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Abstract: The goal of the embedded hand gesture recognition based on a radar sensor is to improve a human-machine 
interface, while taking into consideration privacy issues of camera sensors. In addition, the system has to be 
deployable on a low-power microcomputer for the applicability in broadly defined IoT and smart home 
solutions. Currently available gesture sensing solutions are ineffective in terms of low-power consumption 
what prevents them from the deployment on the low-power microcomputers. Recent advances exhibit a 
potential of deep learning models for a gesture classification whereas they are still limited to high-performance 
hardware. Embedded microcomputers are constrained in terms of memory, CPU clock speed and GPU 
performance. These limitations imply a topology design problem that is addressed in this work. Moreover, 
this research project proposes an alternative signal processing approach – using the continuous wavelet 
transform, which enables us to see the distribution of frequencies formed by every gesture. The newly 
proposed neural network topology performs equally well compared to the state of the art neural networks, 
however it needs only 54.6% of memory and it needs 20% of time to perform inference relative to the state 
of the art models. This dedicated neural network architecture allows for the deployment on resource 
constrained microcomputers, thus enabling a human-machine interface implementation on the embedded 
devices. Our system achieved an overall accuracy of 95.05% on earlier unseen data. 

1 INTRODUCTION 

Gesture sensing is one of the most intuitive and 
common approaches in the field of human-computer 
interaction (HCI). It can be applied in many fields of 
our  life. From smart homes (Wan et al., 2014; 
Alemuda and Lin, 2017), smart cars, game consoles 
to diverse mobile devices such as wearables e.g. 
smart watches or mobile phones (Alemuda and Lin, 
2017). Previous work on that topic has shown many 
inadequacies of such kind of systems (Ahmed and 
Cho, 2020). Conventional gesture sensing systems 
mainly utilize optical sensors, for instance, depth 
sensors (Ma and Peng, 2018; Tran et al., 2020; Lai 
and Yanushkevich, 2018), RGB cameras (Wang and 
Payandeh, 2017; Li et al., 2018) or a combination of 
both (Van den Bergh and Van Gool, 2011; Chai et al., 
                                                                                                 
a  https://orcid.org/0000-0002-5442-4744 
b  https://orcid.org/0000-0001-7924-7724 

2016; Yunan Li et al., 2016). However, they offer an 
unsatisfactory robustness capability, which heavily 
depends on environmental conditions such as fog, 
background clutter, illumination conditions or 
operating environment (Ahmed and Cho, 2020; 
Shanthakumar et al., 2020). As opposed to video-
based gesture sensing solutions, radar sensors are not 
affected by an operating environment and various 
illumination conditions (Hazra and Santra, 2018) as 
they can perform well in highly lit and dark 
environments. Privacy concern is another drawback 
of an optical-based gesture sensing (Schiff et al., 
2009), particularly in an age of continuously 
increasing need of privacy and personal data 
protection. 

Another significant problem of gesture 
recognition task is a generalizability of the system 
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over multiple users and multiple operating 
environments, what makes a gesture recognition a 
very sophisticated task (Yasen and Jusoh, 2019). 
Additionally, in case of such systems, a power 
consumption and a low-memory-footprint are a 
subject to high overheads, resulting in an algorithmic 
complexity, an unacceptable inference time, a 
decreased system portability, thereby a lack of 
deployment possibility on a low-power 
microcomputer. 

Radar sensors provide also a touchless and a high-
resolution environment for capturing gestures 
allowing users for an easy interaction with the system 
and a classification of very fine-grained gestures, 
what manifests itself in an attraction of considerable 
interest in an academic and an industrial circles 
(Patole et al., 2017).  

In most of cases, the task of gesture classification 
with radar is solved by an analysis of the range-
doppler maps representing a dependency between a 
velocity and a distance of an object reflected from the 
sensor (Hazra and Santra, 2018; Hazra and Santra, 
2019). Alternatively, authors in (Zhang et al., 2017) 
generate time-frequency spectrograms carrying out in 
the following order a fast Fourier transform (FFT) 
and a continuous wavelet transform (CWT). In both 
cases, data generated by signal processing algorithms 
are preprocessed and passed to deep learning 
networks.  

