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Abstract: In multi-agent reinforcement learning, several agents converge together towards optimal policies that solve
complex decision-making problems. This convergence process is inherently stochastic, meaning that its use in
safety-critical domains can be problematic. To address this issue, we introduce a new approach that combines
multi-agent reinforcement learning with a formal verification technique termed quantitative verification. Our
assured multi-agent reinforcement learning approach constrains agent behaviours in ways that ensure the
satisfaction of requirements associated with the safety, reliability, and other non-functional aspects of the
decision-making problem being solved. The approach comprises three stages. First, it models the problem
as an abstract Markov decision process, allowing quantitative verification to be applied. Next, this abstract
model is used to synthesise a policy which satisfies safety, reliability, and performance constraints. Finally, the
synthesised policy is used to constrain agent behaviour within the low-level problem with a greatly lowered risk
of constraint violations. We demonstrate our approach using a safety-critical multi-agent patrolling problem.

1 INTRODUCTION

Multi-agent systems (MAS) have the potential for use
in a range of different industrial, agricultural, and de-
fence domains (Fan et al., 2011). These systems,
which allow multiple robots to share responsibilities
and work together to achieve goals, can be used in ap-
plications where it would not be practical or safe to in-
volve humans. Multiple robotic agents fitted with spe-
cialised tools and domain-specific functionality can
work together to achieve complex goals which would
otherwise require human agents to place themselves
at risk. MAS could be particularly beneficial within
hazardous work environments, such as search and res-
cue operations (Gregory et al., 2016), or where tasks
need to be completed in irradiated places. Indeed this
has been seen previously with the Fukushima nuclear
power plant disaster, where multiple robots were used
to complete jobs (Schwager et al., 2017).

Many of these complex and hazardous environ-
ments require the agents to operate independently of
direct human control, and it is these environments
which are the focus of our study.

Reinforcement learning (RL) is one promising
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technique which enables agents to learn how to
achieve system objectives efficiently (Patel et al.,
2011). MAS with RL has been proposed for work
within many scenarios and has become a significant
research area, including the use of MAS for nuclear
power plant inspections (Bogue, 2011).

However, successful deployment of these systems
within safety-critical scenarios must consider hazards
within the environment, which if not accounted for,
can lead to unwanted outcomes and potentially result
in damage to the system, resources, or personnel.

Such safety considerations and guarantees are
missing from traditional RL, which aims to learn
a policy which maximises a reward function with-
out consideration of safety constraints (Garcia and
Fernández, 2012). An RL policy defines which action
an agent should take when it finds itself in a particular
state within the problem space.

Our approach extends previous work on safe
single-agent RL (Mason et al., 2017; Mason et al.,
2018) by integrating formal verification with multi-
agent reinforcement learning (MARL) algorithms to
provide policies for use in safety-critical domains.

In this work, we present a 3-stage approach for
safe multi-agent reinforcement learning. First, we
encode the problem as an abstract Markov decision
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process (AMDP). Abstracting the problem is a com-
mon technique used within safety engineering for re-
ducing complexity (Cizelj et al., 2011). The AMDP
must contain all relevant information needed to de-
scribe the problem space, including all of the features
necessary to capture the mandated safety constraints.
Next, we synthesise policies for the abstract model us-
ing quantitative verification (QV), a mathematically
based technique for the verification (Kwiatkowska,
2007; Calinescu et al., 2012) and synthesis (Calinescu
et al., 2017; Gerasimou et al., 2018; Calinescu et al.,
2018) of probabilistic models whose properties and
safety constraints are expressed formally using proba-
bilistic computation tree logic (PCTL) (Ciesinski and
Größer, 2004). Using QV for this stage allows for for-
mal guarantees that properties will be met such that
the policy generated is safe with respect to the de-
fined constraints. Finally, these policies deemed as
safe by the verification stage are used to constrain
a multi-agent reinforcement learning problem where
the agents learn a policy within a ROS simulator
which more closely resembles the real-world environ-
ment.

