
Automatic Detection and Decryption of AES by Monitoring S-Box Access

Josef Kokeš, Jonatan Matějka and Róbert Lórencz
Department of Information Security, Faculty of Information Technology, Czech Technical University in Prague,

Thakurova 9, Praha 6, Czech Republic

Keywords: AES, Rijndael, Cipher, Encryption, S-Box, Key Recovery, Plaintext Recovery, Dynamic Analysis.

Abstract: In this paper we propose an algorithm that can automatically detect the use of AES and automatically recover
both the encryption key and the plaintext. It makes use of the fact that we can monitor accesses to the AES
S-Box and deduce the desired data from these accesses; the approach is suitable to software-based AES im-
plementations, both naı̈ve and optimized. To demonstrate the feasibility of this approach we designed a tool
which implements the algorithm for Microsoft Windows running on the Intel x86 architecture. The tool has
been successfully tested against a set of applications using different cryptographic libraries and common user
applications.

1 INTRODUCTION

In modern IT, security is no longer considered an af-
terthought; quite the contrary, security is a manda-
tory feature of many hardware and software products.
In recent months we have seen a major push for in-
creasing security which manifested e.g. in the an-
nouncements by browser manufacturers that they plan
to abolish or at least minimize unsecured web traffic
in near future (DeBlasio, 2020), or in the deprecation
of TLS protocols versions 1.0 and 1.1 from all major
browsers and other applications in early 2020. At the
same time, privacy concerns of the users are on the
rise (Auxier et al., 2019).

While the improvements in security often improve
privacy as well, this is not always the case. In partic-
ular, the increased use of encryption to protect com-
munication from outsiders can also remove control of
the legitimate users over the transmitted data as they
are no longer able to easily monitor the contents of
the network traffic. This is especially dangerous in
case of applications which are considered legitimate
by users but do not provide any means of verification
what is being sent over the network. For example,
an operating system or an application may very well
propose to send telemetry data to the developer to im-
prove the user experience, but if the source code of
that software is not available, the user cannot easily
verify what data is actually being collected. The user
could, of course, resort to the techniques of reverse
engineering, but that almost always requires so much

effort as to make this approach prohibitively expen-
sive.

In this paper, we propose an alternative solution to
this problem: We demonstrate an algorithm which can
automatically detect encryption and decryption with
the AES cipher and automatically recover both the en-
cryption keys and the plaintext data. We achieve that
by modifying the control flow of the target application
to monitor accesses to the substitution tables used for
the operation of the cipher and then deducing the ac-
tual plaintext data from these accesses.

2 PRELIMINARIES

In this section we will briefly introduce the common
ways of implementing AES on Intel-based architec-
tures.

2.1 Common Implementations of AES

AES is probably the most commonly used block ci-
pher in the world. It’s design and structure is defined
in (Daemen and Rijmen, 2002) and can theoretically
be implemented according to that as well. It is, how-
ever, common to tailor the implementation to the spe-
cific features in the target CPU. Note that since the
key-expansion process is generally a one-time oper-
ation or at least is performed much more rarely than
the actual encryption, it is usually not optimized on
the algorithmic level and if any optimization is used

172
Kokeš, J., Matějka, J. and Lórencz, R.
Automatic Detection and Decryption of AES by Monitoring S-Box Access.
DOI: 10.5220/0010255201720180
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 172-180
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



at all, it’s left to the compiler and its choice of in-
structions and their ordering. For that reason, we will
only discuss the operations used in the actual encryp-
tion/decryption.

When targeting the Intel architectures (IA-32, In-
tel 64), the following approaches are usually taken:

2.1.1 The Naı̈ve Implementation

The naı̈ve implementation of AES follows the opera-
tions described in the cipher’s specification, i.e. key-
expansion, sub-bytes, shift-rows, mix-columns and
add-round-key, in the designated order and the speci-
fied number of repetitions.

The sub-bytes operation is commonly imple-
mented through a lookup table of 256 values where
the input to sub-bytes is used as an index to the table
and the output value is read from that location in the
table; another such table is used for the inverse of sub-
bytes. That removes the need for calculating inverses
in AES’s Galois field.

Shift-rows is typically implemented as described
as reordering of the bytes in the encryption state.

Mix-columns may either be implemented as
straight table multiplication or optimized by pre-
calculating the necessary multiples for each possible
input value. For encryption, we need multiples of two
and three, for decryption multiples of 9, 11, 13 and
14. That can be done by using 6 pre-calculated tables
with the same structure.

Add-round-key is again usually implemented in a
straightforward XOR, although multiple bytes may be
processed at once using e.g. 32-bit XOR instructions.

An example of this optimized approach can be
found in (Malbrain, 2007).

