
Dancing Guide: Near Realtime Audio Classification of Live Dance
Music on Smartphones

Alexander K. Seewald
Seewald Solutions, Lärchenstraße 1, A-4616 Weißkirchen a.d. Traun, Austria

Keywords: Audio Classification, Live Music, Dance Music, Smartphones, Music Genre Classification, Near-real-Time.

Abstract: Between 2008 and 2014 we developed and deployed a live music classification system, Dancing Guide, to be
run on Android and iPhones mobile phones in near realtime. Although internet access was needed to send
feedback and classifications to the server for statistical purposes, the music classification system also worked
offline without any loss in accuracy or speed. This is essential since in most discos and dancing schools,
internet access is spotty at best. During the seven years of the project, the app was available both for iPhone and
Android, initially in German and English, but later – thanks to volunteer translations – also in Czech, Spanish,
French, Italian, Japanese, Korean, Dutch, Polish, Portuguese, Russian and Traditional Chinese. Measured
by user feedback, we achieved an accuracy of roughly 73% at a coverage of 61%. While the accuracy is
comparable to initial estimates using cross-validation, the coverage is much worse. Background noise – which
we did not model – or the limited feature set may have been responsible. We retrained the system several
times, however performance did not always improve, so we sometimes left the previously trained system in
place. In the end, the limited feature set which was initially chosen prevented further improvement of coverage
and accuracy, and we stopped further development.

1 INTRODUCTION

Between 2008 and 2014 we developed and deployed a
live music classification system, Dancing Guide1, to
be run on then-current Android and iPhones mobile
phones in near-real-time as an app.2 Although inter-
net access was needed to send feedback and classifi-
cations to the server for statistical purposes, the model
was deployed locally and the music classification sys-
tem was able to work offline without any loss in accu-
racy or speed. This was essential since in most discos
and dancing schools internet access is spotty at best.3

The motivation for building this system was that it
is very hard for dancing beginners to find out which
dance is appropriate for given live music. So we built
Dancing Guide to enable dancing beginners to find
out which dance is appropriate for given live music.

During the seven years of the project, the app
was available both for iPhone and Android, initially

1Project page: https://dg.seewald.at
2In the beginning, we also had a working version

for Nokia and Ericsson mobiles phones using Java ME
(CDLC).

3This may have changed in the meantime.

in German and English, but from December 2009
onwards – thanks to volunteer translations – also in
Czech, Spanish, French, Italian, Japanese, Korean,
Dutch, Polish, Portuguese, Russian and Traditional
Chinese. Measured by actual user feedback – surely
the most desirable feedback as it is completely inde-
pendent of training, validation or testing data – we
achieved an accuracy of roughly 73%. We retrained
the system several times, however in some cases per-
formance remained very similar or was even worse
than an earlier system so we sometimes left the previ-
ously trained system in place. In total, the app ran on
3,533 different models of phones.

We do not have reliable user data from 2008 and
2009 since there was a bug in the unique id compu-
tation and many users obtained the same ids. The
number of unique users, feedbacks and feedbacks/u-
nique user from 2010 to 2014 is later shown in Ta-
ble 1. The table also shows accuracy and coverage ac-
cording to user feedback, or alternatively the propor-
tion of outputs where no dance could be recognized (a
trade-off to increase accuracy where low-confidence
dance music predictions are not shown to the user, i.e.
1−Coverage), and the proportion of recording errors
(i.e. when no audio could be recorded due to hard-

Seewald, A.
Dancing Guide: Near Realtime Audio Classification of Live Dance Music on Smartphones.
DOI: 10.5220/0010258508910898
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 2, pages 891-898
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

891

ware or software problems, or simply the microphone
being occupied by a call).

Contrary to music identification systems who rely
on exact timing of played notes and need databases
containing several billions of songs, our system was
designed to analyze instrumental classical dance mu-
sic played by a live band or orchestra, for example
at Austrian balls or in dancing schools, where music
id systems such as the then current Shazam (Wang,
2003) fail.4 In our case music identification is not a
reasonable task as every live song is to some extent
unique. We therefore focussed on the more feasible
task of classifying music genre relevant to dance mu-
sic and eventually chose these five genres.