In order to demonstrate our approach, we intro-
duce a MARL safety domain based on a MAS pa-
trolling problem. In this domain, two robots share the
responsibility of performing tasks within the rooms
of a nuclear power plant. They must work together
to ensure these rooms are visited three times in order
to complete their tasks successfully. However, one
of these rooms has very high amounts of radiation—
enough to damage the robots unless the three visits of
this room are partitioned between the robots in a sen-
sible way. Another requirement from these robots is
to ensure their battery does not drop below a certain
level, and ideally to finish the objective with spare bat-
tery above the minimum requirement.

Our research contributes to the areas of safe
MARL and safe RL, specifically to constrained
RL (Garcia and Fernández, 2012). To our knowl-
edge, this is the first piece of work to apply safe RL
methods to MAS in this fashion. Our approach al-
lows for the use of MARL while having guarantees
on meeting all safety requirements without the need
to restrict the environment as strictly as previous ap-
proaches (Moldovan, 2012).

The remainder of this paper is structured as fol-
lows. Section 2 provides an introduction to the rel-
evant tools and techniques used throughout the pa-
per. Section 3 introduces a domain example which
we use to demonstrate our approach. Section 4 pro-
vides an overview of each stage in our approach. Sec-
tion 5 evaluates the effectiveness of our approach.
Section 6 reflects on related research, and finally, Sec-

tion 7 gives a summary of the results and future work.

2 BACKGROUND

2.1 Single-agent Reinforcement
Learning

Reinforcement learning (RL) is a technique that en-
ables an agent to learn the best action to take depend-
ing upon the current state of the system. This learning
makes use of past experiences to influence an agent’s
future behaviour. In this way, rewards are associated
with each possible action as the agent explores the
problem space.

The problem space is typically represented as a
Markov Decision Process (MDP) with an agent able
to select from a set of actions in each state. As
the agent moves through the environment, it may
choose between using an action known to be benefi-
cial (exploitation) and those actions about which little
is known (exploration).

When the action is taken a reward (or penalty)
is obtained and the agent updates the reward asso-
ciated with the state action pair Q : (s,a)→ R. Q-
learning (Patel et al., 2011) is commonly used to find
an optimal value for this mapping.

Once the mapping of state, action pairs to rewards
is complete, we can extract a policy by selecting the
action which returns the maximum reward for the
state we are currently in.

A policy can be seen as a mapping of which ac-
tions should be taken in each state. An optimal policy
is the most efficient collection of state action pairings
possible to reach the desired goal. Standard RL is
concerned with finding an optimal policy; however,
it does not allow for safety constraints to be defined
as part of the learning process, which means that an
optimal policy may be unsafe.

2.2 Multi-Agent Reinforcement
Learning (MARL)

MARL is an extension of single-agent RL in which
multiple agents learn how to navigate and work to-
gether towards the desired outcome (Boutilier, 1996).
There is a great deal of literature exploring the ben-
efits and challenges of MARL discussed at length
in (Buşoniu et al., 2010). Benefits include efficiency,
and robustness through the division of labour while
challenges include ensuring reliable communications
and increased complexity. A number of algorithms
have been created explicitly for learning in MAS;
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these algorithms are commonly classified as inde-
pendent learners, joint action learners, and gradient-
descent algorithms (Buşoniu et al., 2010; Bloember-
gen et al., 2015).

Independent learners employ techniques in which
agents learn within a MARL environment but ignore
joint actions for reduced complexity. Independent
learners are the primary type of algorithm on which
this paper focuses. This is largely due to the lack
of assumptions that these algorithms need to make
about observations made between different learning
agents. This means that they are widely applicable to
a range of contexts, including those where environ-
mental variables can diminish the reliability of com-
munication. Independent learners typically learn how
to react to the presence of other robots because of how
other robots alter the environment. However, we note
that while this paper focuses on individual learners,
our approach is not limited to solely these algorithms.