Feature extraction in problems related to a hand 
gesture recognition plays one of the most significant 
roles in an obtaining a high recognition rate.  In order 
to extract features, we applied a Time-Distributed 
Convolutional Neural Network that applies the same 
convolutional neural network to every time step of the 
gesture sample for an automatic feature extraction. 
Extracted feature vector is fed to a long-short term 
memory (LSTM) layer for an analysis of changing 
frequencies over time. As a result, a feature vector 
generated by an LSTM is passed to a fully connected 
layer for a gesture classification. 

Inspired by topologies for sequential signal 
classification (Hazra and Santra, 2018; Hazra and 
Santra, 2019), we propose an optimized architecture 
with fewer parameters than the original (Hazra and 
Santra, 2018) to classify radar signal representing 
different hand gestures. This paper investigates also a 
use of alternative signal processing approach based 
on a direct application of CWT to a raw radar signal, 
thereby generating the training data for a deep 
learning algorithm. The main contributions of this 
paper are as follows: 

1. We present an optimized implementation of 
the deep learning algorithm for recognizing 

hand gestures using a Frequency Modulated 
Continuous Wave (FMCW) radar. 

2. We prove the possibility of the deployment 
on two generations of Raspberry Pi with 
nearly real time inference time. To the best of 
our knowledge, for hand gesture recognition 
with radar, a deep learning algorithm 
deployed on an embedded computer have not 
been implemented. 

3. We introduce an alternative signal processing 
for a radar signal based on a CWT, allowing 
for a generation of scalograms. To the best of 
our knowledge, this procedure has not been 
used in the field of radar signal processing. 

 
The rest of this paper is structured as follows: 

chapter 2 deals with a theoretical background 
concerning an operation principle of mmWave radar 
sensor, including details of signal processing; chapter 
3 presents a gesture vocabulary proposed in this 
work; chapter 4 gives an overview concerning the 
proposed neural network topology; finally, an 
evaluation and a final discussion  are presented in 
chapters 5 and 6, respectively. 

2 RADAR 

2.1 Operation Principle of mmWave 
Radar Sensor 

This paper adopts a zigzag wave of FMCW radar 
sensor. FMCW radars are devices transmitting an 
electromagnetic power through transmit antennas 
(continuous wave with a linearly increasing 
frequency). Such a linearly increasing frequency is 
called a chirp. The transmitted electromagnetic signal 
is reflected by the hand (target) and the radar receives 
the reflected signal after a certain time delay. Both, a 
transmitted and a received signal are mixed 
(multiplied) and passed to a low-pass filter in order to 
generate a raw signal apt for a further signal 
processing. Through, mixing of signals, intermediate 
frequency components are extracted, amplified and 
converted into digital signals by using an Analog to 
Digital converter (ADC), as it is illustrated in Figure 
1. 
In this project, the Infineon mmWave radar sensor 
was employed for solving the gesture recognition task 
- it is depicted in Figure 2.  
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Figure 1: FMCW radar block diagram. 

 
Figure 2: Infineon DEMO BGT60TR24 60GHz mm-Wave 
radar sensor (Infineon, 2019). 

Signal transmitted by an FMCW radar can be 
expressed in the following form (Lin et al., 2016): 

𝑆்௑(𝑡) =  𝐴்௑ cos(2𝜋𝑓௖𝑡 + 2𝜋 න 𝑓 (𝜏)𝑑𝜏௧
଴ ) (1)

where 𝑓 (𝜏) = ஻் 𝜏 is the transmit frequency, 𝑓௖ is the 
carrier frequency, 𝐵 is the bandwidth, 𝑇 is the signal 
period, 𝐴்௑ is the amplitude of 𝑆்௑. 

