2007) for
the GOAL agent programming language (Hindriks,
2009) by formalizing it in Isabelle/HOL (Nipkow
et al., 2002) (a proof assistant based on higher-order
logic). All proofs developed in Isabelle are verified
by a small logical kernel that is trusted. This ensures
that Isabelle itself as well as any proof developments
are trustworthy.

The paper is structured as follows. Section 2

a2 https://orcid.org/0000-0002-7708-667X

Jensen, A.
Towards Verifying GOAL Agents in Isabelle/HOL.
DOI: 10.5220/0010268503450352

considers related work in the literature. Section 3
introduces the semantics of GOAL and a verifica-
tion framework for GOAL agents. Section 4 goes
into details with our work on formalizing GOAL in
Isabelle/HOL. Section 5 discusses some of the future
challenges. Finally, Section 6 makes concluding re-
marks.

2 RELATED WORK

The work in this paper relates to our work on mech-
anizing a transformation of GOAL program code to
an agent logic (Jensen, 2021). Unlike this paper, it
does not consider a theorem proving approach. It fo-
cuses on closing the gap between program code and
logic which is an essential step towards improving the
practicality of the approach. In (Jensen et al., 2021),
we argue that a theorem proving approach is interest-
ing to pursue further for cognitive agent-oriented pro-
gramming, and consequently we ask ourselves why it
has played only a miniature role in the literature so
far.

(Alechina et al., 2010) apply theorem-proving
techniques to successfully verify correctness proper-
ties of agents for simpleAPL (a simplified version of
3APL (Hindriks et al., 1999)).

(Dennis and Fisher, 2009) develop techniques
for analysis of implemented, BDI-based multi-agent
system platforms. Model-checking techniques for
AgentSpeak (Bordini et al., 2006) are used as a start-
ing point and then extended to other languages includ-

345

In Proceedings of the 13th International Conference on Agents and Atrtificial Intelligence (ICAART 2021) - Volume 1, pages 345-352

ISBN: 978-989-758-484-8

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

ing the GOAL programming language.

Tools for generating test cases and debug-
ging multi-agent systems have been proposed by
(Poutakidis et al., 2009), where the test cases are used
to monitor (and debug) the system behavior while
running. Another take on the testing approach is by
(Cossentino et al., 2008) which simulates a simpli-
fied version of the system by executing it in a virtual
environment. This especially appeals to systems to
be deployed in real-world agent environments where
testing can be less accessible or of a high cost.

The verification framework theory of programs
has some notational similarities with UNITY (Misra,
1994). However, while we verify an agent program-
ming language, UNITY is for verification of general
parallel programs. (Paulson, 2000) has worked at
mechanizing the UNITY framework in Isabelle/HOL.

3 VERFICATION FRAMEWORK

In this section, we introduce GOAL, its formal seman-
tics and a verification framework for agents.

3.1 GOAL Agents

Agents in GOAL are rational agents: they make de-
cisions based on their current beliefs and goals. The
agent’s beliefs and goals continuously change to adapt
to new situations. Thus, it is useful to describe the
agent’s by its current mental state: its current beliefs
and goals.

Based on the agent’s mental state, it may select to
execute a conditional action: an action that may be
executed given the truth of a condition on the current
mental state (its enabledness).

GOAL agents are thus formally defined by an ini-
tial mental state and a set of conditional actions. We
will get into more details with those concepts in the
following.

3.1.1 Mental States

A mental state is the agent’s beliefs and goals in a
given state and consists of a belief and a goal base.
The belief and goal base are sets of propositional for-
mulas for which certain restrictions apply:

1. The set of formulas in the belief base is consistent,
2. for every formula ¢ in the goal base:

(a) ¢ 1is not entailed by the agent’s beliefs,
(b) ¢ is satisfiable,

(c) If ¢ entails ¢, and ¢’ is not entailed by the
agent’s beliefs, then ¢ is also a goal.

346

A consistent belief base means that it does not en-
tail a contradiction which in turn ensures that we can-
not derive everything (any formula follows from fal-
sity). The goals are declarative and describe a state
the agent desires to reach. As such, it does not make
sense to have a goal that is already believed to be
achieved. Furthermore, we should not allow goals
that can never be achieved. The following captures
some of the temporal features of goals: consider an
agent that has as its goal to "be at home N watch a
movie”. Then both "be at home” and “watch a movie”
are subgoals. On the contrary, from individual goals
to ’be at home” and "watch a movie”’, we cannot con-
clude that it is a goal to ”be at home N watch a movie”.

