
Parallel Privacy-preserving Computation of Minimum Spanning Trees

Mohammad Anagreh1,2, Eero Vainikko1 and Peeter Laud2

1Institute of Computer Science, University of Tartu, Narva maantee 18, Tartu, Estonia
2Cybernetica, Mäealuse 2/1, Tallinn, Estonia

Keywords: Privacy-preserving Computation, Multi-party Computation (SMC), Single-Instruction-Multiple-Data (SIMD),
Protocol of Reading Private Array, Prim’s Algorithm, Minimum Spanning Tree, Sharemind.

Abstract: In this paper, we propose a secret sharing based secure multiparty computation (SMC) protocol for computing
the minimum spanning trees in dense graphs. The challenges in the design of the protocol arise from the
necessity to access memory according to private addresses, as well as from the need to reduce the round
complexity. In our implementation, we use the single-instruction-multiple-data (SIMD) operations to reduce
the round complexity of the SMC protocol; the SIMD instructions reduce the latency of the network among
the three servers of the SMC platform. We present a state-of-the-art parallel privacy-preserving minimum
spanning tree algorithm which is based on Prim’s algorithm for finding a minimum spanning tree (MST) in
dense graphs. Performing permutation of the graph with sharemind to be able to perform the calculation of
the MST on the shuffled graph outside the environment. We compare our protocol to the state of the art and
find that its performance exceeds the existing protocols when being applied to dense graphs.

1 INTRODUCTION

A spanning tree of a connected graph is the sub-
graph that spans it (i.e. it contains all vertices of
the graph) and is a tree. For weighted graphs, its
Minimum Spanning Tree (MST) is a spanning tree
of it, whose sum of edge weights is as small as pos-
sible. The MST finding algorithms in graphs are
widely used in many fields in computer sciences such
as computer networks, maps technology, bioinformat-
ics, and other computations. Privacy-preserving mini-
mum spanning tree algorithms have not been yet stud-
ied enough due to the novelty of the technology and
high computational cost in secure multiparty com-
putation (SMC) protocols. These protocols provide
secure implementations for the arithmetic black box
(ABB) (Damgård and Nielsen, 2003) abstraction, in-
side which the privacy-preserving operations are per-
formed without leaking anything about the results of
the main and intermediate computations. The pri-
vate input in the ABB comes from the participants
in the computation before starting to perform secure
computation. The operations of the ABB use its in-
ternal, private memory to store the data during the
processing (Laud and Kamm, 2015). Each operation
incurs significant latency, due to the communication
between the computing nodes of the SMC platform.
These features increase the computational costs of the

total running time of an application in the SMC plat-
form. This challenge leads to the need for performing
the privacy-preserving computation efficiently, reduc-
ing the running time while still keeping the computa-
tion secure. Especially, the gap of the problem will
increase if we apply the protocols for finding a mini-
mum spanning tree to large graphs. In this work, we
propose a parallel privacy-preserving minimum span-
ning tree algorithm for graphs of large size, the algo-
rithm should be fit with SMC protocols, secure and
reducing the running time of finding the final results.

In general, finding the minimum spanning tree
in privacy-preserving manner proceeds by applying a
standard MST algorithm on top of the ABB. Once the
input data has been stored in the ABB, its partition
among several parties is handled through the protocol
set by some way to process the data in parallel to re-
duce the round complexity of finding the result. There
are several standard algorithms for finding a mini-
mum spanning tree regardless of the form of the input
data as an adjacency list or matrix. One of the oldest
algorithms for finding a minimum spanning forest in
the case of a graph that is not connected is Borůvka’s
Algorithm (Boruvka, 1926). The most well-known
MST algorithms are Prim’s minimum spanning tree
algorithm for weighted undirected graph (Prim, 1957)
and Kruskal Algorithm (Kruskal, 1956).

Anagreh, M., Vainikko, E. and Laud, P.
Parallel Privacy-preserving Computation of Minimum Spanning Trees.
DOI: 10.5220/0010255701810190
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 181-190
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

181

In this paper, we will present the implementa-
tion of the minimum spanning tree algorithm for the
sparse, or dense representations of several graphs on
top of state-of-the-art SMC protocol sets. Our im-
plementation for finding the minimum spanning tree
is based on Prim’s algorithm and the parallel obliv-
ious reading subroutine by Laud (Laud, 2015). We
use the Sharemind SMC platform (Bogdanov et al.,
2008; Bogdanov et al., 2012b) as the protocol set,
which uses secret sharing to get the private input and
to represent the intermediate values of the computa-
tion. The research contribution is presenting a par-
allel privacy-preserving algorithm of the Prim’s min-
imum spanning tree algorithm for different kinds of
graphs where the number of the vertices and the num-
ber of edges are public, but the edges themselves —
their end-points and weights — are private. In all
of our implementations of the proposed algorithm,
we benchmark them and their parts on several graphs
with different sizes and we compare our results with
previous works.

The organization of the paper is as follows. Sec-
tion 2 briefly presents the related work. Section 3
gives the background on SMC and its abstraction,
the ABB. Section 4 presents the Parallel privacy-
preserving Prim’s algorithm. Section 5 describes our
implementation, gives the benchmarking results, and
compares them to related work. The last section 6
concludes the paper, discussing its results and the fu-
ture work.