Assuming that the time delay between the 
transmitted and the received signal is marked as Δ𝜏. 
The Doppler frequency caused by the motion of the 
target (hand) is denoted by Δ𝑓ௗ, in that way, receive 
frequency of the moving target can be expressed in 
the following way (Lin et al., 2016): 𝑓ோ(𝑡) = 𝐵𝑇 (𝑡 − Δ𝜏) +  Δ𝑓ௗ (2)

where Δ𝜏 = ଶ(ோା௩௧)௖ , 𝑅  is the range of the target 
(hand) from the radar sensor, 𝑣 is the speed of the 
target, 𝑐 is the speed of light, Δ𝑓ௗ is the doppler shift, 
which is defines as follows formula (Lin et al., 2016): Δ𝑓ௗ =  − 2𝑓௖𝑣𝑐  (3)

Signal reflected from the target and thereby received 
by the radar antenna is expressed with the following 
formula (Lin et al., 2016): 

𝑆ோ௑(𝑡) = 𝐴ோ௑ 𝑐𝑜𝑠(2𝜋𝑓௖(𝑡 − 𝛥𝜏) + 2𝜋 න 𝑓ோ(𝜏)௧
଴ 𝑑𝜏) (4)

An intermediate frequency (IF) signal generated as a 
result of mixing the received signal and the 
transmitted signal and forwarding it to the low-pass 

filter is expressed with the following formula (Lin et 
al., 2016): 𝑆ூி(𝑡) = 12 cos(2𝜋 ൬𝑓௖ 2𝑅଴𝑐 ൰ + 2𝜋 ൬2𝑅଴𝑐 𝐵𝑇 + 2𝑓௖𝑣𝑐 ൰ 𝑡) (5)

where: 𝑅଴ is the range at 𝑡 = 0. 

2.2 Radar Signal Processing 

Data frame received from the radar signal is formed 
from chirps, while chirps consist of samples. A 
structure of the radar data frame is depicted in the 
Figure 3.  

 
Figure 3: Structure of the radar data frame. 

An FMCW radar exhibits a different behaviour 
depending on the data frame configuration, what 
allows for a manipulation of various parameters, e.g., 
range resolution, velocity resolution etc. The raw 
signal coming from the sensor needs to be 
preprocessed in order to be able to interpret it and 
extract from it relevant features for machine learning 
algorithm. A signal processing technique widely used 
in the field of radar signal processing is an FFT.  

 
Figure 4: Preprocessing pipeline. 

It decomposes a raw signal into a set of sinusoidal 
waves with different frequencies. In spite of 
widespread use of FFT in the domain of digital signal 
processing, it has also disadvantages such as lack of 
time-frequency resolution compared to CWT (Mallat, 
2008) and high degree of computational complexity. 
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Much research on the gesture recognition with 
radar has been carried out, authors of  (Wang et al., 
2016; Zhang et al., 2018; Cai et al., 2019) propose a 
usage of 2D FFT, applying a first order FFT to resolve 
the signal in range and a second order FFT to resolve 
the signal in velocity, thereby generating range-
doppler maps representing a distance and a velocity 
of the target relative to the sensor.  

Other works within the scope of gesture 
recognition with radar (Zhang et al., 2017) propose an 
application of first order FFT, after that they perform 
CWT, generating time-frequency spectrograms. This 
paper introduces an another approach compared to 
(Wang et al., 2016; Zhang et al., 2018; Cai et al., 
2019; Zhang et al., 2017), which avoids a usage of 
first order FFT as well as second order FFT. Instead 
of it, we apply directly a CWT to a raw signal, thereby 
generating CWT maps as an input to the deep learning 
algorithm. This process is depicted in the Figure 4. 

2.2.1 Continuous Wavelet Transform 

It is time-frequency analysis method allowing for a 
calculation of correlation (Mallat, 2008) between an 
analyzed signal and a wavelet function Ψ(𝑡) .The 
similarity between signal under consideration is cal-
culated separately for each time interval, what results 
in two-dimensional representation. 

 
Figure 5: Multiresolution time-frequency plane. 

CWT decomposes the signal under consideration 
into set of wavelets (Mallat, 2008). Wavelets are 
functions (oscillations) being highly localized in time 
with zero average (Mallat, 2008). 