Any sort of knowledge we want the agent to have
can be packed into the belief base as a logic formula.
As we are modelling agents for propositional logic,
the expressive power is of course limited to proposi-
tional symbols, but this is more of a practical limita-
tion than a theoretical one.

3.1.2 Mental State Formulas

To reason about mental states of agents, we introduce
a language for mental state formulas. These formu-
las are built from the usual logical connectives and
the special belief modality B® and goal modality G®,
where @ is a formula of propositional logic.

The semantics of mental state formulas is defined
as usual for the logical connectives. For the belief and
goal modality, we have:

e (L1)kEyB® < X,
e ZINkFyGP <— PeT,

where (X,T') is a mental state with belief base X and
goal base I' and ¢ is classical semantic consequence
for propositional logic.

We can think of the modalities as queries to the
belief and goal base:

e B®d: do my current beliefs entail $?
e G®: do I have a goal to achieve ®?

Below we state a number of important properties
of the goal modality:

o Fy G0 — v) — (GO — Gy),

* Fy GOA (0 —) — Gy,

o Fuy G(OAY) — (GO A Gy),

o Fc(p+—7) = Fu (Go +— GY),

where ¥, stated without a mental state is to be under-
stood as universally quantified over all mental states.
The properties show that G does not distribute over
implication, subgoals cannot be combined to form a

larger goal, and lastly that equivalent formulas are
also equivalent goals.

We further define syntactic consequence +j; for
mental state formulas as given by the rules R1-R2 and
axioms A1-AS5 in Tables 1 and 2. These rules are as
given in (de Boer et al., 2007). We assume the exis-
tence of -¢: a proof system for propositional logic.

Mental states are useful for stating the agent’s
mental state at a given point in time. The idea is that
the mental state changes over time, either due to per-
ceived changes in the environment or due to actions
taken by the agent. We will assume that any changes
in the environment are solely caused by the actions
of agents. This allows us to model changes to mental
states as effects of performing actions.

3.1.3 Actions

Agents take actions to change the state of affairs, and
thus their mental states. Hopefully, a sequence of
actions will lead to the agents having a mental state
where it believes its goals are achieved (believed). In
general terms, the idea behind our work is that the ex-
istence of such a sequence is provable.

In order for the agent to make reasonable choices,
actions have conditions that state when they can (and
should) be performed. The pair of action and condi-
tion form a conditional action. The conditional action
©>do(a) of an agent states a condition ¢ for when the
agent may execute action a. We may write enabled(a)
when referring to the condition of action a. The con-
ditions are mental state formulas.

We now need to specify what it means to execute
an action. For this, we need to associate the execu-
tion of an action with updates to the belief base. In
practical cases, this is given by an action specifica-
tion stated in a more general language (i.e. using vari-
ables). Informally, the result of executing an action is
thus to update the belief base of the mental state and
to remove any goals that the agent now believes to be
achieved.

Note that we do not allow for direct manipulation
of the goal base. We have an initial goal base that is
only changed as a result of action execution. This is
not an inherent limitation of GOAL, but is a useful
abstraction for the purpose of this paper.

A trace is an infinite sequence of interleaved men-
tal states and action executions. As such, a trace de-
scribes an order of execution. In case the agents have
choices, multiple traces may exist for a given pro-
gram. We assume that we have only fair traces: each
action is scheduled infinitely often. This means that
there is always a future point in which an action is
scheduled (note that a scheduled action need not be
enabled).

Towards Verifying GOAL Agents in Isabelle/HOL

3.2 Proof Theory

Hoare triples are used to specify actions: {¢} p >
do(a) {y} specifies the conditional action a with
mental state formulas ¢ and y that state the pre- and
postcondition, respectively. These will be the axioms
of our proof system and will vary depending on the
context, i.e. available actions.

The provable Hoare triples are given by the Hoare
system in Table 3. The rule for infeasible actions
states the non-effect of actions when not enabled. The
rule for conditional actions gives means to reason
about the enabledness of a conditional action. The
conjunction and disjunction rules allow for combin-
ing proofs of Hoare triples. Lastly, with the conse-
quence rule we can strengthen the precondition and
weaken the postcondition.