The specific individual learner algorithm we look
at within the context of this paper is Q-learning.
While the Q-learning algorithm was developed for
single-agent RL, it has been shown to also provide
promising results when used in a MARL setting. This
learning approach was therefore selected for use in
our work due to its simplicity and popularity (Buşoniu
et al., 2010; Zhu et al., 2019).

2.3 Quantitative Verification (QV)

When a system is described as a state transition
model, QV allows us to determine if quantitative
properties of the model hold. QV relies on efficient
algorithms which examine the entire state-space of a
given model. Probabilistic model checkers such as
PRISM (Parker and Norman, 2014) and Storm (Dehn-
ert et al., 2017) allow for such analysis.

The verification process takes as input the model
and a set of properties to be checked against that
model. For an MDP, these properties are ex-
pressed using probabilistic computation tree logic
(PCTL) (Ciesinski and Größer, 2004). PCTL, as the
name suggests, is a temporal logic and can be used
to express functional and safety specifications which
need to be met. PCTL is used to work with tempo-
ral properties in the form of sequences, and forms a
common basis for describing property specification in
model checkers.

We may also associate a reward with states and
transitions in the model. In this way, we can check
bounds on reachability (of fail states, for example) as
well as the cumulative reward associated with actions
taken within the problem space (e.g. battery usage).

3 DOMAIN EXAMPLE

In order to demonstrate our approach, we have con-
structed a domain example that takes the form of a
patrolling robot system within a nuclear power plant.
There have been many situations in which robots have
been used within this setting, and new technologies
continue to emerge (Bogue, 2011).

The domain is based on the premise of a two robot
system which has the shared responsibility of nav-
igating the rooms and hallways of the plant, shown
in Figure 1. The system must fulfil the following re-
quirements:

• C1: Visit each room a minimum of three times

• C2: Complete all tasks without exhausting their
batteries

Constraint C1 may be considered a functional require-
ment whilst C2 is a safety requirement since exhaust-
ing the battery would lead to a need for robot extrac-
tion putting human life at risk. We may also add a
functional requirement with respect to C2 to max-
imise the amount of remaining battery. For our ex-
ample, we assume that the battery life for a robot is
assumed to decrease with every action undertaken in
the problem space.

In addition, we note that Room 4 has a signif-
icantly high level of radiation and whilst this room
must be visited a minimum of three times the amount
of time a single robot spends in the area should be
limited. An additional safety constraint is therefore
added as:

• C3: The amount of time spent in room 4 should
be minimised

Radiation can cause serious damage to robots, as well
as humans. Therefore, using radiation and avoiding
overexposure is a natural safety constraint for us to
use within our example domain.

Figure 1 is a screenshot from the ROS simulator
and illustrates the environment within the 3D simula-
tor from a birds-eye view, and the red lines show the
movement options between each room for the robots.

Let us consider a robot in room 3. From this state,
the robot has 6 possible actions and may move to:
Room 0, Room 1 (travelling west), Room 1 via Hall-
way A, Room 4 via Hallway A, Room 4 via Hallway
B or Room 5. Each route will take a different amount
of time, and hence a different amount of battery usage
will be associated with each transition.
For Room 4, we associate a risk value which is depen-
dent on the route taken through the room and hence
the amount of time expected to be spent in the room
on average. This is shown in Table 1 and was used as
a reward structure for the risk within our model.
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Figure 1: Nuclear reactor map within the simulator, overlaid
with states and possible routes.

Table 1: Options for entering and leaving room 4 and the
corresponding risk of damage.

Entrance Exit Exposure Time Risk

Hallway A Hallway A 30 (seconds) 0.03
Hallway A Hallway D 34 (seconds) 0.04
Hallway D Hallway D 46 (seconds) 0.07
Hallway D Hallway A 34 (seconds) 0.04

4 APPROACH

The approach which we put forward within this
paper comprises three main stages, the abstraction
of the problem, the synthesising of abstracted safe
MARL policies through QV techniques, and finally,
the MARL learning within the QV restricted envi-
ronment. Our approach can be seen visualised in
Figure 2, as shown, the domain expert must supply
knowledge about the domain, and also supply the de-
sired constraints to allow the problem to be abstracted
for easier use within a QV tool. The first two stages of
our approach are aimed at obtaining a definition of ac-
ceptable safety within the problem domain. The final
stage applies MARL techniques in the knowledge that
all policies produced will fulfil the safety constraints.

