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Abstract: During the last years, the emerging field of Augmented & Virtual Reality (AR-VR) has seen tremendous growth.
At the same time there is a trend to develop low cost high-quality AR systems where computing power is
in demand. Feature points are extensively used in these real-time frame-rate and 3D applications, therefore
efficient high-speed feature detectors are necessary. Corners are such special features and often are used as the
first step in the marker alignment in Augmented Reality (AR). Corners are also used in image registration and
recognition, tracking, SLAM, robot path finding and 2D or 3D object detection and retrieval. Therefore there is
a large number of corner detection algorithms but most of them are too computationally intensive for use in
real-time applications of any complexity. Many times the border of the image is a convex polygon. For this
special, but quite common case, we have developed a specific algorithm, cMinMax. The proposed algorithm
is faster, approximately by a factor of 5 compared to the widely used Harris Corner Detection algorithm. In
addition is highly parallelizable. The algorithm is suitable for the fast registration of markers in augmented
reality systems and in applications where a computationally efficient real time feature detector is necessary. The
algorithm can also be extended to N-dimensional polyhedrons.

1 INTRODUCTION

Augmented & Virtual Reality (AR-VR) systems and
applications have seen massive development and have
been studied extensively over the last few decades
(Billinghurst et al., 2015). Also with the develop-
ment of three-dimensional measuring technologies (3D
Scanners) it is possible to acquire three-dimensional
data using inexpensive three dimensional scanners rais-
ing the expectation that three-dimensional data and
interfaces will be used. At the same time there is a
trend to develop low cost high-quality 3D AR sys-
tems where computing power is in demand. Figure 1
shows such a low cost 3D Augmented Reality system
using a tangible interface and constructed using com-
modity hardware (Chamzas and Moustakas, 2020). Its
central processing unit is a Raspberry Pi 4 equipped
with a Raspberry camera. Moreover smartphones are
continuously evolving, adding more computer power,
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Figure 1: 3D Augmented Reality Tangible User Interface
using Commodity Hardware Using cMinMax to register Real
World to AR World.

more sensors, and high-quality display. Multi cameras
and depth sensors are some of their recent additions.
Therefore, we expect that it will be possible to im-
plement all the functionalities of an AR system just
in a smartphone. In this cases, computing power will
be in demand and we will need to develop new fast
and efficient algorithms. One of the main problems
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in these systems is the registration of the Real and
Virtual world, where we need to map the real-world
3D coordinates (xr,yr,zr) to the digital world coordi-
nates (xv,yv,zv). One commonly used technique is the
image marker. We place an object, the marker, with
a known shape in the real world and we want to find
a projective transformation that will map this object
to its virtual world counterpart. This transformation
has to be recalculated every time the camera changes
position within the real world environment and for real
time systems this requires a substantial amount of the
systems computer resources. This becomes even worst
when we are dealing with markerless AR systems. A
common approach to address this registration problem
is finding features on the real world marker and since
we know their position in the Virtual world, we can cal-
culate the required projective transformation. Corners
are such features.

Detecting Corners is also the first step in many
Computer Vision and Object identification and retrieval
tasks. It is also important to areas such as medicine,
engineering, entertainment and so on that are increas-
ingly relying in processes that require this kind of
information. In this work we present a simple and fast
algorithm that addresses the above problem when the
border of the image is a convex polygon.

2 PREVIOUS WORK

The problem to find the corners in an image was exam-
ined in the past. Most of the methods presented were
based on the original algorithm proposed in (Harris
et al., 1988), where they compute a corner by exploiting
sudden changes in image brightness. SUSAN (Smith
and Brady, 1997) is another algorithm widely used
for edge and corner detection. Using morphological
operators was another approach (Lin et al., 1998) used
to find the corners in an image. A different approach
using machine learning was also proposed in (Rosten
and Drummond, 2006).