න Ψ(𝑡)𝑑𝑡 = 0ஶ
ିஶ  (6)

Given that, wavelets are highly localized in time, 
they can be correlated (convolved) with the signal 
under consideration at different locations in time. 
From the mathematical perspective, CWT is 
described with the following equation (Mallat, 2008): 

න 𝑓(𝑡) 1√𝑠 Ψ ൬𝑡 − 𝑢𝑠 ൰ 𝑑𝑡ஶ
ିஶ = 𝑓 ∗  Ψ(𝑢) (7)

where: 𝑠  is a scale  factor, 𝑡  is a time, 𝑢  is a  
translation, 𝑓 is a function representing the signal to 
be analyzed, Ψ(𝑡) is a mother wavelet. 

3 PROPOSED GESTURES 

The gesture vocabulary was chosen after numerous 
tests and thorough literature research. The dataset was 
defined in such a way in order to be able to perceive 
substantial dissimilarities between individual gesture 
samples. A separate gesture sample is comprised of 
20 data frames from two receiving antennas. Each 
individual gesture lasts one second, with a frame 
interval chosen to be 50 𝜇𝑠. In addition, the gesture 
set is composed of 5819 samples, every gesture was 
performed by 4 individuals without giving precise 
instructions how the gesture should be performed. 

1. Circle 
2. Up-down 
3. Down-up 
4. Left-right (swipe) 

4 PROPOSED NN 
ARCHITECTURE 

4.1 Deep Learning Model 

Topology proposed by authors was implemented in 
Keras (Chollet et al., 2015) with TensorFlow (Abadi 
et al., 2016) backend. It is built from two components: 

 Time Distributed convolutional component – 
visual features extraction component; 

 Recurrent component – time modelling 
component (Hu et al., 2020); 

4.2 Theoretical Background 

4.2.1 Convolutional Layer 

This layer employs a mathematical operation called 
convolution. It automatically extracts visual features, 
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convolving training convolutional filters 𝐾  with an 
input feature space 𝑉 . Therefore, convolution is 
described with the following equation (Goodfellow et 
al., 2016): 𝑍௜,௝,௞ =  ෍ ൣ𝑉௟,(௝ିଵ)×௦ା௠,(௞ିଵ)×௦ା௡𝐾௜,௟,௠,௡൧௟,௠,௡  (8)

where: 𝑖 , 𝑗 , 𝑘  are 𝑖௧௛  channel, 𝑗௧௛  row and 𝑘௧௛ 
column of the output feature space 𝑍 and 𝑠 is a stride 
parameter. Whereas 𝑙  is 𝑙௧௛  channel in an input 
feature space 𝑉  and 𝑚  and 𝑛  are correspondingly 𝑚௧௛ row and 𝑛௧௛ of kernel 𝐾. 

4.2.2 Timedistributed Layer 

The layer wrapper applying the same layer to every 
timestep of an input, thereby enabling a feature 
extraction from the data having a temporal 
characteristics (Chollet et al., 2015). 

4.2.3 Recurrent Unit 

The temporal feature modelling is performed using an 
LSTM unit that is mainly comprised of three foun-
dations: a forget gate, an input gate and an output 
gate, controlling an information flow. The input pro-
vided to an LSTM is fed to different gates, controlling 
which operation is performed on the cell memory: 
write (input gate), read (output gate) or reset (forget 
gate). The vectorial representation of an LSTM layer 
is as follows: 

𝑖(𝑡) = 𝜎௜(𝑊௔௜𝑎(𝑡) + 𝑊௛௜ℎ(𝑡 − 1) + 𝑊௖௜𝑐(𝑡 − 1) + 𝑏௜) 

𝑓(𝑡) = 𝜎௙൫𝑊௔௙𝑎(𝑡) + 𝑊௛௙ℎ(𝑡 − 1) + 𝑊௖௙𝑐(𝑡 − 1) + 𝑏௙൯ 

𝑐(𝑡) = 𝑓(𝑡)𝑐(𝑡 − 1) + 𝑖(𝑡)𝜎௖(𝑊௔௖𝑎(𝑡) + 𝑊௛௖ℎ(𝑡 − 1) + 𝑏௖) 

𝑜(𝑡) = 𝜎௢(𝑊௔௢𝑎(𝑡) + 𝑊௛௢ℎ(𝑡 − 1) + 𝑊௖௢ℎ(𝑡) + 𝑏௢) 