4.1 Stage 1: Constructing an AMDP

In the first stage, it is required that all required in-
formation is gathered about the MARL domain. Any
information which is not relevant to the constraints
that govern the domain problem is abstracted away,
with a distinct focus on properties which inform on
the safety of the robots. The remaining information
should allow for the definition of states, actions or
events, rewards, or costs. Our aim in abstracting out
all unneeded information is to obtain a model which is
small enough for effective and efficient QV whilst re-
taining sufficient knowledge for meaningful policies
to be produced.

For our example, the rooms, as seen in Figure 1,
become states in the AMDP. The actions which a
robot may undertake in each state are then derived
through a consideration of the options available to
transition to another room, e.g. 6 possible actions in
room 3.

Since constraint C1 requires us to know the num-
ber of times a room was visited this leads to each
room state being ‘expanded’ into 4 possible states, i.e.
never visited, visited once, twice, three or more times.
With this, the policy associated with being in room x
is now also a function of how many times the room
has been visited.

One way in which the information is abstracted in
our domain example concerns the time which it takes
for the robots to traverse between locations and the
exact routes which an individual robot may follow.
However, we take a pessimistic approach to battery
usage based on the worst-case distance between the
two locations. In the abstracted model, it is assumed
that the robots move between locations without com-
plex travel and movement within rooms. Abstracting
time from this model dramatically reduces the com-
plexity. Indeed this abstraction is necessary in order
for the model to be analysed using QV since large
complex models are not able to be analysed using tra-
ditional computing resources.

4.2 Stage 2: Synthesising Abstract
Policies

In this stage, the AMDP previously generated is anal-
ysed using quantitative verification (QV). A QV tool
such as Prism allows us to describe the AMDP in a
state-based language. Below we show a fragment of
the model for our domain example.
// In room Zero and making a movement choice
[visit0_1_1] !done & r1=0 & visits1<N ->

1:(r1’=1)&(visits1’=visits1+1); // robot 1
visits room 1
[visit0_1_2] !done & r2=0 & visits1<N ->

1:(r2’=1)&(visits1’=visits1+1); // robot 2
visits room 1
In this fragment, we examine the option of moving
from room 0 to room 1 for robots 1 and 2. Here we
see a done variable which is used to indicate the task
of complete and a counter visits1 which indicates the
number of times room 1 has been visited. r1 and r2 in-
dicate the location of robots 1 and 2 respectively. Here
we see that if the action is taken to move to room 1 for
robot 1, then the robot locations are updated, and the
counter associated with room visits is incremented.
rewards "energy"
[visit0_1_1] true : 3;
[visit0_2_1] true : 1.5;
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Figure 2: The three stages of our assured MARL approach.

Table 2: Constraints of the domain example.

Constraints PCTL

C1: The probability of all rooms
being visited three times must
be at least 0.8

P≥0.80[F finished]

C2: The battery of the robots
must not drop below 0.35

R≥0.35[F finished]

C3: The risk of damage must
not exceed 0.20

R≤0.20[F finished]

[visit0_3_1] true : 2;

Within this next fragment, shown above, we show
how battery expenditure is represented within the
ADMP as a reward structure. The code within the
square brackets relates to the option names shown
within the first fragment and assigns a numerical re-
ward if the corresponding action is taken. This numer-
ical reward will be larger or smaller, depending on the
battery consumption related to the action choice.

Having defined the states, actions and rewards as-
sociated with the AMDP, we must now encode the
functional properties and safety constraints as PCTL
for it to be used in the QV tool in the next stage. First,
we need to add bounds to constraints such that they
may be analysed. The results PCTL with accompany-
ing bounding values are shown in Table 2.