2 RELATED WORK

There exists a significant body of work on privacy-
preserving graph algorithms using SMC. The privacy-
preserving computations allow the private data from
many sources to be used in a computation. Indeed,
without SMC, parties will avoid sharing their personal
data for a number of reasons. Consequently, many re-
searchers have proposed efficient privacy-preserving
methods for solving different problems in different
fields of computer science such as privacy-preserving
shortest path (Aly and Cleemput, 2017; Ramezanian
et al., 2018; Wu et al., 2016), privacy-preserving
data mining (Mendes and Vilela, 2017; Lindell and
Pinkas, 2000; Agrawal and Srikant, 2000; Bog-
danov et al., 2012a), privacy-preserving set match-
ing and intersection (Freedman et al., 2004; Saldamli
et al., 2019), privacy-preserving statistical data analy-
sis (Bogdanov et al., 2014a) and many others.

There has also been work on optimizing the cal-
culation of finding a minimum spanning tree to re-
duce the time complexity of the algorithms. Chung

et al. (Chung and Condon, 1996) proposed a parallel
method for finding a minimum spanning tree based
on the sequential version of Borůvka’s Algorithm. In
their implementation, they used four different kinds of
graphs — random graphs, random geometric graphs,
structured graphs, and TSP graphs on asynchronous,
distributed-memory machines. The method is not fit
to be run in privacy-preserving architecture because
of the distributed memory.

A simple parallel algorithm for finding a min-
imum spanning tree for undirected weighted graph
G= (V,E) on EREW PRAM is proposed by (Johnson
and Metaxas, 1992). The time complexity of their al-
gorithm is O(log3/2 n) using n+m processors, where
n= |V | is the number of the vertices and m= |E| is the
number of the edges. An important innovation in this
algorithm is to extract necessary information about el-
ements without explicitly shrinking components. The
algorithm is faster by a factor of

√
logn than any de-

terministic algorithm. The algorithm is designed to
be run over the EREW PRAM machine, which is not
suitable for huge graphs that occupy a lot of memory,
especially if the algorithm is modified to be compati-
ble with the SIMD approach as our algorithm in this
paper.

Vineet et al. (Vineet et al., 2009) presented a min-
imum spanning tree algorithm on Nvidia GPUs under
CUDA. The proposed algorithm is a recursive formu-
lation of Borůvka’s Algorithm for a huge undirected
graph. The size of the graphs they use in the imple-
mentation reaches 5 million vertices and 30 million
edges. The result shows that the speedup of the algo-
rithm is 50 times over CPU and around 9 times over
the best GPU implementation for finding the MST. It
is an efficient algorithm that gives the result within
1 second for a huge graph. Another minimum span-
ning tree algorithm on Nvidia GPU under CUDA is
invented (Wang et al., 2010). This algorithm is based
on Prim’s algorithm using the newly developed GPU-
based Min-Reduction data-parallel primitives. The
result shows that the speed-up is 2 times on GPU over
CPU implementation and 3 times over non-primitive
implementation. Both proposed algorithms over GPU
are not fit to be run in our Sharemind SMC platform.

A minimum-weight degree-constraint spanning
tree algorithm is proposed by Boldon et al. (Boldon
et al., 1996). They used a massively-parallel SIMD
machine, MasPar MP-1, to implement the four heuris-
tics for approximate solutions to the d-MST problem.
The parallel implementation method is designing a
suitable PRAM algorithm then implement it directly
in the MasPar MP-1. The result shows that the graph
with 5000 vertices and 12,5 million edges can be pro-
cessed in less than 10 seconds.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

182

In (Suraweera and Bhattacharya, 1992), a parallel
algorithm for finding a minimum spanning tree for a
weighted undirected graph is proposed, the time com-
plexity is O(logm). The parallel algorithm in this
paper is based on the modification of the sequential
algorithm in (Suraweera, 1989) and the Klein’s algo-
rithm (Klein and Stein, 1990). The implementation
using O(m+n) processors is presented for the SIMD
machine where m and n are the numbers of edges and
vertices respectively. The optimization in this work
achieves a speed-up of O((m log logn)/ logm)

In our work, we are interested in optimizing the
calculation of the minimum spanning tree using the
SIMD approach in privacy-preserving manner. The
motivation is, that the privacy-preserving minimum
spanning tree has not been studied enough yet. In
(Rao and Singh, 2020), two privacy-preserving min-
imum spanning tree algorithms in the semi-honest
model are proposed. One of them is a privacy-
preserving MST algorithm based on Prim’s algorithm
,and the other is a privacy-preserving MST algo-
rithm based on Kruskal’s algorithm. Both proposed
privacy-preserving MST algorithms implemented on
top of Yao’s garbled circuit protocols (Yao, 1982;
Demmler et al., 2015; Liu et al., 2015). The structure
of the graph is public but the weights of the edges are
private. It would be more secure if the whole structure
of the graph would be private, and this is one of the
most significant issues in our work.

The privacy-preserving minimum spanning tree
algorithm based on the Awerbuch-Shiloach algorithm
(Awerbuch and Shiloach, 1987) is proposed by Laud
(Laud, 2015). He proposed privacy-preserving proto-
cols to perform in parallel many reads or writes of the
elements from the private vectors, according to pri-
vate addresses. The implementation of the privacy-
preserving minimum spanning tree algorithm with
protocols of private read or write had not been inves-
tigated before. In our paper, we use the same proto-
cols for private read or write for finding the privacy-
preserving minimum spanning tree based on Prim’s
algorithm using the SIMD approach in the Sharemind
SMC platform efficiently.