With the development of three-dimensional technol-
ogy and the usage of VR & AR and Robotic systems,
another field that is growing fast over the last years is
3D or multidimensional data. Finding points of inter-
est in 3D clouds (Nousias et al., 2020a; Nousias et al.,
2020b) or decomposing multidimensional workspaces
into local primitives (Chamzas et al., 2019), becomes
important and again corners (vertices) are one of them.
An extension of Harris Corner Detection algorithm to
3D was proposed in (Głomb, 2009; Sipiran and Bus-
tos, 2011). An example of extending SUSAN to 3D
point clouds is described in (Walter et al., 2009) while
in (Katsoulas and Bergen, 2001) there is an indirect

method that extracts edges from a 3D point cloud, and
then regards these intersection points as corners. In
(Abe et al., 2017), a technique is presented that es-
timates the vertices in a 3D Point Cloud on convex
polyhedra surfaces using Delaunay Tetrahedralization.
Convex Hull algorithms (Berg et al., 2013; Toth et al.,
2017) could also be used to determine the corners.

All of the above algorithms have a considerable
processing cost as compared to the proposed technique,
which is simple, robust and applicable to any dimen-
sion. Moreover is highly parallelizable. The input in
the proposed method is a point cloud contained in a
convex polytope acquired by an appropriate scanner.

3 THE ALGORITHM

In image registration we often need to find the corners
of the image. Many times the border of the image is
a convex polygon. For this special, but quite common
case, we have developed a specific algorithm, referred
as cMinMax. The algorithm utilizes the fact that if we
find the x-coordinates of the pixels that belong to the
image, then their maximum, xmax, is a corner’s coordi-
nate. Similarly for xmin, ymin and ymax. The proposed
algorithm is approximately 5 times faster than the Har-
ris Corner Detection Algorithm, but its applicability is
limited only to convex polygons.

3.1 The Algorithm Steps for 2D

The basic steps of the algorithm are

1. Prepossessing: Generate a binary version of the
image.

2. If φmax = 2ωmax is the expected maximum angle
of the polygon, choose M > π

2(π−φmax)
,

3. For k = 0,1, ..,M− 1, rotate the image by ∆θ =
k ∗π/(2M) = k(π−φmax)

4. Project the image on the vertical and horizontal
axis and find the (xmin,xmax,ymin,ymax). These are
coordinates of four corners of the rotated convex
polygon.

5. Rotate the image backwards by −∆θ to the ini-
tial position and find the coordinates of the four
corners.

6. At the end, we have found 4M points which is
greater than the number of expected polygon cor-
ners. Hence, there are more than one pixels around
each corner. We evaluate now the centroid for each
of these bunches and these are the estimated cor-
ners of the convex polygon.
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Figure 2: Detected corners in a hexagon for M=3 rotations.
In each rotation we detect 4 corners.

In Figure 2 we apply the algorithm in a hexagon.
We have φmax = 150◦, thus M > 180◦

2(180◦−150◦) = 3

3.2 The Proof

In this section we present the theoretical background
for the algorithm.

The Problem: Find the N-corners in an image that
contains an object with a boundary that is a convex
polygon.

Definition: Let us have a convex polygon with N-
corners with coordinates I = (xi,yi)i=1,N . One corner
with coordinates (xk,yk) is called discoverable, if one
of its coordinates is maximum or minimum in the set
I, that is

xk = max or min o f (x1,x2, ...,xN) or (1)
yk = max or min o f (y1,y2, ...,yN)

Example: In Figure 3, the corners A,C,D of the
pentagon (ABCDE) are discoverable , while B,E are
not.

Figure 3: Discoverable Corners.

Proposition 1: We have two connected lines (OO
′
)

and (O
′
A) with the angle φ = ∠OO

′
A to be constant

(see Figure 4). If we rotate (OO
′
) in increments of ∆θ

around O, then (O
′
A) will rotate also in increments of

∆θ around O
′
.