1-5. Cha-Cha-Cha, Jive, Samba, Tango, (Vien-
nese/Slow) Waltz

We directly analyze audio data by beat and spectral
features. By this, we can recognize completely new
and unknown songs which have not been imported
into the song database of music id systems yet. Many
adapted and improvised dance songs are within this
category.

2 RELATED RESEARCH

When we started the project in 2008, there was al-
ready some research on dance music genre classifica-
tion. We can still reasonably claim to have been the
first to build a near-real-time dance music genre clas-
sification system that works with short segments5 in
the presence of background noise, and works for live
as well as recorded dance music.

(Wang, 2003) describe an – in 2008 – state-of-the-
art music identification system. He used local peaks
in audio spectrograms to compute hashes from peaks
within target zones, yielding two frequency compo-
nents and a time shift. A density-based sampling is
used to get roughly the same number of peaks for
each time span. For a large database of known mu-
sic, all such hashes are computed and stored. To find
a sample, all peaks from the sample are searched in
the database, and are checked whether the matched
peaks correspond to the known time shifts. Since
this method is sensitive to the time shifts which will
change for every performance of live music, their
method cannot be applied to the task of live music

4Apart from theoretical considerations, we also tested
the Shazam app for several days in an Austrian dancing
school with live music and out of hundreds of played songs,
a single one was correctly identified, with the wrongly iden-
tified songs usually not even within the same musical genre.

530s, 5s and 3s (in final system) were considered.

dance classification even when the underlying music
is stored in the database.

(Arzt and Widmer, 2010) describe a system to au-
tomatically track the position within a music piece in
real-time, using online dynamic time warping. While
this could in principle be used to reconstruct the tem-
poral beat structure – and thus the dance style – from
the audio data, the presented system still needs the
actual score as a MIDI file to enable this alignment,
which is not normally available in our case. Another
advantage of such a system, could it be extended to
work with arbitrary musical scores, would be to de-
termine not only dance style but also the precise tem-
poral position of the main beat.

(Dixon, 2007) describes a system to track beats
directly from audio with a two-stage process: tempo-
induction to find the rate of beats, and beat track-
ing, synchronizing a quasi-regular pulse sequence to
the music. Both use onset detection based on spec-
tral flux. His system has won the MIREX 2006 Au-
dio Beat Tracking Evaluation albeit just by a small
margin, but with a runtime about half as the second-
placed algorithm. In Conclusion and further work, he
notes that it would be easy to modify BeatRoot for
real-time tracking. After the optimizations we have
done to enable processing on platforms with less com-
putational power, we tend to agree. Features derived
from BeatRoot’s output are used as one main compo-
nent in the feature set for our Dancing Guide system.

(Dixon et al., 2003) describes a system for dance
genre classification based on estimating periodici-
ties (either via BeatRoot – see above – or auto-
correlation), then reconstructing metrical hierarchies
and estimating tempo at the beat and higher hierar-
chial levels. From this the dancing style is estimat-
ing using a set of simple rules. They found that – for
this specific task – auto-correlation gives better results
than using BeatRoot. The majority of errors is due
to selecting the wrong metrical level, i.e. choosing a
measure period that is double or half the correct value.
As will be explained later, we prevented this issue by
counting each measure period also in the bin corre-
sponding to double and half the measure period. They
quote dancing style recognition rates between 69%
(using BeatRoot) and 80% (for auto-correlation data)
with a much larger set of fourteen dances, however
without accounting for noisy and distorted recordings
from mobile phone microphones. Their classification
is also done for 30s windows and not on 3s windows
as in our case which probably makes the task slightly
easier.

(Chew et al., 2005) introduces a method for music
genre classification using a computational model for
Inner Metric Analysis. They show that their method

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

892

can distinguish pieces that have the same tempo and
meter, however their system requires the specifica-
tion of at least one template for each genre – in some
cases two were needed. It is not inconceivable that
for a larger set of dances the templates will have to be
indefinitely extended. They also consider five gen-
res – Tango, Rumba, Bossa Nova, Merengue, and
National Anthem – but these differ from ours. A
comparison of template with musical piece based on
spectral weights performed more accurately than one
on metric weight. An average accuracy of 70.3% is
quoted. If we consider the second ranked genre as
a match as well, an accuracy just below 80% is ob-
tained. Some of the errors are due to similarities be-
tween the rhythm templates, which therefore need to
be carefully designed. Again the whole piece must be
analyzed before a dancing genre can be estimated.