3 PRELIMINARIES

Secure Multi-party Computation (SMC/SMPC) is
a cryptographic protocol that enables a group of
n-parties with their private inputs (x0,x1,xn−1)
to jointly compute a function (y0,y1, ...yn−1) =
f (x0,x1, ...,xn−1) and receive the output, without any
party learning the private inputs of other parties and
the operations of the function. The secure execution

of the function f can take place by applying one of
the different approaches to SMC, e.g. garbled cir-
cuit (Yao, 1982), homomorphic encryption (Henecka
et al., 2010) or secret-sharing (Burkhart et al., 2010;
Damgård et al., 2009), or a combination of those. We
expect the privacy-preserving computation protocols
to provide privacy and integrity for the data they oper-
ate on, and for the parties of the protocol. To show the
existence of these properties in a composable manner,
the general-purpose model for the analysis of crypto-
graphic protocols is called the universally composable
security (UC) framework (of SMC) (Canetti, 2000).

Universally composable security means that the
real protocol is at least as secure as an ideal function-
ality, where the adversary cannot perform any attacks
by design and by definition, except for certain un-
avoidable attacks like failing to respond to messages.
One system is at least as secure as another system, if
everything that could happen to a user of the first sys-
tem (or: everything that this user could experience)
due to the actions of some adversary interfering with
the execution of that system and that user, could also
happen to the same user if it uses the second system
instead, again taking into account the adversarial ac-
tivities. If a real protocol is at least as secure as some
ideal functionality, then we can build a bigger sys-
tem on top of that ideal functionality, and analyze the
security of that system on the basis of the properties
of that functionality; the analysis remains valid if the
functionality is replaced by the real protocol (Canetti,
2000).

The Arithmetic Black Box (ABB) is a very use-
ful ideal functionality, abstracting the notion of secure
multiparty computation (Laud and Kamm, 2015).
ABB allows complex privacy-preserving computa-
tions to be securely described without going into the
details of protocols and private data representations,
i.e. the ABB allows the data and operations to be
considered private against the adversaries and the par-
ties. The parties refer to the data stored in the ABB
only through handles, they cannot access the private
data itself inside ABB, even the private data that came
from parties or what has been computed from it, i.e.
its a black box against parties. Protocol parties can
perform some operations with them and return the
result by a new handle. In some cases, the protocol
parties may need to get some private values stored in
ABB. Using a special declassification command, par-
ties can get the actual data pointed to by some handle.
Note that in privacy analyses, we have to argue that
a declassifying command gives no novel information
to the computing parties. It’s important to note that
ABB only responds if it receives the same instruction
from all computing parties in the ideal functionality

Parallel Privacy-preserving Computation of Minimum Spanning Trees

183

(Laud and Kamm, 2015).
In our proposed algorithm description below, the

privacy-preserving MST algorithm is built on top of
an ABB. We will use the common notation JvK to de-
note that value v is stored in ABB, and the notation J~vK
to denote the private vector of (v1, ...,vn) is also stored
in ABB, and accessed only through a handle. A write-
up of JvK+ JwK, or JvK · JwK, or v · JwK denotes the in-
vocation of an ABB command (i.e. a cryptographic
protocol) to cause the computation of the sum of two
private values, or the product of two private values,
or the multiplication of a private value with a public
value. Our ABB implementation also provides oper-
ations to compare two private values, and the choice-
operation: the expression if JbK then JxK else JyK de-
notes the selection of either JxK or JyK, depending on
the value of the private boolean JbK. In case some of
the operands are vectors, this write-up denotes the in-
vocation of several copies of protocols in SIMD man-
ner.

Regarding the invocation costs of the protocols
to perform operations with private values, it is im-
portant to note that our representation of private val-
ues is homomorphic with respect to linear operations,
meaning that the addition of two private values or
the multiplication of a private value with a public
value requires no communication between the com-
puting parties, and are hence considered to have the
complexity 0. In our algorithms below, we also use
some higher-level operations for which Sharemind
has particularly efficient implementations; these op-
erations can be thought of as extra commands of the
ABB (Laud and Kamm, 2015). There exists a private
representation of permutations of n elements, which
can be applied to vectors of length n. We denote
the application of a permutation JσK to a vector J~vK
with apply(JσK,J~vK). It results in a vector J~wK, where
wi = vσ(i) for all i ∈ {1, . . . ,n}. It is also possible to
apply the inverse of σ to ~v; we denote this operation
by unApply(JσK,J~vK). Finally, there is an operation to
generate random private permutations. In our imple-
mentation, we use the protocols by (Sven et al., 2011)
to implement apply and unApply. These implementa-
tions work in constant rounds and a linear number of
communicated values.

We also use the parallel private read subroutine
by (Laud, 2015), which is implemented as a pair of
commands. The command prepareRead(n,J~IK) takes
as arguments the length of the array from which the
reading is done, as well as the indices of the ele-
ments that we want to read. This command returns
some private data, which is consumed by the com-
mand performRead, which also takes the actual ar-
ray of length n as an argument. The implementation

of prepareRead works in logarithmic number (with
respect to n + |~I|) of rounds and linearithmic com-
munication. In contrast performRead only requires a
constant number of rounds and linear communication,
hence the parallel private read subroutine works best
if the same set of private indices is used for reading
many sets of values, from different vectors.

4 PRIVACY-PRESERVING
MINIMUM SPANNING TREE

An undirected graph G = (V,E) is a pair of a set of
vertices V and edges E, where E ⊆ V ×V , and the
order of the components of the elements of E does
not matter. The edges indicate a two-way relationship
among two vertices u ∈ V and v ∈ V , such that each
edge e = (u,v) ∈ E can be traveled in both directions.

