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Abstract: In this paper we study the problem of the recognition process for iris images with missing information. Our 
approach uses keypoints related features for solving this problem. We present our recognition results obtained 
using SURF (Speeded-Up Robust Features) features extracted from occluded iris images. We tested the 
influence on the recognition rate of two threshold parameters, one linked with the SURF extraction process 
and the other with the keypoint matching scheme. The proposed method was tested on UPOL iris database 
using eleven levels of occlusion. The experiments show that the method we describe in this paper produces 
better results than Daugman procedure on all considered datasets and the results we previously obtained using 
SIFT features. Comparisons were also performed with iris recognition results that use colour for iris 
characterization, computed on the same databases of irises with different levels of missing information. 

1 INTRODUCTION 

There are many applications that use iris biometric 
features for automatic security and access control. 
This type of authentication that uses iris information 
is a non-invasive technology which provides a highly 
reliable solution. Generally, irises have a unique 
structure for each human being as those provided by 
fingerprints or the network of retinal blood vessels. 
For each person, the iris has a unique texture pattern 
that allows the process of person recognition. It’s true 
that one major limitation is related to the image 
acquisition conditions, when images of the iris with 
occluded parts, or bad illumination can interfere with 
the recognition process. These types of problems 
require special approaches in order to have acceptable 
iris recognition results.  One way to treat this problem 
is by using keypoint detectors that help extract the 
essential iris information. 

Since the development of the famous Iris Code 
(Daugman, 1993, 2015), a lot of research was 
conducted on the problem of iris recognition. An 
excellent review of the methods and research 
directions in this field can be found in (Bowyer & 
Burge, 2016).  De Marsico, Petrosino & Ricciardi,. 
(2016) and Harakannanavar & Puranikmath (2017) 
provide also excellent reviews on the iris recognition 
problem. In the pandemic context, when faces are 
covered by mask, the iris recognition problem 
becomes of increased interest. Nguyen et al. (2017) 

present the research on long range iris recognition. 
Rattani & Derakhshani (2017) present a survey of 
methods that are analysing not only the iris but the 
entire region of the eye. A very interesting approach 
using deep learning tools are considered in Nguyen et 
al. (2017). 

Considering the iris recognition problem with 
SURF descriptors, in (Ali et al., 2016) the effect of 
different enhancement methods as CLAHE, HE 
(Histogram Equalization), AHE (Adaptive Histogram 
Equalization) and classical matching procedure are 
tested. The method is tested on CASIA dataset and 
the results are compared with those obtained using 
SIFT, HOG, MSER and DAISY descriptors. The best 
results are in range 99.5% to 100% and are obtained 
with CLAHE. Mehrotra, Sa & Majhi (2013) propose 
a new iris segmentation procedure. The SURF 
features are extracted after segmentation. Image 
matching is performed using the Euclidean distance 
and the nearest neighbour ratio procedure. 
Experiments are conducted on different iris datasets: 
BATH, with the best results of 98.24%, UBIRIS, with 
96.58%, and CASIA with 97.32%. The authors state 
that their method is robust to scale changes and 
rotations, occlusion and illumination changes. In the 
experiments performed on CASIA dataset by Bakshi 
et al. (2012), both SIFT and SURF features are 
extracted, the matching between two images being 
performed in three stages. After, the matching scores 
are combined.  
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Mehrotra, Majhi & Gupta (2009) apply SURF 
keypoint detection on the annular iris image. The 
usual normalization step is skipped to preserve as 
much iris information as possible. The matching 
procedure uses the Euclidean distance between the 
local features, two keypoints are paired if the distance 
between them is less than a fixed threshold. Three 
datasets are used in experiments, CASIA, BATH and 
IITD.  In other experiments, Ismail, Ali & Farag 
(2015) before computing the SURF descriptors, 
CLAHE (Contrast Limited Adaptive Histogram 
Localization) enhancement technique is applied. The 
experiments are made on CASIA dataset. The 
matching procedure uses a fusion process of the 
scores obtained at different levels, the results range 
from 99.5% to 100%.  

Păvăloi & Ignat (2018) introduce a new method 
for handling occluded iris images, using colour 
features. In Ignat & Vasiliu (2019) the problem of 
missing information is approached with an inpainting 
procedure. In Păvăloi & Ignat (2019b) SIFT 
descriptors are employed for solving the problem of 
iris recognition for irises with missing information. 