(Gouyon et al., 2004) describe a system to clas-
sify dance music genre using rhythmic features, pe-
riodicity histogram features, inter-onset interval his-
togram features, and MFCC features computed on the
inter-onset interval histogram. As such it is similar
to (Gouyon and Dixon, 2004). They report an accu-
racy of 82.3% for a Nearest Neighbor classifier us-
ing ground truth tempo, however in our case this is
not available. Adding the 15 MFCC-like descriptors
the accuracy increases to 90.1%. Using computed in-
stead of ground truth tempo – which is not available
in our case – drops the accuracy to 78.9%. We also
use MFCC features in our feature set, however those
are computed from the audio spectrogram. Again the
whole piece must be analyzed before a dancing genre
can be estimated.

(Medhat et al., 2017) applied two neural networks
specially designed for multi-dimensional audio sig-
nal recognition – CLNN and MCLNN – to the ex-
tended ballroom music dataset (which is quite similar
to our dataset). They report a competitive accuracy of
92.13% without any handcrafted features, which also
compares well with other deep learning approaches,
but still lies below the best systems with handcrafted
features. Also, these results were obtained by voting
multiple predictions on each 30s samples and it is un-
clear whether accuracy on shorter 3s samples would
be sufficient for our task.

(Yang et al., 2020) propose PRCNN, a combined
convolutional and recurrent network that combines
feature extraction and time-series classification, and
show a slight improvement in accuracy over previous
approaches on the extended ballroom dataset. Similar
to our approach, they also use 3s windows. They re-
port an accuracy of 92.5% on the extended ballroom
dataset. It is implied that the reported accuracies are
from the shorter 3s samples, which would indicate a

major improvement. Given progress in mobile phone
computing performance, it may even be feasible to
run their systen in real-time on a mobile phone.

Concluding, contrary to the system presented in
this paper, none of the described systems are able
to run in near-real-time, except for (Wang, 2003) –
which cannot process live music usefully and would
also need additional information on dancing style for
all indexed songs – and (Arzt and Widmer, 2010) –
which needs the actual score as MIDI file, which is
usually not available in our setting. Newer systems
such as (Yang et al., 2020; Medhat et al., 2017) may
also be able to run in near-real-time, but have been
published long after our initial work. State-of-the-art
performance at the start of our project was 80% accu-
racy which is also what we will aim for.

3 INITIAL LEARNING
EXPERIMENTS

This section contains everything up to the first de-
ployment of the model. While the preprocessing did
not change after the first deployment, retraining took
place and we added both feedback from known and
unknown users, as well as additional data, to the train-
ing and validation datasets. The steps taken after de-
ployment can be found in Section 4.

Tenfold cross-validation was used throughout, and
reported accuracy values are at 100% coverage (i.e.
without removing low-confidence predictions) unless
otherwise noted. In later steps we had to resort to con-
fidence thresholding to improve accuracy at a reduced
coverage.

3.1 Datasets

We initially chose the following thirteen dances, how-
ever later had to reduce this set to the first five dances
(after merging Viennese and Slow Waltz).

1-5. Cha-Cha-Cha, Jive, Samba, Tango, (Viennese)
Waltz

6-13. (Slow) Waltz, Rumba, Quickstep, Foxtrot,
Polka, Quadrille, Boogie, Paso Doble

Initially we used prerecorded ballroom dance mu-
sic downloaded from various webpages, but these
were – although recorded in high quality – streamed
in low quality. However, we soon realized that for
best results we must record and process audio data
in uncompressed format. So we obtained a small
set of dance music CDs from small Austrian dancing
schools, containing 28 dance music songs.

6Contains multiple deployed models.

Dancing Guide: Near Realtime Audio Classification of Live Dance Music on Smartphones

893

Table 1: Unique users and feedback by year.