3.3 Proving Properties of Agents

On top of Hoare triples, a temporal logic is used to
verify properties of GOAL agents. We extend the
language of mental state formulas with the temporal
operator until. The formula ¢ until y means that y
eventually comes true and until then @ is true, or that
¢ never becomes true and Y remains true forever.

The temporal logic formulas are evaluated with re-
spect to a given trace and some time point on the trace.
This means that conditions are checked in the current
mental state as the program is executed.

Proving that a property of the agent is ensured by
the execution of the program is done by proving a
number of ensures formulas:

@ensuresy := (¢ — (@untily)) A (¢ — Q)

The formula ¢ ensures V states that ¢ guarantees the
realization of y. We can show that v, is realized from
v in a finite number of steps:

| ensures ;,
Y, ensures Y3,

“ey

Y, ensures \,

The existence of such a sequence is stated by the
operator ¢ — .

¢ ensures O—=Y X—V
o=y o=y

PrL—VY...0— VY

(P1V...V@y) =y
As opposed to the ensures operator, here @ is not re-
quired to remain true until y is realized. To briefly
lay out how to prove a — property, ¢ ensures \ is
proved by showing that every action a satisfies the

347

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

Table 1: t-34: Properties of beliefs.

Table 2: F-34: Properties of goals.

R1 if ¢ is an instance of a classical tautology,
then -y, @

R2 Fc o=ty Bo

Al +FyB(¢ — y) — Boé — By

A2 Fy-BL

A3 Fy—GL
A4 Fpy Bo— —Go
A5 Feb— vy =ty By — (GO — Gy)

Table 3: The proof rules of our Hoare system.

Infeasible actions:

Rule for conditional actions:

{onv}a{e'}

© — —enabled(a)

{9} a{o}

(PA~y) — ¢

/

¢ —0

{9} y>do(a) {¢'}
{9} a{y}

/

y—y

Consequence rule:

Conjunction rule:

Disjunction rule:

{01} a{wi}

{9’} al{y'}
{@2} a{y2}

{¢1}a{y}

{01 A @2} a{wi Ay}
{92} a{y}

{¢1 Vet a{y}

Hoare triple {¢ A -y} a {¢ Vy} and that the Hoare
triple {@ A -y} @’ {y} is satisfied by at least one ac-
tion a’.

4 ISABELLE FORMALIZATION

This section describes the Isabelle/HOL formaliza-
tion. So far we have formalized propositional logic,
mental states, formulas over mental states and a proof
system for mental state formulas. In Section 5, we
will discuss future work on the formalization of the
verification framework.

The Isabelle files are publicly available online:

https://people.compute.dtu.dk/aleje/public/

The file Gvf_PL.thy is a formalization of proposi-
tional logic. The file Gvf_.GOAL.thy is the presented
part of the formalization of GOAL and the verification
framework.

4.1 Propositional Logic

Before we can get started on the more interesting
parts of our formalization, we need a basis of propo-
sitional logic to build on. We formalize the language
of propositional formulas, its semantics and a sequent
calculus proof system.

348

We introduce natural numbers as a type for propo-
sitional symbols:
type-synonym id = nat
In line with usual textbook presentations it would
have been straight-forward to use string symbols. In a
theorem prover setting, working with natural numbers
can be a lot more smooth, however.

4.1.1 Syntax

We define the formulas of propositional logic as a
datatype with constructors for propositional symbols
and the operators -, —, V and A:
datatype ¢, =

Prop id |

Neg [o)3 ((ﬁl)) |

Imp @, @, (infixr (—) 60) |

Dis ®; Op, (inﬁxl ~NVp) 70) ‘

Con @) o (illﬁXl (AL) 80)

We introduce infix notation for the logical opera-
tors with their usual precedence and — being right-
associative. A subscript is used to avoid conflicts with
the built-in Isabelle logical operators.

4.1.2 Semantics

The semantics of formulas is evaluated from a model.
Since the language is that of propositional logic, the
model is merely an assignment of truth values to
propositional symbols:

type-synonym model = (id = bool)

We assume this assignment to be a function over
propositional symbols returning a Boolean value.