We compute SURF descriptors in the present 
work and use them for iris recognition. For testing our 
method we used the original and the standardized 
segmented UPOL iris databases. For simulating the 
missing information situations, starting from UPOL 
dataset, we generated eleven datasets with different 
levels of occlusion. SURF feature extraction 
algorithm and the matching procedure depend on 
some threshold parameters. We tested the impact of 
these thresholds on the recognition results. We 
compare the results of our experiments with those 
obtained using Daugman procedure, implemented by 
Masek and with Păvăloi & Ignat (2109a, 2019b) 
results. We obtain better recognition rates on nine out 
of eleven datasets. 

In Section 2 the datasets used in the experiments 
are presented. Section 3 outlines the SURF features 
extraction process and the recognition method. In 
section 4 are presented the results and the conclusions 
as well as future directions of research are stated in 
Section 5. 

2 DATABASES 

For our computations we used the well-known UPOL 
iris dataset (Dobeš et. Al, 2006, 2004) .This dataset 
consists of iris images in .PNG format, all the images 
having the same dimensions 576 × 768 × 3 pixels (see 
the first image from Fig. 1). The collection contains 
iris images for 64 persons, six images for each 
individual, three for the right eye and three for the left 

eye. The background of all these images is black. We 
first performed some experiments on the datasets that 
contain irises with full information. We have three 
versions for UPOL dataset, the original unsegmented, 
a manually segmented version (Păvăloi, Ciobanu & 
Luca, 2013) and a standardized segmented collection 
(Ignat, Luca & Ciobanu, 2016). In Fig. 1, a sample 
from each of these datasets are shown.  

   

(a)                         (b)                    (c) 
Figure 1: Examples of images in UPOL database: (a) - 
original, (b)- manually segmented, (c) – automatically 
segmented and standardized. 

We performed some computations in order to 
decide which of the three versions of these datasets to 
further use in our experiments. The original, 
unsegmented dataset produced results that were 
inferior to those obtained on the other two datasets. 
The difference between the recognition rates obtained 
on the manually segmented dataset and the 
standardized one are almost the same (less than 1%). 

 
Figure 2: Samples from occluded UPOL datasets with 
missing information from 5%, 10% to 90%. 

We decided to employ in our experiments the 
standardized UPOL dataset. The images in this 
dataset have 404 × 404 × 3 pixels, the region with iris 
information having the same size (the pupil zone has 
the same size).  The eyelid-eyelash occlusion was 
simulated by cutting some regions from the lower and 
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upper part of the iris (see Fig 2).  We eliminated more 
information from the upper part of the iris image than 
from the lower part. We eliminated iris information in 
such a way as to obtain images that have about 5%, 
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 
and 95% occlusion of the annular region of the iris. 

3 SURF FEATURE EXTRACTION 
AND RECOGNITION METHOD 

SURF, i.e. Speeded-Up Robust Features introduced 
in (Bay, Tuytelaars & Van Gool, 2006) is one of the 
most employed keypoints detector. As its name 
suggests, it is a faster and better version of SIFT 
descriptor.  Around these keypoints, local features are 
extracted, having the same size, either 64 or 128 
components. We chose for our experiments the 
variant with 128 elements. The number of keypoints 
that the SURF method computes, depends on the 
content of each image, two different images have 
different number of keypoints associated. For each 
one of these keypoints a feature vector with 128 
components is calculated. 

For the same image, one can compute different 
number of keypoints, depending on the choice of 
parameters involved in the SURF process, such as the 
threshold for the Hessian matrix or the number of the 
Gaussian pyramid octave or the number of octave 
layers within each octave. 

We describe in the following the matching 
procedure between the keypoints of two images. The 
algorithm is an adaptation of the technique developed 
in (Păvăloi & Ignat, 2019). Assume we want to match 
two images, I and J. We first apply the SURF 
procedure to both of them. The SURF algorithm 
computes around the detected keypoints, m feature 
vectors, 1 2, , , mt t t  for image I and n feature vectors 

1 2, , , nd d d  for image J.  
Each image has a different number of feature 

vector associated (n≠m). We match keypoints from 
image I with keypoints from image J in the following 
way. We first compute all the distances from each 
feature vector associated with image I to all the 
feature vectors associated to image J.  

The keypoint represented by feature vector ti   
matches the keypoint represented by feature vector dk 
if the following relation is fulfilled: 

dist(ti, dk) ≤ T dist(ti, dj),   j≠k   (1)

where T>0 is a threshold parameter that allows to 
control the matching process. This type of matching 
is called nearest neighbor ratio matching procedure.  