Year #Users #Feedback #Feedback
#User

Accuracy
by feedback Coverage Class unknown

(1-Coverage)
Recording

error
20106 6,031 434,812 72.10 67.29% 68.10% 31.90% 18.25%
2011 22,273 1,810,900 81.30 75.32% 62.37% 37.63% 13.53%
2012 17,851 1,434,549 80.36 72.00% 60.34% 39.66% 9.44%
2013 7,621 646,370 84.81 71.85% 61.37% 38.63% 13.82%
2014 2,239 196,671 87.84 73.15% 61.01% 38.99% 13.12%

2011-2014 49,984 4,088,490 83.58 73.08% 61.27% 38.73% 12.48%

For a realistic setting, we recorded the audio data di-
rectly on the phone in a room with typical ball room
characteristics (parquet floor, high ceilings, irregular
shaped ceiling reminiscent of chandeliers etc.) while
playing the audio CD from the other side of the room.
Initially samples were recorded at 44.1kHz, but later
we reduced this to 8kHz to improve analysis process-
ing speed.

For the initial dataset we used 28 dance music
songs from dancing school CDs and extracted win-
dows of length 5s from uncompressed recordings via
mobile phone microphones as described above. At
the very beginning we recorded a set of 30s samples,
however the feedback on dancing style would have
taken too long, so we switched after just a few pre-
liminary learning experiments.

We later obtained an additional set of several
dance music segments not previousy known to the
system. These were recorded on a SonyEricsson mo-
bile phone in real-life conditions and contained un-
compressed audio data of 29 pieces with known dance
class, each sample 30s in length, and each was added
to the previously created data set. We then split this
dataset into 2/3 training and 1/3 testing, making sure
that there was no overlap in songs between training
and testing, and extracted all non-overlapping 5s sam-
ples from each set.

3.2 Preprocessing

For preprocessing we initially only used the Marsyas7

framework and only the MFCC components at var-
ious windowing sizes, since these also worked well
in related work by others. However, the achiev-
able performance was found inacceptable. So we
added BeatRoot8, an – in 2008 – state-of-the-art beat
tracking system, and computed all reasonable fea-
tures available within Marsyas – BEAT, SVLPCC and
(SVSTFT)MFCC. On the observation that BeatRoot
may confuse beats at double and half rates, we com-
bined all beat estimates with their half and double beat
rates, and created a vector with counts of all beat rates

7https://github.com/marsyas/marsyas
8http://www.eecs.qmul.ac.uk/∼simond/beatroot/

over the chosen window, which we called BRT. The
window size was then reduced from 30s to 5s to en-
able a faster recognition, as waiting for half a minute
was deemed too long for our use-case.

3.3 Wrapper-based Feature Subset
Selection

A combination of all Marsyas features and the Beat-
Root vectors using a linear Support Vector Ma-
chine(Platt, 1999) (learning pairwise models for any
unique set of two classes and fitting logistic models to
residuals to get better confidence estimates) for train-
ing yielded 80.86% accuracy9 which could be im-
proved to 82.19% by optimizing the cost parameter.
This was the starting point for our wrapper-based fea-
ture subset selection.

To enable faster processing, we then applied a
manual feature subset selection to find the small-
est subset with similar performance. First we in-
dependently removed only one related subset from
the dataset and repeated the training experiments.
Removing BEAT10 features yielded an accuracy
of 78.63% which was slightly worse. Removing
SVLPCC yielded slightly better results at 82.48%.
Removing (SVSTFT)MFCC features yielded an even
worse result at 76.23%. Removing BEAT and
(SVSTFT)MFCC features yielded a still worse result
of 72.57%.

Removing SVLPCC and TFTM parts of
SVSTFTMFCC yielded slightly better results at
82.77%. So we concluded that MFCC features
performed best and used MFFC, BEAT and BRT as
our new best set. Additionally removing MFCC 0-3
yielded a much worse accuracy of 76.90%, while
removing MFCC 9-12 yielded 81.52% which is only
slightly worse. So while MFCC bands 0-3 are more
important than the higher frequencies, we left both
in. Additionally removing the low-frequency beat
components of BRT (everything below 0.25 beats per

9As we mentioned, all accuracy values were obtained by
ten-fold crossvalidation.

10These are beat-tracking features by Marsyas. The set
of features by Beatroot was called BRT.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

894

minute) yielded an accuracy of 82.87% which was
the best accuracy up to that point. Accordingly, it
was kept as new best feature set.