Finally, the QV tool is presented with the model
and the constraints and asked to derive a policy which
minimises the battery usage, and the amount of cumu-
lative risk. This is achieved using an RMIN command
to direct the QV tool and as shown in the code frag-
ment, framing these properties as reward functions.

QV can return multiple policies which are all
guaranteed to fulfil the safety requirements. Where
multiple policies are generated, the user may select a
policy by comparing the rewards associated with each
policy. For example, policy 1 may use less battery, but
policy 2 may have a lower risk of damage.

Where a policy can not be found, it may be nec-
essary to revisit stage 1 and modify the safety con-

straints.
The formal guarantees which we reference

throughout the paper relate to the quantitative analy-
sis which we perform. We describe the domain within
PRISM, as mentioned previously, in the form of an
AMDP. This description we create within PRISM in-
cludes the six rooms, the relative actions to move be-
tween these rooms and two agents which can work
through this AMDP. We include reward structures
which allow us to monitor the battery usage and also
counters to determine how much a room as been vis-
ited. In this way, we create a simplified representation
of our domain problem, including all the information
relevant to the safety constraints. By using QV on
this simplified representation, we can determine how
likely it is for our safety constraints to be met by any
given policy.

We note that the formal guarantees produced re-
late to the model which is analysed by the QV and that
where the AMDP is insufficient to capture the prob-
lem domain, these guarantees may not hold. It is vital,
therefore that the problem is abstracted appropriately.

This ability to derive policies for which guarantees
are possible is significantly different to other forms
of RL, and also most other forms of safe RL, minus
(Mason et al., 2017), which this paper is largely influ-
enced by.

The policy synthesised from the tool maps states
to actions for each agent, and an example of how the
synthesised policy may look like can be seen below.
In this example, each line is a tuple (rin, rto, id) such
that The first number is representing the room the
robot is currently in, the second number is represent-
ing the room which the robot will move into, and the
final number is acting as an ID to show which robot is
taking action.
2_0_2
3_1_1
1_3_1
3_1_1
1_3_1
...

Reinforcement Learning with Quantitative Verification for Assured Multi-Agent Policies

241



4.3 Stage 3: Safe Multi-Agent
Reinforcement Learning

The third and final part of our approach involves
learning policies within the non-abstracted domain
but within the constraints learnt in the second stage.
This entails the partitioning and constraint of tasks
and the domain space based on the synthesised pol-
icy. These constraints allow the robots to explore and
learn about the problem domain without violating the
constraints encoded in the verified policy.

This kind of restriction allows the robots to learn
within their partitioned tasks, without being able to
unnecessarily enter unsafe situations which will con-
flict with the mission objectives. While under these
restrictions, an action may be taken which holds a
quantified level of risk, but with the use of QV, we can
guarantee that the cumulative risk, and the probability
of risky events happening, is bounded. This approach
does not aim for optimality, as the most optimal ap-
proach may be disallowed during the QV process; it
does, however, guarantee a level of safety and quality
while increasing the speed of the learning process.

5 EVALUATION

5.1 Experimental Setup

We demonstrated our approach using an openly avail-
able ROS simulator (Portugal et al., 2019). The sim-
ulator makes use of simulated lasers for localisation
and can be used to control physical robots as well
as the simulated robots used in our work. Within
the simulation, agents must navigate ‘patrol points’
which are single geographical coordinates within the
domain; these patrol points are connected through ac-
tion choices.

A model of the nuclear reactor was created in the
simulator, as shown in Figure 1, and an AMDP was
constructed in the PRISM language to represent the
rooms and available transitions and rewards we as-
signed. The constraints we require to be met were
encoded as properties in PCTL, as seen in Table 2.

The AMDP was then analysed using PRISM.
PRISM allowed a policy to be produced which met
the constraints while minimising risk and battery us-
age. This policy was then used to constrain the state
action pairings of each robot. After this was com-
pleted, MARL was allowed to run episodically using
the constrained state action pairings in the ROS sim-
ulator.