In equation (1) we tested three distances: Euclidean, 
Manhattan and Canberra.  
After applying the SURF algorithm and performing 
the matching procedure, we define the distance 
between two images as the average of the distances 
between the coordinates of the matching keypoints. 

d(I,J)=average{|| pr – ql||}  (2)

where pr denote the coordinates of a keypoint from 
image I which is paired with a keypoint from image J  
with coordinates ql. We used the Manhattan formula 
for computing the distances between the coordinates 
of the keypoints.  
 Denote by I the test image, and by S={Jp, p=1,s} the 
training set. Assigning a label to image I, using the 
above described matching procedure is done by 
computing the following steps:  
Step 1: Apply the SURF algorithm to I and all the 
images in S.  
Step 2: Compute the number of matching points 
between the test image I and all the images from S 
using formula (1).  
Step 3: Denote by  mp  the number of matching points 
between the test image I and image Jp. Let q be the 
maximum number of matching points, i.e. 

q=max{mp; p=1,…,s}  (3)

Select from the training set a subset of images that 
have at least "q-1" matching keypoints with the test 
image I.  
Step 4: We compute the distances between test image 
I and the images selected after Step 3. Choose the 
image from the subset at minimum coordinates 
distance. The selected image will provide the label for 
the test iris image.   
We tested the above mentioned three distances and 
the best results were obtained with Manhattan 
distance, so this is the distance that was used in our 
computations. 

4 RESULTS 

The number of extracted keypoints and feature 
vectors computed with SURF depends on the Hessian 
matrix threshold and the numbers of the pyramid 
octave. For this work we have tested how these 
parameters influence the recognition results.  We 
experimentally found that the most important 
parameter, the parameter which made the difference, 
is the threshold for the Hessian blob detector in SURF 
features extraction method. We denote this threshold 
parameter by H. Our computations show that this 
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parameter is of most significance for the method we 
propose in this paper. Different values for this 
parameter produce sets of keypoints of different sizes. 
Smaller values for this threshold provide more 
detailed information about the analysed image, thus 
improving the iris recognition results. On the other 
hand, it is of interest to have as few SURF descriptors 
as possible, because this reduces the computation 
time in the matching process. In our computations we 
adopted a Leave-One-Out type of recognition 
method. 

For each dataset, we have employed personalized 
values for the parameter H. We first computed some 
statistical values for each set of feature vectors, and 
different values of the threshold H parameter. These 
values are the total number of keypoints for the entire 
dataset, the minimum and maximum number of 
keypoints for the analysed images and the average 
number of keypoints. For this purpose, we used the 
segmented standardized UPOL dataset. The results 
are in Table 1.  

Table 1: SURF statistics for the standardized segmented 
dataset. 

Statistics/ 
H ↓ 

Total 
no 

Min Max  Average 

100 195575 138 839 509.31
150 140669 81 705 366.33
200 106907 49 580 278.4
250 84644 26 484 220.43
300 68704 10 423 178.92
400 48492 4 321 126.28
500 36368 2 253 94.71

 
Obviously, small values for the H parameter 

produces large numbers of features and as its value 
increases the number of feature vectors decreases. We 
performed computations on both the original 
unsegmented UPOL dataset and for the standardized 
segmented dataset. For the first dataset the number of 
feature vectors was bigger than for the second one. 
For example, for H = 500, the original dataset has an 
average of 94840 features (and a recognition rate of 
86.46%), and the standardized segmented dataset 
only 36368 features (recognition rate 94.71%). The 
reason why we use in our further computations the 
standardized segmented version of UPOL dataset is 
that we obtained better results on this dataset than on 
the other datasets. 

It is obvious that the number of well recognized 
images increases when the number of extracted 
keypoints increases. One has to carefully choose the 

H parameter in order to balance the recognition 
results and the computing time.  

Considering the following values for the threshold 
parameter involved in the matching process, T∈{0.6, 
0.7, 0.8}, and for the Hessian related threshold 
H∈{100, 200, 250, 300, 400, 500} we obtain the 
recognition results depicted in Table 2. 

Table 2: Number of well recognized images on 
standardized UPOL dataset. 

T/H 100 200 250 300 400 500 Avg
0.6 382 378 372 369 358 342 366.83
0.7 384 378 373 371 364 350 370.00
0.8 381 375 369 363 347 335 361.67

 
Although the recognition results are very good, 

the processing time for H =100 is very big, because 
the number of detected keypoints is large, and each 
feature vector associated with these keypoints has to 
be compared with all the others. Anyway, for T= 0.7 
and H=100 the maximum number of recognized 
image (384) is achieved.  