After obtaining additional data and adding it to the
initial training set, the BEAT features within Marsyas
could be removed while still retaining an accuracy
near 80% (79.26%) To enhance averaging of MFCC
features, we also added min, max, range and median
functions which slightly improved results. However
since computing the median necessitates sorting the
value vector this eventually proved to be too slow and
we removed it again. Noting the significant confusion
between Viennese Waltz and Slow Waltz, we merged
both classes into Waltz. The first 5s segment of each
song also had much higher error due to lead-in, so we
removed that and the last segment for symmetry.

3.4 First Deployed Model

It later turned out that the estimates on runtime of
the analysis code obtained by mobile phone emulator
were far too optimistic. To obtain the needed speed
on mobile phones, we switched the sampling rate
from 44.1kHz to 8kHz and used 3s samples, which
reduced the runtime significantly to 7s for each 3s
sample. As this corresponded to 3s recording (dur-
ing which processing can already start) and 4s wait-
ing for the final result, this was deemed acceptable
for near-real-time.11 These results were confirmed on
a second test phone (Sony Ericsson W959). For a test
on Nokia phones, we also obtained a Nokia E50. The
change in sampling rate and recording length neces-
sitated rerecording all dance music samples on a test
phone. This time we chose the Nokia E50. To enable
automated recording, we used a notebook computer
with active loudspeakers to play back the audio files
and controlled the local recording on the phone us-
ing bluetooth, and transferred the recorded file back
to the notebook directly after recording. This speeded
up the local generation of training data significantly,
which previously had been a manual process.

We accordingly retrained the linear SVM model
using 8kHz samples with somewhat worse results,
however by setting a confidence threshold at 0.5, we
could still achieve an accuracy of 85.73% albeit with
58.81% of samples missing (i.e. coverage 41.19%).
A parameter optimization of the SVM complexity pa-
rameter did not improve these results at this point, so
we deployed it to our test phones.

11Note that this was measured on Nokia and SonyErics-
son phones, and the first Android phone was already three
times faster, so that in later versions the feedback was prac-
tically instanteneous.

However, a real-life test with the Nokia E50
yielded only 6 samples out of 18 correctly classi-
fied, while the SonyEricsson had 9 out of 18 samples
correctly classified (in case of no answer the sam-
ple was repeatedly presented to the system). So we
pooled samples from both mobile phones that were
initially used to record the samples, manually resam-
pling the old 44.1kHz samples and afterwards re-
running the preprocessing within the phone emula-
tor. The idea was to pool multiple mobile phones
and their corresponding microphones to get a more
robust model which abstracts from concrete micro-
phones and therefore yields more stable results. We
continued with this idea during the deployment of the
system towards the final model.

However, the results – while much improved –
were still insufficient. Our target was having both ac-
curacy and coverage at around 80%. By inspecting
the confusion between dance classes, the number of
available training samples, and after various exper-
iments, we removed more than half of the classes,
leaving the five most common: Cha-Cha-Cha, Jive,
Samba, Tango and Waltz. For this set an accuracy of
around 80% with 77.7% coverage could be obtained
after retraining, and this is the model which we de-
ployed for the first version.

3.5 Implementation Details

After preprocessing, the main challenge was to port
the MFCC preprocessing of Marsyas as well as
Beatroot to a mobile phone. According to time and
memory measurements for Beatroot and Marsyas on
a mobile phone simulator for Nokia Symbian (Series
60), the initial processing time and memory was
2.48s / 29M for beatroot features (BRT), 0.078s /
12M for SVMFCC, 2.30s / 31M for BEAT features,
and 0.067s / 2.6M for classification using the linear
Support Vector Machine, yield 31M maximum
memory consumption and a processing time of 5.09s
per second of sample (i.e. five times slower than
realtime) when processing 30s samples, which was
acceptable for initial experiments. So we restricted
the test to mobile phones with more than 32M
memory (optimally with 32M free memory at system
start) and with at least 360Mhz processor, which at
that time gave us the Nokia N95 and the Nokia 5700.

A large part of the processing time was consumed
by Beatroot, so we checked again whether the BRT
features were really necessary. However, it turned
out that BRT features were necessary to obtain an
accuracy of at least 80% and performance drops
significantly if they are removed.

Dancing Guide: Near Realtime Audio Classification of Live Dance Music on Smartphones

895

By adapting the prototype code to use float in-
stead of double we obtained the same speed but sig-
nificantly smaller memory consumption. Instead of
our initial estimate of 31M (obtained by analyzing 30s
samples) we noted our code would work with 1M of
memory (when analyzing 5s samples) and thus extend
the number of mobile phones that are able to run it. It
is likely that using 30s samples for the initial mem-
ory consumption test severely overestimated memory
consumption.