To demonstrate the value of our approach, we con-
ducted two sets of experiments, one which makes use

of standard MARL and one which utilises our ap-
proach. Within our experiments, we make use of
the Q-learning algorithm; within this algorithm, we
use the discount factor γ = 0.7 and a learning rate of
α = 0.3. Within both experiments, we make use of an
exploration of ε = 0.5., this simply being the proba-
bility that the agents will choose to explore their envi-
ronment rather than exploit. These values were found
experimentally after multiple interactions of testing
based on the non-constrained and constrained learn-
ing runs, influenced by the nature of the domain and
the number of episodes in a learning run.

For our RL implementation, a reward structure
was used, which complements this type of patrolling
problem. A numerical reward is given every time a
room is reached, based on how long it has been left
unattended; this is a common reward structure used
within patrolling (Portugal and Rocha, 2016). We
tailored this reward structure with additional rewards
based on how little battery was expected to be used
by making an action. This ensured that eventually,
the robots would locate a suitable policy while not
frivolously using the battery. We tailored this stan-
dard reward function for the example domain’s re-
quirements; we also end an episode when a failure
event occurs.

5.2 Results

For our experiments, 200 learning episodes were run,
with a single episode being completed when all rooms
had been patrolled three times. While this is not a
large number of learning episodes, it was sufficient
for a domain of this simplicity. The results of these
experiments are shown in Figure 3 and 4.

The first experiment which was completed was the
unsafe baseline experiment with no assured MARL
constraints.

It took over 150 learning runs for this to consis-
tently produce an intelligent policy which satisfied
the overall mission objective to visit all rooms three
times. An intelligent policy is a policy which com-
pletes all tasks within the environment without com-
plete loss of battery power. Learning episodes that
produce policies that also satisfy constraint C1 from
Table 2 are annotated with a triangle.
As can be seen in Figure 3, the battery usage for the
unconstrained robots is considerably higher with the
battery of robot one often depleted before the end of
the episode.

Figure 4 also shows us that the unconstrained
robots did violate the amount of permitted time spent
in the reactor room. Joint risk, as we refer to it in this
paper, is the risk related to time spent exposed to ra-
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Figure 3: Battery conservation results.

diation for both of the robots. This drastic increase in
joint risk comes from policies which do not complete
the mission objective, so continue following their pol-
icy until a fail condition is reached, just as with learn-
ing episodes 50 and 100, which only visited room 4
twice. However, the final learned policy of the uncon-
strained robots did produce a policy which completed
the mission objective (C1), and to the least amount of
possible risk (C3), as seen by unconstrained reaching
a risk level of 9, it did this, however, at the cost of
failing the battery safety constraint (C2). These ex-
periments show that standard learning, while able to
produce intelligent policies, is not guaranteed to meet
the safety requirements constraints.

A second experiment was run using a policy con-
strained by our approach. These constraints saw
the responsibilities within the domain partitioned for
each agent, resulting in each agent having two rooms
which they were solely responsible for and two rooms
in which they shared responsibility. This limits the
agents’ ability to frivolously use their battery, as seen
from the constrained values in Figure 3, from very
early on, the remaining battery was higher than the
safety constraint. This approach, while not removing
the most risk of damage, produced a very consistent
amount of risk throughout the entire learning run, as
seen in Figure 3, never dropping below the safety con-
straint, this is a function of our approach which con-
strains the actions to ensure this. It also drastically
reduced the search space for both agents and limited
the number of learning episodes needed compared to
the unconstrained learning run.

The results of the constrained and unconstrained
experiments, which are shown in Figure 3 and Fig-
ure 4 show that the agents which are constrained us-
ing our approach not only learn to complete the patrol
quicker but also never exceed the accepted level of
risk and quickly learn to conserve its battery to the

Figure 4: Accumulated risk results.

accepted amount.