Proof: Let us rotate (OO
′
) by ∆θ = θ2−θ1, from

position P1 to position P2. The line segment (O
′
A)

rotates around O
′
from θ1+φ to θ2+φ, and the change

is again ∆θ = (θ2+φ)− (θ1+φ). Therefore if the line

Figure 4: Rotating Rigidly Connected Lines.

segment (OO
′
) rotates around O

′
in increments of ∆θ,

then, neglecting translations, the line segment (O
′
A)

rotates also in increments of ∆θ around O
′

.
Proposition 2: In a convex polygon, B is one of its

corners, ∠B is its angle and φ = 180o−∠B its exple-
mentary. If we rotate the polygon around B in incre-
ments of ∆θ < φ, then in at most M ≥ 2π

∆θ
rotations, the

adjacent points A and C will be at least once to the left
side of vertical line yy

′
.

Figure 5: Invariant Rotation Center.

Proof: Let us assume that we rotate the polygon
counterclockwise around B, in increments of ∆θ start-
ing from position P1 (Fig. 5 (a)). In M steps, BC
will make a full rotation around B. Now let us con-
sider position P2 when BC moves for the first time
to the left of yy

′
, (Fig. 5 (b)). Then ω < φ and

ω+∠CBA < φ+∠CBA = 180o. Therefore point A
is to the left of yy

′
. Since the polygon is convex, all

its corners are to the left of yy
′
, therefore its coordi-

nate xB, will be at least once the maximum of all the
x-coordinates of the polygon angles.

Corollary 1: For the corner B to be discoverable, it
is sufficient to rotate the polygon around B in M ≥ pi

2∆θ

with ∆θ < φ (see Fig. 5).
Proof: In order for corner B to be discoverable, it

is enough for its two adjacent edges to be to the left
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of yy
′
, or to the right of yy

′
, or above xx

′
or below xx

′
.

Therefore we need only M ≥ pi
2∆θ

rotation steps.
Theorem 1: We have a convex polygon see Fig. 5

(a)), and let φ be the explementary of its maximum
angle. We select a point O and we rotate the polygon
around it in increments of ∆θ < φ, then in at most
M ≥ π

2∆θ
, all its corners will be discoverable at least

once.
Proof: Let B a corner of the polygon. The angle

between OB and its adjacent edges is constant during
the rotation around O. Then because of Proposition
1, as we rotate the polygon around O in increments
of ∆θ, all its edges are rotating in increments of ∆θ

around their adjacent corners. Consequently according
to Corollary 1 if we rotate the convex polygon around
a point O in increments of ∆θ < φ, then in at most
M ≤ π

2∆θ
steps, all its corners will be discoverable at

least once.

3.3 Extension to N-dimensional Convex
Polyhedrons

The algorithm can also be extended to N-dimensional
polyhedrons.

Definition 2: A set C is convex if for any points
x,y ∈ C the segment [x,y] joining them belongs to
C. A convex polyhedron is a polyhedron that, as a
solid, forms a convex set. Another definition is: A
convex polyhedron can also be defined as a bounded
intersection of finitely many half-spaces (Grunbaum
and Shephard, 1969; Grünbaum, 2013).

Definition 3: Let us have a convex polyhedron with
N-vertices with coordinates I = (xi,yi,zi)i=1,N . One
vertex with coordinates (xk,yk,zk) is called discover-
able, if one of its coordinates is maximum or minimum
in the set I, that is

xk = max or min o f (x1,x2, ...,xN) or
yk = max or min o f (y1,y2, ...,yN) or (2)
zk = max or min o f (z1,z2, ...,zN)

Definition 4: Let O be a vertex of the convex poly-
hedron and OA,OB,OC,OD,OE its edges (Figure 6.
We define O1OO2 as the Minimum Bounding Cone for
the vertex O, the smallest cone that its top is the vertex
O and it contains all the edges of the vertex O. This
Minimum Bounding Cone will have at least two of the
vertex edges on its surface and the rest inside. Let also
OK be its axis of symmetry. This way we can associate
with each vertex of a convex polyhedron an angle, the
angle ∠O1OO2 = 2ω of the Minimum Bounding Cone.
Since the polyhedron is convex, we have φ > 0o and
0o < ω = ∠KOO2 < 90o.