To ensure that our audio capture code works on
as many devices as possible, we obtained a test ac-
count for a mobile phone virtualization company
and checked audio recording capabilities for various
Nokia and SonyEricsson phones. With minor mod-
ifications we were able to run the audio recording
code on all these phones. However as we already
noted our runtime estimates obtained from mobile
phone emulators were too optimistic by a factor of 6.3
(tested on a SonyEricsson K700i). We obtained an-
other test phone (SonyEricsson V630i) and tested var-
ious speed improvements (such as using MathFP, an
integer floating point emulation platform) but speedup
was minimal. However, reducing the sampling rate
from 44.1kHz to 8kHz and reducing recording time
from 5s to 3s was sufficient to speed up the system to
a point where it was useful again.

About this time Android phones were finally be-
coming available in Austria. We ported the Java code
to Android and tested the preprocessing engine on the
emulator. We added a more sensible user-interface
and the ability to give feedback on the correctness
of the results via a server-side interface on our web-
server. This became available on 10th November
2009.

By porting the Java code via XMLVM12 to
Objective-C, we also created an iPhone version with
reasonable effort from the same code base. This be-
came available on the 10th March 2010.

4 EVALUATIONS DURING
DEPLOYMENT

During the seven years that the system was available,
we added new languages13, fixed many bugs (as can
be seen by the reduced recording error portion in Ta-
ble 1 from 2010 to 2011), added small improvements,
and also occasionally retrained the system using feed-
back and data from other sources. Since sending raw

12http://www.xmlvm.org/overview/
13Dec.2009: Spanish, French, Polish, Czech, Traditional

Chinese; Jan.2010: Portugues, Dutch.

audio samples entails privacy issues, the system was
designed to send only the processed vector which con-
tains MFCC and BRT features.14 without allowing its
reconstruction. If no internet connection was avail-
able, feedback was temporarily stored and sent out
once the connection became available again. This was
done to ensure that no feedback was ever lost.

In January 2010 we added new dance files, bring-
ing the total up to about 500 distinct songs, adapted
the recording server to also work for Android phones,
also switching from Bluetooth to Wifi to increase
transfer speed for the finished recording. With this we
rerecorded all new and old dance files on the Android
phone using its microphone in a suitable room. This
dataset had 2,694 samples. We estimated an accuracy
of 80.67% at a threshold of 0.65 with a coverage of
75.84% (i.e. 24.16% of samples returned dance class
not recognized). This updated model was deployed
on 15th Jan. 2010.

In March 2010 we added a small set of training
samples which were not previously used and rere-
corded them using the Android test phone. Analyz-
ing feedback from Jan-Mar 2010 only gave one user
with a significant number of usable feedback, how-
ever w.r.t. this feedback our new retrained model per-
formed worse so we did not deploy it. At this time we
added test recordings from an actual Viennese ball we
attended to our independent test set.15

We then tried to adapt the model using different
threshold for each predicted class, and again used the
feedback samples to evaluate this, however again the
optimized model performed universally worse. We
speculate that the number of songs is sufficient, how-
ever increasing the number of samples by increas-
ing overlap could still improve results. However as
this makes evaluating the system’s performance much
harder we did not follow it up.

As final try, we exhaustively tested about 10 mil-
lion thresholds16 extensively on the last deployed
model to find a set of thresholds with coverage at least
80% (20% class unknown) and accuracy at least 80%.
However it was not possible to get coverage 80% and
accuracy 80% for all five dance classes. The closest
was 74.71%. But since this model reduced the cov-
erage on the actual ball data to 16.67% (i.e. 5 out of
6 samples output dance class not recognized), we did
not use it. By optimizing accuracy, we then chose a

14I.e. he vector which was used as input to the SVM
which output the predicted dance class, and which was di-
rectly computed from the 3s audio samples.

15I.e. not the be used for training but just for validation.
The main reason was that the number of samples was still
deemed to be too small.