In a weighted graph, each edge e in the graph G
has been assigned an integer value called weight de-
noted w(e) or w(u,v). A subgraph of G = (V,E)
is any graph G′ = (V ′,E ′), where V ′ ⊆ V and E ′ ⊆
E ∩ (V ′×V ′). The weight of a (sub)graph is the sum
of the weights of all of its edges. A tree is a connected
graph with no cycles, i.e. the removal of any edge will
disconnect a tree. A spanning tree T of an undirected
graph G is a subgraph that is a tree that includes all of
the vertices of G. Given a weighted undirected graph
G, we are interested in finding the minimum spanning
tree for the graph, i.e. a spanning tree with minimal
possible weight.

An undirected graph G = (V,E) with weighted
edges and n-vertices {0,1,,Vn−1} can be repre-
sented as a data structure in different ways. The ad-
jacency matrix of G is a matrix with size |V | × |V |,
where the elements of the matrix are the weights
w(u,v), where u ∈ V indexes the rows and v ∈ V in-
dexes the columns. As the size of the representation
is proportional to |V |2, independently of |E|, we call
it a dense representation.

A dense graph is a graph G = (V,E) in which the
number of edges |E| is close to the maximal number
of edges, i.e. |E|= O(|V |2).

In a sparse graph, the number of edges E is close
to the possible minimal number of edges for the graph
to be connected, |E| = O(|V |). Prim’s Algorithm
for MST. Prim’s algorithm maintains two sets of ver-
tices. The first set M (which our privacy-preserving
implementation represents as a vector of booleans ~M
of length |V |, with the value false meaning that the
corresponding vertex is included in the set) contains
the vertices already included in the MST. The set M
is actually public, for reasons that become apparent
shortly. For the rest of the vertices, we record in the

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

184

vector J~KK the length of the shortest edge that con-
nects them with some vertex in M. At every step of
Prim’s algorithm, we find the minimum-weight edge
between the sets M and V\M, and include it in the
MST, updating the set M. In the parent vector J~PK (of
length |V |), we record the tree we are building — for
each vertex v, the value P[v] denotes a vertex, such
that (P[v],v) was added to the tree when v was an ele-
ment of V\M.

In our algorithm, depicted in Alg. 1, the number
of vertices is public, while the adjacency matrix of
the graph G is private. The absence of an edge be-
tween two vertices is denoted by some ∞-value that
is larger than any length of an actual edge. Besides
the adjacency matrix, our algorithm also takes a start-
ing vertex s from which to start building the tree. In
general, this vertex can be selected arbitrarily.

Our algorithm starts (lines 2–10) by applying a
random, private permutation to hide the identities of
the vertices. By permuting the identities of vertices,
we will hide the order, in which the vertices will be
added to the set M. This is similar to (Aly and Cleem-
put, 2017) and is performed for similar reasons —
to avoid expensive, private data dependent memory
accesses in the following steps. In order to permute
the vertices, we generate a random private permuta-
tion JσK of length n. We permute all rows, as well
as all columns of JGK, using JσK; all rows can be
permuted in parallel, and similarly for columns. We
write G[u,?] for the u-th row and G[?,v] for the v-
th column. The last step in the permutation part is
finding the new identity of the starting vertex s. For
this, we apply the inverse of JσK to the identity vector
[0,1, . . . ,n− 1] (which will be classified in the pro-
cess), and take its s-th element. This element may be
declassified — it is just a random number picked from
the set {0, . . . ,n−1}.

In the main part (lines 11–28) of the algorithm, we
first (lines 11–14) set up the working arrays J~KK and
~M, as well as the array J~PK that records the parents
of each vertex in the MST. We will then run a loop
for n iterations, such that in each iteration we add one
vertex to the MST. The loop starts (lines 16–22) by
looking for the vertex u′ ∈ V\M that is closest to the
vertices in M. We create a list J~LK of all vertices not
in M, together with their distance from M. Here NIL
denotes the empty list and cons adds another element
(a pair) to the list. We will then use the function minL
to find the pair with the smallest first component. The
function minL, depicted in Alg. 2, has a completely
standard shape; it applies the associative operation to
a list in a tree-like manner. After finding the pair with
the smallest distance, we take its second component

Data: Number of vertices n, starting vertex s,
edge weights JGK (a n×n array)

Result: Minimum Spanning Tree J~T K
1 begin
2 JσK← randPerm(V)
3 forall u ∈ {0, . . . ,n−1} do
4 JG′[u′,?]K← apply(JσK,JG[u,?]K)
5 end
6 forall v ∈ {0, . . . ,n−1} do
7 JG′[?,v′]K← apply(JσK,JG′[?,v]K)
8 end
9 J~IK← unApply(JσK, [0,1, ..,n−1])

10 s′← declassify(JI[s]K)
11 J~KK← ∞

12 JK[s′]K← 0
13 JP[s′]K← s′

14 ~M← true
15 for idx = 0 to n−1 do
16 J~LK← NIL
17 for i = 0 to n−1 do
18 if M[i] then
19 J~LK← cons((JK[i]K,JiK),J~LK)
20 end
21 end
22 u′← declassify(second(min(J~LK)))
23 M[u′]← false

24 J~DK← JG′[u,?]K
25 J~CK← (J~DK < J~KK)?
26 J~KK← if ~M∧ J~CK then J~DK else J~KK
27 J~PK← if ~M∧ J~CK then u′ else J~PK
28 end
29 J~RK← prepareRead(n,J~IK)
30 J~T K← performRead(J~PK,J~RK)
31 return J~T K
32 end

Algorithm 1: Prim’s Algorithm.

— the identity of the vertex. We may declassify this
vertex, due to the random permutation on vertex iden-
tities that we performed at the beginning.