ℎ(𝑡) = 𝑜(𝑡)𝜎௛(𝑐(𝑡)) 

 (9)

where 𝑖, 𝑓, 𝑜, 𝑐 and ℎ denote respectively the input 
gate, forget gate, output gate, cell activation vectors 
and hidden states. The terms 𝜎 represent activation 
functions. However, the vector 𝑋 = ሼ𝑥(1), 𝑥(2), … , 𝑥(𝑇)ሽ  denotes an input to the 
memory cell layer at time 𝑡 , while 𝑊௖௜ , 𝑊௛௜ , 𝑊௔௜ , 𝑊௖௙, 𝑊௛௙, 𝑊௔௙, 𝑊௛௖, 𝑊௔௖, 𝑊௖௢, 𝑊௛௢, 𝑊௔௢ are weight 

matrices and subscripts mean from-to relationships. 
The terms 𝑏௜,  𝑏௙, 𝑏௖ and 𝑏௢ are the bias vectors.     

4.3 Implementation Details 

Due to the nature of the data, the proposed deep 
learning algorithm is comprised of two components: 
one for visual features extraction from the sequence 
of CWT maps, followed by the component modelling 
the temporal features – an LSTM. Basically, the first 
component is built from the five convolutional layers 
with successively increasing number of filters, 16, 32, 
64, 96 and 128. The first four convolutional layers are 
followed by a BatchNormalization, ReLu activation, 
MaxPooling2D and Dropout2D, however the last 
convolutional layer is followed by a 
BatchNormalization (Ioffe and Szegedy, 2015) with 
a ReLu activation. Each of convolutional layers 
utilizes 3x5 kernel size with stride 1 and same 
padding. Weights of convolutional layers are 
initialized using glorot initializer, whereas biases are 
initialized with zeros. First three convolutional layers 
are followed by MaxPooling2D with pool size 2x2 
and stride 2 in both dimensions and Dropout2D with 
dropout rate 0.5, however, the fourth convolutional 
layer is followed by MaxPooling2D with 1x2 pool 
size and Dropout2D with 0.3 dropout rate.  

In order to reduce an overfitting effect, we applied 
two regularization techniques: an l2 and a dropout 
(Srivastava et al., 2014). This set of operations is 
wrapped in a sequential module and fed to the 
TimeDistributed layer, applying the same set of 
operations to every timestep. Visual feature 
extraction module is depicted in the Figure 6. The 
output of visual feature extractor is passed to the 
MaxPooling3D in order to reduce the dimensionality, 
it is flattened, dropped out with 0.3 dropout rate. and 
fed to the recurrent layer. Linear and recurrent kernels 
of the LSTM layer are initialized using a glorot 
initializer and an orthogonal initializer, while bias is 
initialized with zeros. In order to avoid an overfitting 
effect and increase an overall system performance, 
we have applied a dropout to linear transformations 
(Gal and Ghahramani, 2016; Pascanu et al., 2013) and 
to recurrent connections (Gal and Ghahramani, 2016; 
Pas-canu et al., 2013) between LSTM units. L2 
regularization was applied to kernel, recurrent 
connections and bias. 
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Figure 6: Visual feature extraction module. 

The LSTM utilizes a tanh activation and sigmoid as a 
recurrent activation. The feature vector generated by 
the LSTM is fed to fully-connected layer with a 
softmax activation in order to perform the final 
classification. 

 
Figure 7: Final architecture. 

After many tests and experimentations with 
hyperparameters, the final model was trained with 
categorical cross-entropy loss function with adaptive 
moment optimization algorithm (ADAM). The final 
architecture is presented in the Figure 7. 

5 EVALUATION 

System defines four gestures. In general, one has 
gathered 5819 – correspondingly circle class – 1500 
samples, up-down class - 1415 samples, down-up 
class – 1404, left-right class – 1500 samples. Each 
gesture sequence is composed of 20 data frames 
which are subsequently transformed into sequence of 
20 CWT maps lasting 1 s. The dataset has been split 
in proportion 70%/30%, train and validation split, 
respectively. 

Table 1: Comparative Characteristics of Proposed Model. 