2.1.2 Implementation using T-tables

Assuming that the target CPU architecture sup-
ports 32-bit instructions, further pre-calculation al-
lows us to optimize the encryption process to just
four lookups and four XOR operations per column per
round, as described in (Daemen and Rijmen, 2002):

Given an input state of A = [ai, j],0 ≤ i < 4,0 ≤
j < Nb, expanded round key K = [ki, j],0≤ i < 4,0≤
j < Nb where Nb is the number of columns of A, we
can express the encrypted output state D = [di, j],0 ≤
i < 4,0≤ j < Nb as:d0, j

d1, j
d2, j
d3, j

=
3

∑
i=0

Ti(ai, j+Ci)+

k0, j
k1, j
k2, j
k3, j

 , (1)

where + is the operation XOR, Ci are the respective
left shifts for the i-th row of the state (e.g. 0, 1, 2 and

3 respectively for the 128-bit key version of AES) and
Ti are pre-calculated as:

T0(x) =

2 ·S[x]
1 ·S[x]
1 ·S[x]
3 ·S[x]

 ,T1(x) =

3 ·S[x]
2 ·S[x]
1 ·S[x]
1 ·S[x]

 ,

T2(x) =

1 ·S[x]
3 ·S[x]
2 ·S[x]
1 ·S[x]

 ,T3(x) =

1 ·S[x]
1 ·S[x]
3 ·S[x]
2 ·S[x]


(2)

for all possible byte values of x, given that S[x] is the
result of the sub-bytes transformation of x.

The T-tables can be further compressed by ob-
serving that they are in fact rotated versions of each
other and as a result only one of them needs to be pre-
calculated, the others can be obtained from it through
the use of rotation.

Further compression is possible if an unaligned
data access is possible because then the tables can be
stored overlapped.(Rijmen et al., 2000)

2.1.3 Implementation using Bit-slicing

The bit-slicing implementation (Käsper and Schwabe,
2009) is inspired by the hardware-based implementa-
tions of AES: The cipher’s state is represented as a
series of bits and the operations usually performed by
hardware gates are simulated using logical operations.
This approach has several significant advantages: it
does not need any pre-calculated tables (the lookups
are replaced by series of logical operations), reducing
memory requirements of the algorithm, the algorithm
takes a constant time in clock cycles as the operation
sequences are fixed regardless of any variations in in-
put data, and timing attacks on memory access are
difficult if not impossible (Matsui, 2006). The chief
disadvantage is the reduced speed of the algorithm, al-
though that can be offset if vector instructions (such as
those provided by the MMX, SSE, SSE2 etc. instruc-
tion sets) are used and we can process multiple blocks
of the cipher in parallel, e.g. in the CTR encryption
mode: we would “slice” bits from eight independent
states into eight 128-bit registers and process them in
parallel.

2.1.4 Implementation using AES-NI

In 2008, Intel introduced a new instruction set exten-
sion for a hardware support of AES encryption and
decryption (Gueron, 2010). It consists of 6 instruc-
tion which provide encryption and decryption of a
single round of AES as well as support for key expan-
sion and the inverse Mix-columns operation. Much

Automatic Detection and Decryption of AES by Monitoring S-Box Access

173



like bit-slicing, this technique provides high security
(e.g. resistance to timing attacks) and low memory
footprint because it does not use any in-memory ta-
bles, and in compared to bit-slicing provides a very
high performance due to its hardware-based imple-
mentation. Another benefit is the very simple imple-
mentation, although care needs to be taken to verify
that the AES-NI instruction set is actually available
at the CPU where the code is running – customarily,
the code would check for the presence of these in-
structions and then branch to either an AES-NI based
version or a traditional version based on one of the
approaches shown above.

3 OUR APPROACH

Our goal is to detect the use of AES automatically
and also automatically recover encryption keys and
plaintexts. We use dynamic analysis to achieve it –
we attach to the analyzed application as a debugger
and then make use of the debugging APIs to moni-
tor data accesses to the precalculated tables and de-
duce both the key and data from them. Obviously,
this approach is only applicable to AES implementa-
tions which make use of these tables, i.e. the naı̈ve
implementation or the T-tables implementation.

3.1 Locating Tables

In order to be able to monitor accesses to the tables,
we need to locate them in the target application’s
memory first. To do that, we use VirtualQueryEx
function to get the list of memory pages belonging to
the analyzed process, copy these pages to our mem-
ory using ReadProcessMemory and then search them.
Since the tables may be stored in a variety of fash-
ion, we do not compare memory blocks to known val-
ues but rather study the relationships between bytes
– we are looking for multiplications of the original
SubByte table1 with common interleaving (1 byte for
SubBytes, 4 bytes for T-Tables and 8 bytes for over-
lapping T-Tables).

With many applications, it is sufficient to perform
the search only once at the beginning of the applica-
tion because the tables are statically compiled into the
application. Some applications, however, build these
tables at least partially dynamically during their run-
time – e.g. to calculate the T-tables from the stati-
cally stored SubBytes table or to load a dynamic li-
brary which contains these tables. To facilitate sup-

11, 2 and 3 for encryption tables and 1, 9, 11, 13 and 14
for decryption tables

port for these applications, we perform the search re-
peatedly using a background thread; currently no per-
formance optimizations are performed for this search,
but it seems likely that some would be applicable.