Given a model and a formula, propositional sym-
bols are simply looked up in the model f. For the
operators, we recursively decompose the formula and
use Isabelle’s built-in logical operators to compute the
truth value:

primrec semy, :: imodel = ®;, = bool) where
semp, f (Prop x) =fx |
semp f (- p) = (—semp fp) |
semp f (p —1 q) = (semy fp — semr fq)) |
semp f (p VL q) = (semp fp V semp fq) |
semp f (p AL q) = (semp fp A semyp, f q)

We introduce the notion of entailment (F) as an
infix operator that takes two multisets of formulas:
abbreviation entails :: (@, set = Py, set = bool)

(infix (=c# 50) where
T Ec#A=
(Vf. (Vpel. semp fp) — (IpEA. semy, fp))

The abbreviation above encodes the usual under-
standing of entailment: for all models, at least one
formula in the succedent should be true if all the for-
mulas in the antecedent are true.

‘We introduce shorthand syntax for the special case
where the right-hand side is a singleton set:
abbreviation entails-singleton :: @y, set = ®; = bool
(infix (=¢) 50) where

(l—‘l:Cq)EF'Zc#{CD})

4.1.3 Sequent Calculus

We define a sequent calculus to derive tautologies.
The inductive definition below is based on a standard
sequent calculus for propositional logic with multisets
on both sides of the turnstile:

inductive seq :: (®y multiset = P, multiset = bool
(infix (c# 50) where
{#tp#}+THcHA+ {#p#) |
Chcett A+ {#p#} =T+ {#Lp#}FcH#A |
CH+{#p#Fct A=TrFc#t A+ {#-Lp#} |
T+ {#tp#bct A+ {#q#} =
FEc# A+ {#p —rq#} |
(FFc#A-i-{#p,q#}:>FFc#A+{#p\/Lq#})|
CH+{#p, gttt FcHA=T+ {#p AL q#} FcH A |
TChH#A+ {#p#} =T rHc# A+ {#q#} =
Thc# A+ {#p AL g#} |
T+ {#p#tbcHA—=T + {#q#}tcHA—
F+{#pVLq#} Fc#Aw
<FFc#A+{#p#}:>r+{#q#}Fc#A:>
r+{#p*>Lq#}Fc#A>

Again, we introduce a shorthand for a singleton
set on the right-hand side:

abbreviation seq-st-rhs :: (@ multiset = &1 = bool)
(infix (¢) 50) where
Che®=Ttc# {# DP#}

Towards Verifying GOAL Agents in Isabelle/HOL

4.1.4 Soundness

The soundness theorem for our sequent calculus can
be stated nicely with entailment for multisets:
theorem seq-sound:

[bc#t A = set-mset I |=c# set-mset A
by (induct rule: seq.induct) (auto)

The function set-mset turns a multiset into a set.
The proof is by induction of the sequent calculus rules
and all subgoals (one for each rule) can be solved au-
tomatically without further specification.

We skip proving completeness. Firstly, it is much
harder to prove and, more importantly, it does not
serve a critical purpose in our further work. The
soundness theorem is a strong result ensuring that we
only prove valid formulas.

4.2 Mental States

We introduce a type for mental states. A mental state
is a pair of sets of propositional logic formulas:

type-synonym mst = (Dy, set x Py, set)

Mental states have properties that constrain which
sets of formulas qualify as belief or goal bases. Bak-
ing these properties into the type is rather compli-
cated. We instead introduce them in a separate def-
inition:
definition is-mst :: imst = bool) ((V)) where

Vx=let (X, T)=uxin
Lakc Lpn(VYel Zak=cy A {} e)

Note that one important property of mental states,
namely that subgoals of goals should also be goals, is
left our of this definition. We will instead bake this
into the semantics.

We can use the definition as an assumption when
needed. We should keep in mind that if we manipulate
a mental state, it will also be required to prove that
mental state properties are preserved.

4.3 Mental State Formulas

The language of formulas over mental states are
somewhat similar to the language for propositional
formulas. However, instead of propositional symbols
we may have belief or goal modalities.

4.3.1 Syntax

The syntax for mental state formulas is defined as a
new datatype:

datatype &), =
B®y |
G |

349

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

Neg @y (<ﬂM>) ‘
Imp Dy Dy (inﬁxr (—m) 60) |
Dis ®y Dy (inﬁxl V) 70) |
Con @y Dy (infixl (Ayp) 80)

While the well-known logical operators are as be-
fore, the language of mental state formulas is defined
on a level above the propositional language.