The main part continues (lines 23–27) by updat-
ing the arrays J~KK and J~PK. Here J~DK (the reading
of which now requires no memory accesses by pri-
vate addresses) contains the lengths of edges incident
to u′. Lines 25–26 compute the conditions to update
J~KK, and line 27 uses the same conditions to update
J~PK for the vertices adjacent to u′, and still a part of
V\M. Note that operations in lines 25–27 are vector-
ized, which improves the running time of the proto-
cols implementing them.

Parallel Privacy-preserving Computation of Minimum Spanning Trees

185

Data: List of pairs of private values J~wK
Result: the element of J~wK with the minimal

first component
1 begin
2 m← length(J~wK)
3 if m = 1 then return Jw[0]K
4 begin in parallel
5 (JeK,JiK)←minL(leftbm/2c(J~wK))
6 (J f K,J jK)←minL(rightdm/2e(J~wK))
7 end
8 if JeK≤ J f K then
9 return (JeK,JiK)

10 else
11 return (J f K,J jK)
12 end

Algorithm 2: minL: minimal first component pair.

The last part in the algorithm (lines 29–30) is get-
ting the real value of the MST by applying Laud’s pro-
tocol (Laud, 2015) for private reading. It makes use
of the vector J~IK that contains the original order of the
vertices. Then algorithm finds the MST by perform-
ing two sub-routines of the protocol, prepareRead
and performRead. In detail, for vector J~PK with
length n and vector J~IK with same length, then the
vector of minimum spanning tree J~T K is given by
performRead(J~PK,prepareRead(n,J~IK)).
Time Complexity. There are two kinds of
communication-related complexities for secure
multiparty computation applications. This is the
reason why application in secure multiparty com-
putation has high latency. The first kind which is
related to the nature of the algorithm and how many
times the algorithm is going to be iterated to perform
the calculation, is called the Bandwidth. The second
kind which is responsible for increasing the latency
of the calculation is the Round Complexity. Let n
denote the number of the vertices in the given graph
G, and m the number of the edges. The structure of
private data we use in our algorithm is an adjacency
matrix, so the number of the edges m will be no more
than O(n2). The privacy-preserving Prim’s minimum
spanning tree algorithm requires O(n2) bandwidth
and O(n logn) rounds (where the size of a single
value is assumed to be a constant). Indeed, the initial
permutation of vertices takes O(n2) bandwidth, but
only a constant number of rounds (Sven et al., 2011).
The main loop is executed n times, each time re-
quiring O(n) bandwidth due to the SIMD-operations
on vectors of length n, and O(logn) rounds due to
the function minL. In the end, the private reading
operation requires O(n logn) bandwidth and O(logn)
rounds.

Security and Privacy. Our algorithm is built on top
of a universally composable ABB. If there were no
declassification statements in the algorithm, then its
composition with a SMC protocol set that is a secure
implementation of the ABB would inherit the secu-
rity and privacy properties of that protocol set (Laud
and Kamm, 2015). Our algorithm contains declas-
sification statements. Nevertheless, we can state the
following security theorem.
Theorem. Suppose that our SMC protocol set imple-
ments an ABB for k computing parties that is secure
against an active [resp. passive] adversary that cor-
rupts at most t computing parties. Then, an active
[resp. passive] adversary that runs in parallel with k
parties executing Alg. 1 and this SMC protocol set to
implement private computations, corrupting at most
t parties, will not learn anything about the inputs to
the algorithm beside the number of vertices n of the
graph, and the starting vertex s.
Proof. We need to construct a simulator that takes the
view of the adversary in the ideal world, and returns
the view of the adversary in the real world. The sim-
ulator runs a copy of the ideal functionality for the
ABB inside it. In the ideal world, the adversary only
receives the numbers n and s. In the real world, by
corrupting a number of parties, the adversary sees a
number of things:

• the inputs n and s;

• the handles to the private values, stored in the
variables marked with J·K in the algorithm;

• the declassified values;

• if the adversary is active: the reactions of the ABB
to the attempts of the corrupted parties to deviate
from Alg. 1.

It is not necessary to consider the values the real-
world adversary sees (through corrupted parties) dur-
ing the execution of the SMC protocols implementing
the ABB, nor the effects of any deviation from these
protocols by the corrupted parties — this is taken care
of by the composition theorem of the universal com-
posability framework.

The simulator gets the numbers n and s from the
ideal-world adversary. It can compute the handles it-
self, as their values (in contrast to the values they’re
pointing to inside the ABB) are public. The simulator
learns the commands that all k parties submit to the
ABB. If a corrupted party deviates from Alg. 1 and its
subroutines, the simulator learns this, as well as the
reaction of the ABB.

In order to simulate the declassified values, the
simulator generates a random permutation of the
numbers 0,1, . . . ,n− 1, releases the first of them at
the declassification in line 10, and releases them one

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

186

by one (thus repeating the first one) at the declassifi-
cations in line 22. Indeed, Alg. 1 randomly permutes
the vertices at the beginning, keeping the permutation
itself private, hence out of the view of the adversary.
Thus the order, in which the vertices are relaxed (i.e.
added to the set M) in the main loop, is a random or-
der.

5 RESULT AND EXPERIMENTAL

5.1 Benchmarking Results for Related
Work

Recently, a little bit of benchmarking results for
privacy-preserving minimum spanning tree algo-
rithms have been already documented. The bench-
marking of finding the minimum spanning tree in
privacy-preserving computation using a PRAM (Par-
allel Random Access Machine) algorithm by Awer-
buch and Shiloach has been implemented (Laud,
2015). The implementation used the protocols for
reading and writing private arrays (same Protocol we
use in this paper). He reported running time in time
logarithmic to the size of the graph, the number of
processors is based on the number of edges in the
graph. In detail, a dense graph with 2000 vertices
(and 1999k edges) is benchmarked in his work, the
running time is more than 104 seconds. In the sparse
graphs that are used for benchmarking, the number of
edges is only 6 times the number of vertices.