Proposition 3: Let Rx(θ),Ry(θ),Rz(θ) be the ro-
tation matrices by θ around axis x,y,z respectively

Figure 6: Minimum Bounding Cone of a vertex.

and Nθ = d 2π

∆θ
e and Nφ = d 2π

∆φ
e, where ∆θ and ∆φ are

incremental rotation angular steps around the axis z
and z. We multiply a vector

−→
OK by the rotation ma-

trix Rzy = Ry(k∆φ)Rz(m∆θ) for k = 0,1,2, ...,Nθ− 1
and m = 0,1,2, ...,Nφ−1. The NθNφ positions of the
rotated vector are shown in Figure 7. At least for one
of them, its distance dx from the axis x is less than√

∆θ
2+∆φ

2

2 . The same is also true for dz the distance of
a grid point from the axis z .

Figure 7: 3D Grid of a vector position rotated around axis z
and axis y with ∆θ = ∆φ = π

10 rads.

Proof: We first rotate a unit vector
−→
OK around axis

z by k∆θ until it goes to its nearest position to plane
(x,z). This is position

−−→
OK1 in Figure 8. Its distance

from plane (xz) will be less than ∆θ

2 . Then we rotate it
around axis y in steps of ∆φ until it goes to its nearest
position to plane (x,y). This is position

−−→
OK f in Figure 8.

Its distance from plane (xy) will be less than ∆φ

2 . Thus
there is a pair (kx,mx) for which the vector

−→
OK goes to

the grid position
−−→
OKx and for this position its distance

dx from the axis x is dx <

√
∆θ

2+∆φ
2

2 . Similarly for
another pair (kz,mz) the vector

−→
OK goes to vector

−−→
OKz

the closest grid position to axis z. However, we can
never go close to second axis of rotation, axis y, since
for any position in the grid its angle to axis y remains
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greater or equal to 90o−φ (see Figure 7) QED.

Figure 8: 3D Rotation of a vector around axis z and axis y.

Proposition 4: In a convex polyhedron, the angle
of the Minimum Bounding Cone of vertex O is 2ω.
If we rotate the polyhedron first around axis z and
then around axis y, in increments of k∆θ and m∆φ, k =
0, ...,Nθ−1,m = 0,2, ...,Nφ−1 with ∆θ < ω,∆φ < ω

and Nθ ≥ 2π

∆θ
,Nφ ≥ 2π

∆φ
, then the Minimum Bounding

Cone of vertex O will fall at least once in the upper
side of the plane vertical to axis z, passing from O (see
Figure 5). Also similarly will be once bellow and once
above the plane passing from O and vertical to axis x.

Figure 9: 3D Rotation of a Convex Polyhedron.

Proof: Similar to Proposition 2. As we multiply
the points of the polyhedron with the rotation matrix
Rzy the direction of vector

−→
OK will go through all its

corresponding position in its 3D grid. As proved in
Proposition 3, at least one position of the 3D grid corre-
sponding to the axis of symmetry OK of the Minimum
Bounding Cone of vertex O will fall inside the cone
(OAB). This cone is perpendicular to the plane Q and
the angle of its sides to Q is ω

Theorem 2: We have a convex polyhedron, and let

φmax = 2ωmax be the maximum angle of all the Min-
imum Bounding Cones corresponding to its vertices.
We select two axis of the coordinate system. i.e. z
and y and by multiplying all the points with the rota-
tion matrix Rzy, we rotate the polygon around them
with k∆θ and m∆φ where k = 1, ...,Nθ,m= 1,2, ...,Nφ ,
∆θ < π

2 −ωmax, ∆φ < π

2 −ωmax and Nθ ≥ 2π

∆θ
,Nφ ≥ 2π

∆φ
.

Then all its vertices will be discoverable at least once
in the axis x and axis z.