4.3.2 Semantics

We define the semantics of mental state formulas as a
recursive function taking a mental state and a mental
state formula:
primrec semantics ::
where

M Ey (BP)=(let (£,-) =MinX ¢ ®) |

MEy (GP)=(let (£, T)=Min

®EeTVE—fc®A(GYer. {} Fcy—1 D)) |

M=y (~m @)= (M Eu)|

M ':M ((1)1 —M (I)z) = (M }:M P — M }:M (1)2)) ‘

MEN (P VD) =M Ey P VMEy D) |

M ':M ((I)l M CI)Q) = (M ':M D AM ':M @2))

The belief modality for a given propositional for-
mula is true if the formula is entailed by the belief
base. For the goal modality, we require that the goal
is either directly in the goal base or that it is a sub-
goal not entailed by the belief base. The remaining
cases for logical operators are trivial. Let us elabo-
rate on the choice of baking the subgoal property into
the semantics. For any given goal, there are an in-
finite number of subgoals. If we require that these
subgoals be part of the goal base set, no finite set will
ever constitute a valid goal base. Working with finite
goal bases is more convenient.

imst = ®pr = bool (infix (=yp 50)

4.3.3 Properties of the Goal Modality

We state a lemma with the properties of the goal
modality from 3.1.2:

lemma G-properties:

shows

—(VELC®Y.V(ETD) — (E,1) =u
G(@®—LVY) —uGP—yGy)

and

@ (VET®W.V (I, T) — (Z,1) =
G(PNAL(P—01LV) —mGVY)

and

=(VELC®Y.V(ET) — (E,1) =u
GONy GY—y G (DALVY))

and

{tEc®+—Ly—V(ET) —
GO—y Gy

(27 F)):M

The first three show that G is a weak logical opera-
tor. Each of those are proved by providing a counter-
example. Let us consider the first property: G does
not distribute over implication. We assume the con-
trary to hold:

350

assume :
VET® Y.V (I,T) — (1) En
G(P®—LVY) —uGP—yGyY
We then come up with a belief and goal base to
use as a counter-example:
let 2X ={}hand 7T = { ?® — 2y, 7D b
The automation easily proves that in our example
G does not distribute over implication:
have
D) EMG (2@ — 2Y) —y G20 —y G 29
by auto
We further prove that the example belief and goal
base in fact constitute a mental state:
moreover have V (?X, ?T"))
unfolding is-mst-def
by auto
Combining the last two facts with our assumption,
we show a contradiction and the proof is done:
ultimately show False
using * by blast
The two next subgoals are analogous. The remain-
ing last property is easily proved by Isabelle’s simpli-
fier.

4.4 Tautologies of Propositional Logic

The next large part of the formalization concerns the
belief property R/ from Table 1. The property states
that any instantiation of a classical tautology is a tau-
tology in the logic for GOAL.

To automate the step from a propositional formula
to a mental state formula instance, we design an algo-
rithm to substitute propositional symbols for belief or
goal modalities:
primrec conv :: ((i d

conv T (Prop p) =
convT (- @) = ((comv T @) |

convT (P71 — D) (conv T @1 —p1 conv T Dy)) |
conv T (D1 Vp @2) = (conv T @y Vg conv T $3)) |
comv T (1 AL D) = (conv T D1 Ay conv T Py))

The algorithm requires some mapping of proposi-
tional symbols to mental state formulas. For simplic-
ity, we can assume that each formula is either a belief
or goal modality without losing any expressivity.

M) map = O = @)y where

he (T p) |

4.4.1 Automatic Substitution

For most practical applications, we will encounter
top-down proofs starting from some mental state for-
mula. In that case, the substitution is from belief
and goal modalities to propositional symbols. To be
able to determine if the mental state formula is an in-
stantiation of a classical tautology, we need a one-to-
one substitution. By this we mean that if and only

if modality operators and their contents are equal,
then they map to the same propositional symbol. The
choice of propositional symbol may be arbitrary. We
design an algorithm to produce such a one-to-one
mapping.