160.0 to 1.0 in steps of 0.04 for each of the five classes.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

896

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
cc

ur
ac

y
(%

)

Coverage (%)

Estimated by ten-fold crossvalidation
Estimated by feedback

Figure 1: Coverage (X-Axis) vs. Accuracy (Y-Axis) for the
final model, estimated by ten-fold CV and by user feedback.

threshold setting with a coverage of only 33.24% but
an accuracy of 89.78% and put it on an iPhone, how-
ever live tests indicated that performance was much
worse than the previous model, so it was again not
deployed.

In June 2010 we received feedback from a test
user at a dancing school for a relatively large num-
ber of dances – 100 in total with 41 correctly iden-
tified and 59 with prediction errors – and added the
erroneuosly classified dances to our training set. Af-
ter testing with the validation set, we found that the
performance was slightly better, so we deployed the
retrained system.

On 8th November 2010 we added all feedback
data from June 2010 to that day to the training data
and retrained the system, tested on the validation set,
and deploying the new version on the 10th November.
However the difference in accuracy and coverage ver-
sus the old model was quite small. This dataset had
4,780 samples.

On 13th December 2011 we collected all previous
feedback samples from 8th of November to that day,
yielding 6,985 Android and 4,017 iPhone samples for
retraining. Retraining just on the feedbacks gave an
accuracy of 63.88% for the iPhone (with threshold
0.55 at a coverage of 50%) and 63.08% for Android
(with threshold 0.464 at a coverage of 50%). So – al-
though the feedback was of a similar size as the previ-
ous training set (4,780 samples of which 1,621 were
from feedback) – our old model actually performed
much better than the model trained by user feedback.
After investigating about 400 duplicate input vectors
and assigning the majority class to all of them and
repeating the analysis with the old model, very simi-
lar resolts (62.85% and 61.35%) were obtained. The
old model applied to this new data gives much better
results at 73.52% and 72.58%. User feedback has a
3.13x spread between most and least common class

while our training data has only a 1.10x spread. This
could explain the bad results when training just on
feedback. However as noted in Section 5 equalizing
the class distribution also does not help to get a bet-
ter model. Therefore we did not deploy a new model
then.

From 2011 to 2014 the deployed model was un-
changed. This model had – according to estimates
derived from the training set via tenfold crossvalida-
tion – an expected coverage of 80.66% (i.e. missing
19.34%) and an accuracy of 76.47%. While the ac-
curacy agrees well with the performance according to
user feedback in Table 1 (73.08%) for these years, the
coverage is much lower. This may be since we did not
account for background noise in the mobile phone mi-
crophone recordings, and as such the more noisy sam-
ples fall below the confidence threshold after classifi-
cation twice as often. At a comparable coverage of
59.33%, the final model would have had an expected
accuracy of 83.07% – much higher than what we ob-
served – so we can exclude a drift in confidence values
as the cause. For comparison, Figure 1 shows a plot
of coverage versus accuracy at all different thresholds
both for the crossvalidated estimated as well as those
estimated by user feedback from 2011 to 2014 where
the model did not change.

Sadly, as the performance could not be signifi-
cantly improved using feedback and the coverage was
below our expectations, we stopped further develop-
ment in 2012. The app was available on Android and
Apple for several years more but was no longer main-
tained and unique users and feedback numbers contin-
ued to drop. We switched off the server-side interface
in 2020 after having received no more feedbacks for
several months.

5 DISCUSSION

It was quite disappointing that the intended regular
retraining of the system using user feedback did not
work well, and this contributed to the late publication
of this work as well as the eventual cancellation of
the project. However, one point that is obvious – per-
haps only in hindsight – is that the user feedback has
a much more uneven class distribution that the origi-
nal data set or even the extended set used for the final
model.

Therefore we revisited this issue and retrained the
system using all feedback before 13th Dec. 2011 af-
ter resampling to roughly equal class distributions.
We prepared a dataset with a spread of 1.28x by
downsampling from the original dataset of all feed-
back up to 13rd Dec. 2011. We obtained an accu-

Dancing Guide: Near Realtime Audio Classification of Live Dance Music on Smartphones

897

racy of 65.11% at a coverage of 63.85% (i.e. with
36.15% missing) by tenfold cross-validation, which
is very similar to the previous result. When we ap-
ply this model which was only trained on feedback
on the feedback from 2012, we get again coverage of
61.10% (38.90% missing) with an accuracy of only
49.13%. Even pooling all feedback from 2010 to
2013 and evaluating on 2014 does not improve this.