Proof: It follows from Proposition 4.
Note: A different line of proof could be based on

the fact that the projection of convex polyhedron on a
plane is a convex polygon. Thus we rotate the polyhe-
dron around an axis, we project it on the planes that
contain the axis and then we apply the 2D algorithm
to the obtained convex polygons.

The extension of the algorithm to N-dimensional
Convex polytopes is straight forward.

4 IMPLEMENTATION

A crucial parameter in the above algorithm was the
choice of M. With φmax the expected maximum angle
of the polygon, it was shown that if M ≥ π/(π−φmax),
then each corner of the polygon will appear at least
once in the set of the detected corners. For example,
for an orthogonal parallelogram, φmax = 2π/4 , M ≥ 2
and if we chose M = 2, the rotation step is π/4. For a
hexagon with equal angles, φmax = 2π/3, M ≥ 3 and
if we chose M = 3 the rotation step is π/6. However,
when an edge becomes nearly vertical to an axis, due to
numerical accuracy and noisy data, many times there
are more than one max or min points in the projection
on one axis. In this case we decided to neglect all of
them and go the next rotation step. Thus, we must
make more rotation steps than the one predicted by the
theoretical analysis. Another parameter is the center
of the image rotation. Again, as it was shown, we can
choose any point as the image rotation center, but it is
expected that if the rotation center is the centroid of
the convex polygon, the algorithm to be less sensitive
to numerical errors.

4.1 Examples

4.1.1 2D Case

For the 2D case, we used a 2040x1080 binary image
of a convex polygon with seven corners Figure 10 and
φmax ≈ 158◦. The required number of rotations must
be at least M ≥ 180◦

180◦−158◦ = 8.53. Thus we used N=9
rotations with ∆θ = 90◦

9 = 10◦
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Figure 10: Estimated Corners in a heptagon (red dots).

4.1.2 3D Case

In this example we used a dodecahedron point cloud
obtained from MeshLab, with 14535 points. The length
of its edge is 3.2361 . The results for this dodecahe-
dron with ∆θ = ∆φ = π

20 are shown in Figure 11. We
did 20x20=400 rotations, for every rotation we find
6 corners, 2 in each axis, but only 282 of them were
accepted as valid and they were classified as corners.
For the other cases, due to numerical accuracy we had
more than one max or min in one axis and they were
rejected. These 282 points were clustered to 20 groups,
and their centroids were the estimated corners. The
average accuracy of the estimation was approximate
2% of the edge length. The maximum angle of the
minimum bound cone is ωmax = 69.095◦, and theoreti-
cally we could use ∆θ = ∆φ = π

9 , but due to numerical
errors and noise we need less than half of it.

Figure 11: Estimated Corners in a dodecahedron (red dots).
Circles indicate the weighted position of corners.

4.2 Evaluation: Computational
Complexity

Let us assume we have a point cloud with n points
of a N-dimensional polytope and we know that the
φmax = 2ωmax is the expected maximum angle of all
the Minimum Bounding Cones corresponding to its ver-
tices. Then, following Theorem 2, with ∆θ < π

2 −ωmax

and Nθ ≥ 2π

∆θ
, we have to perform (N− 1)N(N−1)

θ
ro-

tations of n points, in order all its vertices to be dis-
coverable at least once in one axis. Therefore in every
step of the algorithm we perform one rotation and then
find the max of the n points x-coordinates. Both opera-
tions are of complexity O(n) and we have to perform
at least L = (N−1)N(N−1)

θ
steps, thus the algorithm

computational complexity is LO(n). At this point we
have to observe that each step is independent from the
others, therefore they can computed in parallel and the
proposed algorithm is highly parallelizable. Assuming
that the algorithm is running in a computer with at least
L GPUs then we can claim that its complexity is O(n).
Convex Hull and Harris corner Detection algorithms
can also be used to address similar problems. Convex
Hull algorithms are difficult to be parallelizable and
their sequential version is of O(nlog(n)) complexity
(Berg et al., 2013; Toth et al., 2017). To compare it with