In (Rao and Singh, 2020), in sequential imple-
mentation, they presented privacy-preserving MST by
implementing two algorithms separately, Prim and
Kruskal algorithms. There is no real implementation
in their work, the time complexity for both algorithms
is O(m logn).

5.2 Privacy-preserving Prim MST
Experiments

In this work, we have implemented the parallel Prim’s
minimum spanning tree algorithm on the Sharemind
secure multiparty computation platform. We used
the single-instruction-multiple-data instructions sup-
ported by the SecreC high-level language (Bogdanov
et al., 2014b) to write the code of the implementa-
tion using 32-bit integers for weights and vertices
of the graphs. The three-party protocol set secure
against one passively corrupted party is used among
the three computing nodes in Sharemind. The com-
puting nodes are run on a cluster of three computers
connected with each other, where each computer is

12-core 3 GHz CPU with Hyper-Threading running
Linux and 48 GB of RAM, connected by an Ethernet
local area network with a link speed of 1 Gbps. The
parallel calculation is done by performing the single-
instruction-multiple-data approach, in which the pri-
vate data of the graph is shaped as vectors in order to
perform the calculation for the multiple data in one
single instruction. The data of the graphs is repre-
sented in secret-shared manner (both the inputs and
the outputs) among the three servers of Sharemind.

Table 1: Running time (in seconds) of privacy preserving
Prim’s algorithm.

G Vertex Edge Perm Loop PefR Total

20 75 0.02 0.2 0.02 0.24
50 150 0.08 0.7 0.02 0.81
50 250 0.09 0.71 0.02 0.81
50 1k 0.08 0.72 0.02 0.83
200 1k 0.81 6.07 0.04 6.91
200 5k 0.85 6.05 0.04 6.93
1k 5k 15.3 110.6 0.1 126

Sp
ar

se

3k 10k 136.3 920.1 0.2 1056.7
3k 15k 137.1 914.8 0.2 1052.1
3k 50k 133.2 920.3 0.3 1053.8
3k 100k 136.3 910.3 0.2 1046.9
5k 20k 375.4 2478.9 0.4 2854.7
5k 50k 371.2 2516.2 0.4 2887.8
5k 100k 375.0 2466.0 0.4 2814.5

50 1225 0.09 0.75 0.02 0.86
100 4950 0.23 1.9 0.02 2.18
250 31.1k 1.2 8.9 0.04 10.14
500 124.7k 4.3 31.3 0.07 35.67

D
en

se

1k 499.5k 14.5 107.2 0.1 121.9
2k 1999k 61.3 413.6 0.2 475.1
5k 12497k 375 2502 0.4 2879.5
10k 49.9M 1573 10069 0.9 11642.9

100 200 0.3 2.1 0.03 2.43
100 300 0.25 2.3 0.03 2.58
500 1000 4.1 32.2 0.06 36.36
500 1500 4.1 32.1 0.06 36.26
1k 2k 16.6 111.5 0.1 128.2
1k 3k 15.5 109.6 0.1 125.2

Pl
an

ar

2k 4k 58.4 418.1 0.2 476.6
2k 6k 57.4 416.2 0.2 473.8
3k 6k 133.4 913.5 0.2 1047.2
3k 9k 136.5 909.2 0.3 1046.0

8500 300k 1.1k 7.1k 0.6 8.2k
9500 500k 1.4k 8.8k 0.8 10.2k
10k 1M 1.5k 9.8k 0.7 11.3k

B
ig

20k 5M 5.9k 39.1k 2.1 45.0k
20k 10M 6.1k 39.6k 2.3 45.7k
30K 5M 13.4k 89.8k 3.6 103.2k

The execution time of our parallel privacy-
preserving prim’s minimum spanning tree algorithm
depends on the number of the vertices in the graph,
the number of the edges has no influence. We report
the execution time (in seconds) for running on sev-

Parallel Privacy-preserving Computation of Minimum Spanning Trees

187

Table 2: Total Bandwidth (in MB) of the three servers of Sharemind cluster in running different graphs.

Graph Server-1 Server-2 Server-3
Vertex Edge Time(S) Band.(MB) Time(S) Band.(MB) Time(S) Band.(MB)

50 300 0.81 10.0 0.81 9.7 0.81 9.9
50 1225 0.84 12.1 0.84 11.9 0.84 10.1
100 1K 2.21 35.9 2.27 35.0 2.21 34.2
200 5K 7.10 129.4 7.10 123.5 7.10 124.5
200 19.9K 7.10 128.3 7.10 124.9 7.10 127.0
1k 2K 129.9 3554.4 129.9 3075.3 129.7 3183.7
1k 3K 130.1 2820.6 130.1 2733.9 130.1 2799.4
1k 40K 129.1 2973.1 129.2 2809.7 129.2 2880.5
1k 499K 131.2 2887.8 131.2 2798.1 131.2 2863.6
3k 6K 1065.7 37064 1065.9 31230 1065.8 29723
3k 9K 1069.5 24983 1069.4 24000 1069.7 24770
5k 1M 2944 71666 2944 67993 2945 69664
5k 12.4M 2982 72636 2981 69055 2983 71023
10k 49.9M 11745 346330 11745 304688 11750 312186

eral graphs with different sizes in Table 1. It is im-
portant to note that our algorithm uses the adjacency
matrix as the representation of the private data of the
graphs, i.e. the data structure of the dense graph is
used but for the different kinds of the graphs depends
on the number of the vertices and edges. Three dif-
ferent kinds of graphs we used in our implementation
are sparse, dense, and planar. We split the running
time into three groups of the calculation to analyze
the real behavior of the algorithm. The three groups
are Permutation-operation which is shuffling the rows
and columns in the graph before finding the MST,
Loop-operation is for finding MST, and the last part
performRead-operation for reading the private array.