We also computed the number of well recognized 
images on the original UPOL dataset. The two 
threshold parameters that we analyse in this work 
were T∈{0.5, 0.6, 0.7}, and H∈{200, 300, 400, 600, 
1000}, and the results are in Table 3. Note that the 
recognition results are lower than those computed for 
the segmented, standardized dataset. This emphasizes 
the fact that a good segmentation procedure yields 
good recognition results. 

Table 3: Number of correctly recognized images on original 
UPOL. 

T/H 200 300 400 600 1000 Avg
0.5 376 365 351 321 260 334.6
0.6 376 364 346 318 253 331.4
0.7 371 345 330 296 222 312.8

 
Considering the parameter H=200, and computing 

the above mentioned statistics for the eleven datasets 
with different levels of missing iris information we 
get the results from Table 4. 

From the statistics in this table we deduce that the 
number of feature vectors decreases as the level of iris 
occlusion increases. Starting with 60% missing 
information the average number of keypoints is less 
than 200 and for 90% and for 95% missing 
information the average is less than 100. Sure, one 
can force SURF to compute more features by 
choosing smaller values for the H threshold 
parameter, but this comes with the inconvenience of 
a very long computing time. 
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Table 4: SURF statistics for occluded datasets H= 200, T= 
0.7. 

Statistics/ 
Occlusion 

Total 
no 

Min Max  Average 

05 11095 54 5 288.95
10 11090 57 571 288.81
20 10579 54 541 275.51
30 98312 45 508 256
40 91958 245 458 239.4
50 84561 33 433 220.2
60 73765 29 365 192.1
70 55860 28 284 145.4
80 43606 15 218 113.56
90 3220 15 149 83.87
95 2413 15 117 62.85

 
In Table 5 we present the number of correctly 

classified images for H=200, T=0.7 for irises with 
occlusions. We performed computations on the entire 
dataset and separately on the left eye and on the right 
eye.  

Note that the results are very good (98.95% for 
70% missing information). For images with 10% or 
5% iris information the SURF descriptor is unable to 
compute sufficient keypoints to have good 
recognition results. Note that, on average, the 
recognition results are similar for the complete 
dataset, right eye and left eye (95.45% for both eye 
dataset, 95.97% for the left eye, and 96.07% for the 
right eye). An interesting situation occurs for the left 
eye dataset with 70% missing information, in this 
case the recognition rate is 100%. 

Table 5: Recognition results for dataset with occlusion, H= 
200, T= 0.7. 

Recogn.  / 
Occlusion 

Left+Right 
eye 

Left 
eye 

Right 
eye

05 382 192 190
10 381 191 191
20 382 190 192
30 381 192 190
40 380 192 189
50 383 192 191
60 379 190 191
70 380 192 190
80 378 190 188
90 339 168 175
95 267 138 142

 
In the sequel, we focused our attention on the two 

datasets with the smallest amount of iris information. 
For H∈{25, 50, 100, 150 our method applied on the 

datasets with 90% and 95% of missing information 
will produce the results Table 6.  

Table 6: SURF statistics for occluded datasets with 90% 
and 95% occlusion, T=0.7. 

Total no Min Max  Avg.
90% 
H=50 66871 89 230 174.14 

90% 
H=100 48468 36 194 126.22 

90% 
H=150 39035 20 170 101.65 

95% 
H=25 57093 96 183 148.68 

95% 
H=50 50753 59 176 132.17 

95% 
H=100 36891 25 155 96.07 

95% 
H=150 29459 17 136 76.74 

 
The recognition results in terms of correctly 

classified images, for the datasets and parameters used 
in Table 6 are in Table 7. For the complete dataset with 
90% missing information one gets a very good 
recognition rate of 95.31%, for T=0.7, and H=50. For 
the complete dataset with only 5% of iris information, 
the best recognition result (89.58%) is obtained for 
T=0.7 and H=25. For the right eye dataset with 95% 
missing information and H=25 we get an excellent 
95.31% recognition result. We remarked that, in this 
situation, the right eye dataset has a better average 
recognition rate (90.25%) than the complete dataset 
(86.97%) and the left eye (87.27%). 

Table 7: Recognition results for occluded datasets with 90% 
and 95% missing information, T=0.7. 

 Left+Right 
eye Left eye Right eye  

90% 
H=50 366 180 187 

90% 
H=100 356 176 181 

90% 
H=150 348 177 178 

95% 
H=25 344 170 183 

95% 
H=50 335 169 173 

95% 
H=100 303 154 157 

95% 
H=150 286 147 154 
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In Table 8 we compare the results obtained with 
this method, those obtained in Păvăloi & Ignat 
(2019a,2019b) in two papers from 2019, one using 
only SIFT features, and the other using colour and 
SIFT features. We also compare our results with 
Daugman’s Iris Code (Daugman, 1993, 2015), 
algorithm that was implemented by Masek (Masek, 
2003).  