6 RELATED WORK

Our approach to safe MARL draws significantly from
work within safe RL (Garcia and Fernández, 2015).
The majority of these approaches are focused on a
single-agent perspective but are directly related to our
research. Our approach extends safe MARL past the
tailoring of reward functions and the restriction or
manipulation in some form on the rewards received;
there are many which attempt this in several ways
(Serrano-Cuevas et al., 2019; Kroening et al., 2020).
There are other techniques for safe RL which com-
plemented the creation of our approach; these in-
clude constraints being placed on which behaviours
can be followed and which ones cannot, such as in
(Moldovan, 2012) which avoids irreversible actions,
amongst others (Moldovan, 2012; Biyik et al., 2019).
Our approach to safe MARL uses strict constraints,
but unlike other approaches mentioned, does not en-
tirely remove actions which contain risk, and justi-
fies allowing such risk by using guarantees obtained
through quantitative analysis. The risk which our ap-
proach allows is a calculated risk, which allows mis-
sions to be still completed, this differs from these pre-
vious approaches,

Assured RL (Mason et al., 2017) made the novel
step to incorporate a QV stage into the RL processes,
in which it produced very promising results. Our ap-
proach applies this directly to our MARL research.
Our approach differs from the majority of recent ad-
vancements in safe MARL, as it is a multi-step ap-
proach that aims to be used in a broad scope of ap-
plications, not focusing on one specific problem or
domain. As well as this, our approach is not reliant
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on a specific algorithm, reward structure, or tool, and
aims to be flexible to the requirements of the prob-
lem. When looking at recent advancements, includ-
ing research into anti-collision (Zhang et al., 2019;
Cheng et al., 2020), learning for automated vehicles
(Shalev-Shwartz et al., 2016), limited broad scope ap-
proaches to safety have been introduced so far, and
others typically follow the trends of single-agent RL.
A recent study which works within safe RL makes use
of constrained MDPs and proposes a novel policy op-
timisation algorithm by using convex quadratic func-
tions obtained from policy gradient estimators (Yu
et al., 2019). Our approach also makes use of a con-
strained approach, but through the formal proofs sup-
plied through QV in an abstracted way.

7 CONCLUSION

We introduced a novel approach to Safe MARL,
building from a recent advancement in safe RL, util-
ising QV with a MARL algorithm. Through the use
of a domain example, we demonstrated that our three-
stage approach allows for MARL policies to be learnt
with safety constraints.

Our approach improves upon standard MARL by
allowing complex safety, performance, and reliabil-
ity constraints to be implemented into the learning
process of multiple agents. Defining these strict con-
straints is not possible using reward functions, but we
demonstrate how these may be specified using PCTL.

Our approach makes use of an abstracted ver-
sion of the targeted domain; this means that complete
knowledge of the problem does not need to be known
to work with the problem. Indeed only limited infor-
mation is required, including the nature of the perfor-
mance and safety constraints which are necessary for
formal encoding in PCTL. This abstraction also aids
the scalability of our approach, which is always a con-
cern when dealing with MAS (Xiao and Tan, 2008).

This approach does not aim for optimality in terms
of maximum rewards received from the environment.
It aims to produce reliable policies which satisfy all
safety constraints.

While our example domain is small in size as it
is a first example case. Our aims can be seen being
achieved in our example domain, showcasing some
of the potentials of this approach.

Future work includes two main points, the first be-
ing the examination of how well our approach can
be adjusted to work with larger team sizes, and the
second how our approach can be used in larger more
complex domains and dynamic environment, e.g. (Liu
et al., 2020; Gerasimou et al., 2017). Despite the al-

gorithms and tools we used within our example, our
approach is largely independent of the learning algo-
rithm chosen, and the tools used. We plan to investi-
gate the generality of our approach by utilising more
specialised MARL algorithms within its framework,
including MARL algorithms that incorporate deep
learning techniques. Lastly, it could be extremely
beneficial to apply non-in-dependant learners to our
approach, given the plug-in nature of our approach to
different tools and algorithms.
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