Figure 12: Ratio of execution time for cMinMax and Harris
Corner Detection algorithm applied to regular polygons with
3 to 25 corners.

the complexity of Harris corner detection algorithm
in 2D (Chen et al., 2009), we did run both of them
in MatLab®, using the detectHarrisFeatures() com-
mand. For 2D space we have N = 2 and the complexity
of cMinMax is NθO(n). For images with 3-12 corners,
cMiniMax is on the average 5 times faster than Harris
Corner detection algorithm (see Figure 12). In addition
the proposed algorithm appears to be less sensitive to
sampling quantization errors.

5 RANDOM SAMPLING

Most of the times the number of unknown corners is
not given and in addition we do not have a good estima-
tion of φmax. Thus we cannot estimate a proper rotation
step for the application of cMinMax. One approach
will be to start with an initial rotation step. Next we
reduce it and try again, until the number of detected
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corners remain constant. An alternative approach is to
rotate the polytopes with angles selected randomly, In
this case it is important to have uniformly distributed
rotations. The 2D case is simple, but we have to to be
careful when we deal with objects in with dimension-
ality higher than two.
2-D: We select a random angle ∆θ in the closed interval
[−π,π]. We rotate the convex polygon by ∆θ and we
find the extremes of the coordinates in the x-axis and
y-axis. We continue until no more different corners are
detected.

Figure 13: (a) Uniformly distributed points on a sphere.
Red dots the 20 dodecahedron vertices. (b) A vector and its
rotated positions. (c) Histogram of (a) around the 20 red dots.
(d) Histogram of (b) around the 20 red dots.

3-D: We select two random angles ∆θ and ∆φ. ∆θ is
uniformly distributed in the interval [−π/2,π/2]. ∆φ is
randomly distributed in the interval [−π,π] with a den-
sity distribution f (φ) = sin(φ)/2 . This way we have
more points around the equator φ = 0, generating thus
uniformly distributed pairs ∆θ,∆φ on a sphere 1 (see
Figure 13 (a)). We rotate now the convex polyhedron
by ∆θ and ∆φ and we find the extremes of the coordi-
nates in the x-axis, y-axis and z-axis. To make the final
position of the rotated points as random as possible, in
every step we peak randomly one of the possible six
possible axis rotations. The rotated position of a vector
are shown in Figure 13 (a). In Figure 13 (c) and (d)
we show the histograms for (a) and (b). Each of the 20
bins contain the points that close to the corresponding
vertex of dodecahedron (red dots in (a)).

To simplify our analysis we will examine the case
where we find the max ONLY in the x-axis. It is clear

1http://corysimon.github.io/articles/uniformdistn-on-
sphere/

that in every rotation we detect only ONE corner. The
question we want to answer is, how many times do we
have to rotate a polytope with N corners, in order to
detect all its corners. This problem is equivalent to the
following Die problem (Isaac, 1996), irrespective of
the dimensionality of the polytope space, ”Roll a die
with N-faces. What is the expected number of rolls to
get all its N faces?. 2

In Figure 14, we show the required number of rota-
tions for 2D and 3D canonical polytopes with N ver-
tices. For the case of rotating in equal angle steps, for
the 2D canonical polygons we have Nrot =

2π

π−2ωmax
=

N. For 3D polytopes we have Nrot =
(

2π

π−2ωmax

)2
. For

the platonic solids with N = 4,6,8,12,20, we have that
their angle ωmax of their Minimum Bound Cones are
35.26◦,45.00◦,54.74◦,58.28◦69.09◦ respectively. For
the random case, a canonical polytope is equivalent to
a fair die with N equiprobable faces and it is known
that the expected number of rolls to get all its N faces is
the harmonic mean of N, i.e. mNrot = N ∑

N
n=1

1
n . From

Figure 14 we conclude that for 2D it is preferable to
use the rotation in equal steps, for 3D, rotation in equal
steps and random rotation are equivalent but for higher
dimensions the random rotation case is expected to be
preferable.