Table 8: Comparison results with other methods for the 
segmented standardized UPOL dataset, T=0.7  

Methods/ 
Miss. 
Info. 

(PI,a) (PI,b) Daugmann-
Masek 

Our 
method 

0 384 374 382 384 
05 382 372 381 382 
10 380 374 380 381 
20 377 376 378 382 
30 382 378 377 381
40 380 377 377 380 
50 381 374 375 383 
60 377 374 370 379 
70 375 373 361 380 
80 369 375 341 378 
90 305 369 316 366
95 174 367 275 344

 
In the last column of Table 8 the results were obtained 
with different values for the blob detection related 
threshold, H (the values that provided the best 
results). We get better recognition results in nine out 
of the twelve analysed experiments. For the cases of 
90% and 95% missing information the SURF 
procedure extracts very few keypoints and thus the 
recognition rate is lower. The method that provides 
better results in these situations, although uses a 
keypoint detector, but the results are improved in 
these case, by the colour features (Păvăloi & Ignat, 
2016).  

The images from the standardized UPOL 
collection are very regular, the annular iris region and 
the pupil have the same size in all the images. We 
tested our method on images with an irregular 
structure of the iris, and non-uniform background, by 
performing some computations on the images from 
the original UPOL collection. We considered three 
cases, namely images with 30%, 60% and 90% 
missing information (see Fig. 3).  

 

   

          30%                       60%                  90% 
Figure 3: Examples of iris images with missing information 
from the original UPOL database: 30%, 60%, 90%. 

We used, as before, H= 200 and T=0.7. The 
results of our computations are in Table 9. In this 
case, due to the fact that the image contains non-iris 
information, the recognition rate decreses more 
rapidly as the occlusion increases.  

Table 9: Recognition results for the original UPOL dataset, 
30%, 60%, 90% missing information. 

Missing 
info.

Left+Right 
eye Left eye Right eye  

0 371 186 186
30 354 180 175
60 342 168 176
90 245 126 119

 
We analyzed the importance of a standard iris 

segmentation by applying our method on the 
manually segmented UPOL. The iris images in this 
dataset have variable iris and pupil areas (see Fig. 4). 
The background is black. We used the same values of 
the thresold paramaters, H= 200 and T=0.7. The 
results are in Table 10. Note that in this case the 
results are lower than those obtained for the other two 
datasets. One reason for these results is the fact that 
SURF extracts orientation and shape information 
around the keypoints. Another reason for these 
differences is the distance (2) we use in the 
classification process. For very regular images, such 
as the images from the standardized UPOL collection, 
this distance works. For the other datasets one needs 
to find a new distance.  A third reason is the fact that 
the H parameter need to be carefully chosen for each 
dataset in order to obtain good recognition results. 

   

                0%                 40%               80% 
Figure 3: Examples of iris images with missing information 
from the manually segmented UPOL database: 0%, 40%, 
80%. 
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Table 10: Recognition results for the manually segmented 
UPOL dataset, 10% to 90% missing information. 

Missing 
info. 

Left+Right 
eye Left eye Right eye  

10 346 178 182
20 342 176 179
30 339 178 176
40 329 175 170
50 322 168 168
60 321 164 168
70 290 160 153
80 259 138 135
90 178 93 106

 
One way to improve the results for datasets with 
irregular shape of the iris images is to add texture 
information to the feature vectors extracted around 
the keypoints.  

5 CONCLUSIONS 

This paper presents the computation results on 
occluded iris image recognition using SURF features 
and an adapted method we previously developed for 
SIFT keypoint detection.  In experiments, the UPOL 
iris dataset was employed. We obtain, in some 
situations, better results than those computed with 
SIFT based features. We observed that the 
recognition accuracy depends on the number SURF 
features but after a certain level, the recognition rate 
reaches a plateau. For each dataset, the value of the 
Hessian threshold parameter used for computing 
SURF features must be established after some 
experiments. Usually, an average bigger than 200 
SURF descriptors for an image seems to give very 
good recognition results. Sure, for datasets with 90% 
or 95% missing information that target cannot be 
reached. Experiments have revealed that a good value 
for the matching threshold parameter is 0.7. 

In our future work we intend to employ also other 
datasets, as UBIRIS for example. In our future 
experiments we are interested in combining SURF 
method with texture features and the colour 
information. 
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