In the first group of the graphs, we used the data of
the sparse graph with dense representation in the im-
plementation. The smallest graph is a graph with 20
vertices and 75 edges, the number of edges is around
3x times the number of vertices. The graphs in the
group are based on the number of edges which is
given by m = xn. The biggest graphs we processed
are the graphs where the number of edges is around
20x and 33x times the number of vertices. The re-
sult shows that the number of edges has no influence
in the running time of the algorithm because of using
the SIMD. In the group of dense graphs, the num-
ber of edges is given by n(n− 1)/2, where n is the
number of vertices. The result shows our algorithm
for finding MST is the fastest algorithm in compari-
son with a previous algorithm as shown in section 5.1.
The third group of the graphs is a planar graph, where
the number of the edges is 2 or 3 times the number
of the vertices. Big graphs are also implemented in
our algorithm, the result shows how our algorithm is
efficient for finding MST in the private calculation for
big graphs that have up to ten million edges.

Parallel efficiency of the algorithm is better for
dense graphs than sparse ones. In Table 2 we present
the algorithm’s time in seconds and bandwidth con-
sumption results. The bandwidth is measured as
the total amount of communication (in and out) in
megabytes measured at each server running in par-
allel with two other servers in the cluster. It can be
observed from the table that in general, bandwidth
reflects well the measured time values with some
slight exceptions. These exceptions can be caused by
randomness of the generated graphs having different
edges and different weights with given set vertices.

6 CONCLUSIONS

In this work, we have shown how to use the state-
of-the-art algorithmic techniques to implement the
privacy-preserving version of the classical minimum
spanning tree algorithm. We use the Prim’s minimum
spanning tree algorithm for finding MST for the dense
graph representation but for different kinds of graphs.
Our implementation is a novel method, its running
time has never been achieved before especially for
dense graphs.

The size of the input graph plays a big role
in the performance of the privacy-preserving mini-
mum spanning tree algorithm, particularly the num-
ber of vertices in the graph. Using single-instruction-
multiple-data makes the number of edges less sig-
nificant in the performance of the privacy-preserving
MST. We use SIMD instructions as much as possi-
ble to restate the edges and vertices in private vectors,
particularly in relaxing the edges and in the procedure
of finding the minimum first component pair. Also, in

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

188

order to keep the privacy of the computation, we use
the permutation procedure to mask the real identities
of the vertices. The private reading protocol is used to
return the real value of the vertices after finished the
private calculation.

The future work on parallel privacy-preserving
minimum spanning tree algorithms may focus on
more parallelization opportunities for minimum span-
ning tree algorithms especially for sparse representa-
tion, not just for sparse data as in this paper. Also,
it may include the study of more MST algorithms
that may have an algorithmic structure that can be
parallelized efficiently to reduce the round complex-
ity more. The ability to use multiple-instruction-
multiple-data to reduce the round complexity of the
MST algorithm may also be useful.

ACKNOWLEDGEMENT

We would like to express our very great appreciation
to Dr.Benson Muite from the institutes of Computer
Science at the University of Tartu, for his valuable
and constructive suggestions during this work. This
work was supported by European Regional Develop-
ment fund through EXCITE-the Estonian Centre of
Excellence in ICT Research.

REFERENCES
Agrawal, R. and Srikant, R. (2000). Privacy-preserving data

mining. In Proceedings of the 2000 ACM SIGMOD in-
ternational conference on Management of data, pages
439–450.

Aly, A. and Cleemput, S. (2017). An improved proto-
col for securely solving the shortest path problem and
its application to combinatorial auctions. Cryptology
ePrint Archive, Report 2017/971. https://eprint.iacr.
org/2017/971.

Awerbuch, B. and Shiloach, Y. (1987). New connectivity
and msf algorithms for shuffle-exchange network and
pram. IEEE Transactions on Computers, (10):1258–
1263.

Bogdanov, D., Jagomägis, R., and Laur, S. (2012a). A
universal toolkit for cryptographically secure privacy-
preserving data mining. In Pacific-Asia Workshop on
Intelligence and Security Informatics, pages 112–126.
Springer.

Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt,
P., Talviste, R., and Willemson, J. (2014a). Privacy-
preserving statistical data analysis on federated
databases. In Annual Privacy Forum, pages 30–55.
Springer.

Bogdanov, D., Laud, P., and Randmets, J. (2014b). Domain-
polymorphic programming of privacy-preserving ap-
plications. In Proceedings of the Ninth Workshop on

Programming Languages and Analysis for Security,
pages 53–65.

Bogdanov, D., Laur, S., and Willemson, J. (2008). Share-
mind: A framework for fast privacy-preserving com-
putations. In European Symposium on Research in
Computer Security, pages 192–206. Springer.

Bogdanov, D., Niitsoo, M., Toft, T., and Willemson, J.
(2012b). High-performance secure multi-party com-
putation for data mining applications. International
Journal of Information Security, 11(6):403–418.

Boldon, B., Deo, N., and Kumar, N. (1996). Minimum-
weight degree-constrained spanning tree problem:
Heuristics and implementation on an simd parallel
machine. Parallel Computing, 22(3):369–382.

Boruvka, O. (1926). On a minimal problem. Práce
Moravské Pridovedecké Spolecnosti, 3:37–58.