So, clearly our initial data is more useful than
feedback alone even when we correct for the un-
equal class distribution, perhaps because it did not
include noise. We therefore speculate that the non-
improvement of performance indicates a limitation
of the used feature set rather than lack of training
data. Perhaps orders of magnitude more training data
would be needed to enable higher coverage, or per-
haps the signal-noise-ratio of the audio samples with
background noise is simply too low.

6 CONCLUSION

We have implemented and deployed a system for
dance music genre classification, which determined
the correct dancing style with about 73% accuracy
and a coverage of 61% (i.e. reporting an unknown
class in 39% of cases). While the accuracy was as
expected, the coverage was below expectations. The
dancing style was reported in near-real-time – about
4s after recording a 3s sample, and later below 1s –
and was therefore suitable for the intended purpose of
helping novice dancing students to find the appropri-
ate dance for a given live or recorded music.

We have deployed the system for seven years, and
it was extensively used from 2011 to 2014 by about
50,000 users, each of which used it about 84 times per
year (7 times per month). Feedback by users agree
well with our previous estimate of the models’ per-
formance, which was most likely due to the fact that
– instead of analyzing the audio samples directly –
we recorded them with a variety of smartphone mi-
crophones in rooms similar to dancing halls, simu-
lating acoustic characteristics albeit not background
noise, before audio analysis. However we neglected
to account for and model realistic background noise
which might explain the observed lower coverage in
the field.

While our system was intended for continual
improvement by integrating users’ feedback, this part
did not work well. It may be that the initial feature
set which we chose after extensive experiments was
too restricted to enable a better performance, or the
feedback may be of insufficient quality. The latter

would however be surprising as the accuracy agrees
quite well with pre-deployment estimates.

ACKNOWLEDGEMENTS

We would like to thank all volunteer translators and
all others who have helped to improve our sys-
tem, provided feedback, dance music or test phones,
most notably Andreas H., Gregoire A., Christoph B.,
Ondr̂ej J., Witono H., Melanie M., Paolo P., Martin P.,
Sonja S., Herbert S. and Arthur K.

REFERENCES

Arzt, A. and Widmer, G. (2010). Towards effective ‘any-
time’music tracking. In Ågotnes, T., editor, Proceed-
ings of the Fifth Starting AI Researchers’ Symposium,
pages 24–29.

Chew, E., Volk, A., and Lee, C.-Y. (2005). Dance music
classification using inner metric analysis. In The next
wave in computing, optimization, and decision tech-
nologies, pages 355–370. Springer.

Dixon, S. (2007). Evaluation of the audio beat tracking
system beatroot. Journal of New Music Research,
36(1):39–50.

Dixon, S., Pampalk, E., and Widmer, G. (2003). Classifica-
tion of dance music by periodicity patterns. In Pro-
ceedings of the Fourth International Conference on
Music Information Retrieval, Baltimore (ML), USA.

Gouyon, F. and Dixon, S. (2004). Dance music classifi-
cation: A tempo-based approach. In Proceedings of
the 5th International Conference on Music Informa-
tion Retrieval, Barcelona, Spain.

Gouyon, F., Dixon, S., Pampalk, E., and Widmer, G.
(2004). Evaluating rhythmic descriptors for musical
genre classification. In Proceedings of the AES 25th
International Conference, pages 196–204.

Medhat, F., Chesmore, D., and Robinson, J. (2017). Auto-
matic classification of music genre using masked con-
ditional neural networks. In 2017 IEEE International
Conference on Data Mining (ICDM), pages 979–984.
IEEE.

Platt, J. (1999). Fast training of support vector machines us-
ing sequential minimal optimization. advances in ker-
nel methods—support vector learning (pp. 185–208).
AJ, MIT Press, Cambridge, MA.

Wang, A. (2003). An industrial-strength audio search algo-
rithm. In Choudhury, T. and Manus, S., editors, ISMIR
2003, 4th Symposium Conference on Music Informa-
tion Retrieval, pages 7–13.

Yang, R., Feng, L., Wang, H., Yao, J., and Luo, S. (2020).
Parallel recurrent convolutional neural networks based
music genre classification method for mobile devices.
IEEE Access, Preprint.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

898