Model Accuracy Inference 
time Size 

ConvNet+LSTM 
(Hazra and 

Santra, 2018) 
94,37% 1,0s 13,6MB 

Proposed NN 
architecture 95,05% 0,2s (x86 

processor) 7,43MB 

Proposed NN 
architecture 95,05% 

2.0s 
(Raspberry 

Pi3) 
7,43MB 

Proposed NN 
architecture 95,05% 

1,5s 
(Raspberry 

Pi4) 
7,43MB 

To prove the performance of our model, we have 
created separate test dataset consisting of 2001 
samples and we have tested this model against the test 
dataset. Table 1 presents a comparative 
characteristics. We can observe, our model achieves 
95.05% accuracy compared with (Hazra and Santra, 
2018), consuming less hard disk space and offering 
shorter inference time. Proposed system was tested on 
the laptop with the following specification – 8GB 
RAM, i7-6700HQ @ 2.60GHz – being able to 
perform an inference within 0.2s. Additionally, 
system was also tested on both versions of 
RaspberryPi 3 and 4, thereby achieving an inference 
time of 2.0s and 1.5s, what creates good perspectives 
for the future development. 

Table 2: Parameters Summary. 

Symbol Parameter name Value 𝑃்ೣ  Transmit power 31 𝑁௖௛௜௥௣௦ Number of chirps 1 𝑁ௌ೛೐ೝ_೎೓೔ೝ೛ Number of 
samples per chirp 512 

𝑁ோ௑ೌ೙೟೐೙೙ೌೞ Number of RX 
antennas 2 𝑇𝑋ெ௢ௗ௘ TX mode Use only TX2 𝑉 ௔௜௡ VGA gain +10dB 

Input
(20, 2, 64, 512)

TimeDistributed
(cnn_module)

MaxPooling3D

TimeDistributed
(Flatten())

Dropout(0.3)

LSTM()

Dense(4)
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Data for training, validation and testing were 
collected with parameters presented in Table 2. 
During boot-up, system gathers 100 raw-data frames 
and it calculates mean from them. 

 
Figure 8: Confusion matrix. 

Mean frame is used for gesture detection. 
Namely, it calculates root mean square between 
current frame and mean frame. In case of exceeding 
the threshold, system starts data gathering for period 
of 1s. Figure 8 depicts the confusion matrix. We can 
observe that circle is classified with the lowest 
accuracy rate. In 57 cases, it was confused with up-
down gesture and in one case with left-right (swipe) 
gesture. 

 
Figure 9: Circle. 

 

This is explicable because left-right gesture as well as 
up-down gesture have relatively similar characteristic 
to circle gesture, what is illustrated in the following 
figures: Figure 9, Figure 11 and Figure 12.  

As far as up-down and down-up gestures are 
concerned, first of them is sometimes confused with 
circle in 5 cases and with left-right in 35 cases. 
However, down-up is misclassified only in one case. 
Swipe gesture is classified with 100% accuracy. 
Moreover, our model was tested on Raspberry Pi3 
and Raspberry Pi4, achieving nearly real-time 
inference time: 2.0s and 1.5s.  

 
Figure 10: Down-up. 

 
Figure 11: Left-right. 
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Figure 12: Up-down. 

6 FINAL DISCUSSION 

Gestures are a standard means of communication 
used by people to exchange an information between 
each other. Thus, it would also be natural for people 
to use them to communicate with computers. Because 
of this, the applicability of gestures in a human-
computer interaction seems to be relevant topic from 
the scientific point of view. This paper proposes a 
hand gesture recognition system using a dedicated 
CNN-LSTM architecture. Our solution employs a use 
of FMCW radar in conjunction with the low-power 
microcomputer(s) Raspberry Pi3, Raspberry Pi4 and 
deep learning techniques. The proposed model 
achieves good performance on earlier unseen data. In 
comparison to (Hazra and Santra, 2018), our model 
achieves a real-time interaction performance on x86 
class CPU and nearly real-time interaction 
performance on ARMv8 class CPU(s). It uses less 
number of parameters, what implies smaller size of 
model, possibility of deployment on the low-power 
micro-computer. In the future, we are planning to 
introduce sensor-fusion capability and support for 
user defined gestures. 
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