Burkhart, M., Strasser, M., Many, D., and Dimitropoulos,
X. (2010). Sepia: Privacy-preserving aggregation of
multi-domain network events and statistics. Network,
1(101101).

Canetti, R. (2000). Security and composition of multiparty
cryptographic protocols. Journal of CRYPTOLOGY,
13(1):143–202.

Chung, S. and Condon, A. (1996). Parallel implementa-
tion of bouvka’s minimum spanning tree algorithm.
In Proceedings of International Conference on Paral-
lel Processing, pages 302–308. IEEE.

Damgård, I., Geisler, M., Krøigaard, M., and Nielsen, J. B.
(2009). Asynchronous multiparty computation: The-
ory and implementation. In International workshop
on public key cryptography, pages 160–179. Springer.

Damgård, I. and Nielsen, J. B. (2003). Universally com-
posable efficient multiparty computation from thresh-
old homomorphic encryption. In Annual International
Cryptology Conference, pages 247–264. Springer.

Demmler, D., Schneider, T., and Zohner, M. (2015). Aby-
a framework for efficient mixed-protocol secure two-
party computation. In NDSS.

Freedman, M. J., Nissim, K., and Pinkas, B. (2004). Effi-
cient private matching and set intersection. In Inter-
national conference on the theory and applications of
cryptographic techniques, pages 1–19. Springer.

Henecka, W., K ögl, S., Sadeghi, A.-R., Schneider, T., and
Wehrenberg, I. (2010). Tasty: tool for automating se-
cure two-party computations. In Proceedings of the
17th ACM conference on Computer and communica-
tions security, pages 451–462.

Johnson, D. B. and Metaxas, P. (1992). A parallel algorithm
for computing minimum spanning trees. In Proceed-
ings of the fourth annual ACM symposium on Parallel
algorithms and architectures, pages 363–372.

Klein, P. and Stein, C. (1990). A parallel algorithm for elim-
inating cycles in undirected graphs. Information Pro-
cessing Letters, 34(6):307–312.

Kruskal, J. B. (1956). On the shortest spanning subtree of
a graph and the traveling salesman problem. Proceed-
ings of the American Mathematical society, 7(1):48–
50.

Laud, P. (2015). Parallel oblivious array access for secure
multiparty computation and privacy-preserving mini-

Parallel Privacy-preserving Computation of Minimum Spanning Trees

189

mum spanning trees. Proceedings on Privacy Enhanc-
ing Technologies, 2015(2):188–205.

Laud, P. and Kamm, L. (2015). Stateful abstractions of se-
cure multiparty computation. Applications of Secure
Multiparty Computation. Cryptology and Information
Security, 13:26–42.

Lindell, Y. and Pinkas, B. (2000). Privacy preserving data
mining. In Annual International Cryptology Confer-
ence, pages 36–54. Springer.

Liu, C., Wang, X. S., Nayak, K., Huang, Y., and Shi, E.
(2015). Oblivm: A programming framework for se-
cure computation. In 2015 IEEE Symposium on Secu-
rity and Privacy, pages 359–376. IEEE.

Mendes, R. and Vilela, J. P. (2017). Privacy-preserving data
mining: methods, metrics, and applications. IEEE Ac-
cess, 5:10562–10582.

Prim, R. C. (1957). Shortest connection networks and some
generalizations. The Bell System Technical Journal,
36(6):1389–1401.

Ramezanian, S., Meskanen, T., and Niemi, V. (2018).
Privacy preserving shortest path queries on directed
graph. In 2018 22nd Conference of Open Innovations
Association (FRUCT), pages 217–223. IEEE.

Rao, C. K. and Singh, K. (2020). Securely solving pri-
vacy preserving minimum spanning tree algorithms in
semi-honest model. International Journal of Ad Hoc
and Ubiquitous Computing, 34(1):1–10.

Saldamli, G., Ertaul, L., Dholakia, K., and Sanikommu, U.
(2019). An efficient private matching and set intersec-
tion protocol: Implementation pm-malicious server.
In Proceedings of the International Conference on
Security and Management (SAM), pages 16–22. The
Steering Committee of The World Congress in Com-
puter Science, Computer

Suraweera, F. (1989). A fast algorithm for the minimum
spanning tree. Computers in industry, 13(2):181–185.

Suraweera, F. and Bhattacharya, P. (1992). A parallel al-
gorithm for the minimum spanning tree on an simd
machine. In Proceedings of the 1992 ACM annual
conference on Communications, pages 473–476.

Sven, L., Jan, W., and Bingsheng, Z. (2011). Round-
efficient oblivious database manipulation. In Lai,
X., Zhou, J., and Li, H., editors, Information Se-
curity, 14th International Conference, ISC 2011,
Xi’an,China, October 26-29, 2011. Proceedings, vol-
ume 7001 of Lecture Notes in Computer Science,
pages 262–277. Springer.

Vineet, V., Harish, P., Patidar, S., and Narayanan, P. (2009).
Fast minimum spanning tree for large graphs on the
gpu. In Proceedings of the Conference on High Per-
formance Graphics 2009, pages 167–171.

Wang, W., Guo, S., Yang, F., and Chen, J. (2010). Gpu-
based fast minimum spanning tree using data paral-
lel primitives. In 2010 2nd International Conference
on Information Engineering and Computer Science,
pages 1–4. IEEE.

Wu, D. J., Zimmerman, J., Planul, J., and Mitchell, J. C.
(2016). Privacy-preserving shortest path computation.
arXiv preprint arXiv:1601.02281.

Yao, A. C. (1982). Protocols for secure computations. In
23rd annual symposium on foundations of computer
science (sfcs 1982), pages 160–164. IEEE.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

190