Figure 14: Mean of required Rotations for a canonical poly-
tope with N corners (red line). With blue dashed line and
with dash-dot black line are the required rotations for the
deterministic case for 2D polygon and 3D polyhedron.

6 CONCLUSIONS

A new corner estimation technique on N-dimensional
point clouds of convex polytopes was proposed in this
contribution. The proposed algorithm is based on the
fact that the min and max of projected coordinates in
any axes belong to a corner. For 2D we compared it
with the Harris corner detection algorithm (implemen-
tation at Matlab) and it was approximately 5 times

2http://www.cis.jhu.edu/∼xye/papers and ppts/ppts/
SolutionsToFourProblemsOfRollingADie.pdf
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faster for objects with less then 10 corners. We de-
fined the solid angle of a vertex of an N-dimensional
convex polyhedron by introducing the concept of the
MinimumBoundingCone and we proved that the algo-
rithm terminates in finite steps and the number of steps
depends on the maximum solid angle of the convex
polytope. We study 2 different techniques for rotating
the point cloud of the object, either rotating by incre-
mental angle steps(deterministic) or by choosing the
angles of rotation randomly. We concluded that for 2D
if preferable to use deterministic approach, for 3D the
two methods are equivalent but for higher dimension
we expect the random to be preferable. Another ad-
vantage of the algorithm is that it can be implemented
using parallel processing since all the rotations can be
executed simultaneously. A limitation of the proposed
algorithm is that it requires a prior estimation of the
maximum solid angle of the convex polytope and in
future work we will try to address this problem. Usage
in real time multidimensional applications is another
one, so we plan to develop a faster version of the algo-
rithm suitable for graphics cards using multiple GPUs
by exploiting its parallel implementation. Finally, us-
ing morphological operators we will try to extend its
applicability to non-convex objects,

ACKNOWLEDGMENTS

The authors wish to thank the members of the Visual-
ization & Virtual Reality Group of the University of Pa-
tras as well as Dr. A. Koutsoudis and Dr. G. Ioannakis
from the Multimedia Research Lab of the Xanthi’s Di-
vision of the ”Athena” Research and Innovation Center,
for their useful comments and discussions during the
initial preparation of this work. Constantinos Chamzas
for this work was supported by NSF-GRFP 1842494
and Konstantinos Moustakas by the European Union’s
Horizon 2020 research and innovation programme un-
der Grant Agreement No 871738 - CPSoSaware.

REFERENCES

Abe, S., Mori, H., Toyama, F., and Shoji, K. (2017). Corner
estimation for 3D point cloud on convex polyhedral
surfaces using delaunay tetrahedralization. In Proc. of
the Computer Graphics Inter. Conf., page 25. ACM.

Berg, M., Cheong, O., van Kreveld, M., and Overmars, M.
(2013). Computational Geometry: Algorithms and
Applications. Springer, 3nd edition.

Billinghurst, M., Clark, A., Lee, G., et al. (2015). A survey
of augmented reality. Foundations and Trends® in
Human–Computer Interaction, 8(2-3):73–272.

Chamzas, C., Shrivastava, A., and Kavraki, L. E. (2019). Us-
ing Local Experiences for Global Motion Planning. In
International Conference on Robotics and Automation
(ICRA), pages 8606–8612.

Chamzas, D. and Moustakas, K. (2020). 3D Augmented Re-
ality Tangible User Interface using Commodity Hard-
ware. In 15th Int. Conf. on Computer Graphics Theory
and Applications (GRAPP), pages 384–391.

Chen, J., Zou, L.-h., Zhang, J., and Dou, L. (2009). The
Comparison and Application of Corner Detection Al-
gorithms. Journal of Multimedia, 4:435–441.

Głomb, P. (2009). Detection of interest points on 3D data: Ex-
tending the harris operator. In Computer Recognition
Systems 3, pages 103–111. Springer.
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