We exploit the built-in enumeration function in
Isabelle:

abbreviation bst :: @y = (id x Dyy) list) where
(bst @ = enumerate 0 (atoms @))

The function atoms collect all belief and goal
modalities, and enumerate builds a list of pairs of nat-
ural numbers and mental state formulas, starting from
0 and incrementing by 1 for each formula.

We substitute the modalities by the enumeration
of propositional symbols:
definition ro-L :: (®@y; = P;) where

ito-L @ = to-L' (map-swap (bst @)) @)

Here, fo-L’ is defined similarly to conv except it

produces a propositional formula.

4.5 Proof System

The belief and goal properties are collected to form a
proof system that is inductively defined:
inductive derive :: @y = bool) (+yy)) where

RI: conv (map-of T) ' =@ = {#} Fc ¢’ =y @ |

R2: <{#} Fcd =ty (B (I))> ‘

Al: by (B(® —1) —y (BP —y BY)) |

A2: by (o (BLL)) |

A3y (—m (G L)) |

A4: <|—M ((B (I)) — M (_‘M (G (I))))> ‘

AS: ({#} }_C ((D —L \II) — |_M (_‘M (B \Il) —M (G qD)
—m (GW))

The definition of R/ requires some explanation.

If there exists a substitution from a propositional for-
mula @’ to a mental state formula @, and if @’ is prov-
able in the sequent calculus, then we are allowed to
conclude .

4.5.1 Correctness of Automatic Substitution

Before we start work on proving soundness for the
proof system, let us first come back to our auto-
matic substitution for top-down proofs. The follow-
ing lemma states that if the generated propositional
formula from ® is provable, then ® is also provable:

lemma r0-L-correctness: {#} Fc to-L @ — by @

We will merely sketch the proof: we apply induc-
tion over the structure of ® and prove it for each case.
The base cases and negation are proved automatically.
The branching cases require some extra work as the
function bst will produce overlapping enumerations
for subformulas. We assist the automation by provid-
ing a lemma showing that the generated mappings for

Towards Verifying GOAL Agents in Isabelle/HOL

subformulas can be replaced by that of the parent for-
mula, e.g. @ A P, for subformulas ®; and P,.

4.5.2 Soundness

The soundness theorem for the proof system is:

theorem derive-soundness:
assumes (V M)
shows (-yy @ = M =y D

The proof is by induction over the rules:

proof (induct rule: derive.induct)

We will go into details with the case for RI. We get
to assume that @' is provable, and that some mapping
T exists to a mental state formula ®:

case (RI T @')

Due to the soundness result for the sequent calculus,
we know that formula is true for any model. We get
the idea to focus on a model in which the truth value
of propositional symbols is derived directly from se-
mantics of the belief or goal modality it maps to in the
mental state:

then have (sem;, (Ax. semantics M (the (map-of T x))) @
using seq-sound by fastforce

By induction over the structure of @', we show that
this is equal to the semantics of the ® for the given
mental state:
moreover have

semy, (Ax. semantics M (the (map-of T x))) ¢’ =

(M Fy (conv (map-o) @'))

by (induct @') simp-all
ultimately show ?case

using «conv (map-of T) ' = @ by simp

We invite the interested reader to study the avail-

able theory files for further details, although some
prior experience using Isabelle may be required.

S DISCUSSION

The work on the formalization still has a long way to
go before we can start concluding on the process as a
whole. So far our formalization covers the theory up
the point of mental state formulas and a proof system.
What remains is to formalize actions, Hoare triples
and a temporal logic for GOAL, and how to prove
temporal properties such as correctness.

We have successfully been able to verify some of
the results in (de Boer et al., 2007). The progress
shows promise and everything points towards it being
feasible to verify all results of the paper.

We have not touched much on the limitations of
the verification framework in this paper. In order
to give the framework more appeal, we need to find

351

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

ways to deal with current limitations of the frame-
work, namely:

e not being able to model or prove statements quan-
tifying over mental states,

e not modelling the environment by assuming that
the agent is the only actor,

e not accounting for multiple agents.

It is clear that neither of these limitations have an easy
fix. It is not obvious how to quantify over mental
states: we need to consider the temporal aspect of the
agent system and prove that a property holds across
several mental states. We have not encountered any
proposals in the literature. Modelling the environ-
ment seems less of a challenge but potentially adds
little immediate value beyond providing a better level
of abstraction. Even if we alleviate assumptions of
complete knowledge for agents, we still need to add
some domain knowledge into the environment to be
able to make any logical reasoning of interest. In a
way, it simply pushes part of the problem into another
structure, but could potentially be a step towards be-
ing able to state richer assumptions about interactions
in the environment. Lastly, we want to discuss mod-
elling of multiple agents and of communication. This
is very much at the core of the issue in the field of
verifying multi-agent systems. The nature of multi-
ple parallel processes quickly makes every model ex-
plode in complexity. We acknowledge its importance
but it is too early to share any thoughts on its role in
our continued work, and how to resolve the problems
that may arise.

6 CONCLUSIONS

We have argued that the use of theorem proving can
be a valuable tool for developing formal verification
techniques to ensure the reliability of multi-agent sys-
tems. The value comes from assuring that developed
techniques work as intended and does not introduce
new levels of possible errors. Such errors may com-
promise the reliability of the system even further by
providing a false sense of security.

We have described a verification framework for
the GOAL agent programming language that can be
used to prove properties of agents. We have proved
some of the results of the author’s original work us-
ing the Isabelle/HOL proof assistant, and deemed it
feasible to formalize all of the results.

Finally, we have discussed the many challenges
ahead and given ideas to address them. Our plans are
to continue work on the Isabelle formalization and si-
multaneously work on extending the theory.

352

ACKNOWLEDGEMENTS

I would like to thank Asta H. From for Isabelle re-
lated discussions and for comments on drafts of this
paper. I would also like to thank Jrgen Villadsen for
comments on drafts of this paper. I would also like to
thank Koen V. Hindriks for helpful insights.

REFERENCES

Alechina, N., Dastani, M., Khan, A. F,, Logan, B., and
Meyer, J.-J. (2010). Using Theorem Proving to Verify
Properties of Agent Programs, pages 1-33. Springer.

Bordini, R. H., Fisher, M., Visser, W., and Wooldridge, M.
(2006). Verifying Multi-agent Programs by Model
Checking. Autonomous Agents and Multi-Agent Sys-
tems, 12:239-256.

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., and
Russo, W. (2008). PASSIM: A simulation-based pro-
cess for the development of multi-agent systems. In-
ternational Journal of Agent-Oriented Software Engi-
neering, 2:132-170.

de Boer, F. S., Hindriks, K. V., Hoek, W., and Meyer, J.-J.
(2007). A verification framework for agent program-
ming with declarative goals. Journal of Applied Logic,
5:277-302.

Dennis, L. A. and Fisher, M. (2009). Programming Verifi-
able Heterogeneous Agent Systems. In Programming
Multi-Agent Systems, pages 40-55. Springer.

Dix, J., Logan, B., and Winikoff, M. (2019). Engineer-
ing Reliable Multiagent Systems (Dagstuhl Seminar
19112). Dagstuhl Reports, 9(3):52-63.

Hindriks, K. V. (2009). Programming Rational Agents in
GOAL, pages 119-157. Springer US.

Hindriks, K. V., Boer, F., Hoek, W., and Meyer, J.-J. (1999).
Agent programming in 3APL. Autonomous Agents
and Multi-Agent Systems, 2:357-401.

Jensen, A. B. (2021). Towards Verifying a Blocks World for
Teams GOAL Agent. In ICAART 2021 - Proceedings
of the 13th International Conference on Agents and
Artificial Intelligence. SciTePress. To appear.

Jensen, A. B., Hindriks, K. V., and Villadsen, J. (2021). On
Using Theorem Proving for Cognitive Agent-Oriented
Programming. In ICAART 2021 - Proceedings of the
13th International Conference on Agents and Artifi-
cial Intelligence. SciTePress. To appear.

Misra, J. (1994). A Logic for Concurrent Programming.
Technical report, Formal Aspects of Computing.
Nipkow, T., Paulson, L., and Wenzel, M. (2002).
Isabelle/HOL — A Proof Assistant for Higher-Order

Logic, volume 2283 of LNCS. Springer.

Paulson, L. C. (2000). Mechanizing UNITY in Isabelle.
ACM Trans. Comput. Logic, 1(1):332.

Poutakidis, D., Winikoff, M., Padgham, L., and Zhang,
Z. (2009). Debugging and Testing of Multi-Agent
Systems using Design Artefacts, pages 215-258.
Springer.