3.2 Monitoring Access

Once we have located the substitution tables, we need
to monitor access to them. Based on the specific hard-
ware used, there may be different ways of doing so.
On the Intel architecture, we could use debug registers
(Intel Corporation, 2019) for this purpose, but unfor-
tunately only for memory locations of up to 8 bytes
each could be monitored, which is not enough to de-
tect all accesses – even SubBytes is at least 256 bytes
long, T-tables even longer.

Instead, we decided to make use the concept of
memory paging and memory page protection: Once
we know in which memory pages the substitution ta-
bles reside, we remove all access from these pages
using VirtualProtectEx by adding the PAGE GUARD
flag. When that was done, any access to any location
within the memory page causes a page fault exception
before passing it to the application itself the active de-
bugger – our tool – is notified about it through a debug
event. Specifically, we learn of the actual memory lo-
cation and the type of access (read, write, execute)
that caused the fault. We can then verify whether the
access was a substitution table access and if so, pro-
cess it accordingly.

Obviously, we must allow the application to actu-
ally perform the table access so that it can continue
in its execution. We achieve that by temporarily re-
moving the PAGE GUARD flag from the affected mem-
ory page, enabling the single-step (trap) flag in the
thread’s FLAGS register and resuming the thread; after
a single instruction the single-step flag causes another
debugging event which we capture and restore both
the memory protection by adding the PAGE GUARD flag
to the memory page and the standard thread execution
by clearing the single-step flag from FLAGS.

3.2.1 Special Considerations

While the monitoring process is fairly straightfor-
ward, care needs to be taken to facilitate several spe-
cial situations.

In particular, we need to consider the possibility
that the substitution tables are stored in the code seg-
ment rather than data segment, such as in (Polyakov,
2016). In that case an attempt to execute an instruc-
tion from the same memory page will cause a page
fault because the instruction itself cannot be read due
to the protection settings. That can be solved by

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

174



checking whether the access occurred inside a sub-
stitution table or whether it occurred somewhere else
within the monitored memory page, and in such a case
simply removing the protections, single-stepping the
instruction and then restoring the protections. It will
degrade the performance significantly but the code
will function as expected.

Unfortunately, that is not the case if the instruction
that accesses the substitution table is located within
the same memory page as the substitution table itself:
In this case, we would fail to detect the table access
because we removed the protection in order to exe-
cute the instruction and will only restore it after the
instruction has completed, i.e. after the table access.
We solve this problem by decoding the instruction in
software using a third-party library and determining
whether it is this particular case; if it is, we emulate
the instruction rather than execute it directly.

3.3 Monitoring Key Expansion

During key expansion, the substitution tables are used
to perform a SubWord operation:

Wi =


Ki for i < Nk

Wi−Nk + r(s(Wi−1))+ rconi/Nk for i≥ Nk, i≡ 0 (mod Nk)

Wi−Nk + s(Wi−1) for i≥ Nk,Nk > 6, i≡ 4 (mod Nk)

Wi−Nk +Wi−1 otherwise

(3)
Here, Ki is the i-th column of the master key, Nk

is the number of columns of the master key, Wi is the
i-th column of the expanded key and functions r and
w as well as the constant rcon are defined as follows:

r(w) = r


w0

w1
w2
w3


=

w1
w2
w3
w0



s(w) = s


w0

w1
w2
w3


=

S[w0]
S[w1]
S[w2]
S[w3]



rconi =

2i−1

0
0
0

 , for i ∈ N+

(4)

In order to properly recover the key, we need to
make several assumptions:

• While key expansion is being performed, no other
access to substitution tables is performed except
through the SubWord function.

• SubWord calls are performed in order of the
columns in the expanded key.

• Accesses to the substitution tables are the same in
all SubWord calls.

On the other hand, we do not make any assump-
tion on the order in which the bytes in a word are
being substituted – that might be influenced e.g. by
aggressive optimizations on the part of the compiler
while building the target application. We can, how-
ever, determine the proper ordering by verifying that
the dependencies between columns do exist as ex-
pected.

The dependencies must be calculated separately
for each size of the key. For example, with AES-128
we can make use of columns {x | x = 3+4k,k ∈N} of
the expanded key which depend on previous columns
as shown in Figure 1. Then:

Wi−3 Wi−2 Wi−1 Wi
+ + +r(s(Wi−4))+ rcon(i−3)/4

+

Wi−7 Wi−6 Wi−5 Wi−4
+ + +

Wi−10 Wi−9 Wi−8
+ +

Wi−13 Wi−12
+

Wi−16

Figure 1: Dependency of columns in the expanded 128-bit
key. The grayed boxes describe the final expression.

Wi =Wi−4 +Wi−1 =

=Wi−8 +Wi−5 +Wi−5 +Wi−2 =

=Wi−8 +Wi−2 =

=Wi−12 +Wi−9 +Wi−6 +Wi−3 =

=Wi−16 +Wi−13 +Wi−13 +Wi−10 +Wi−10

+Wi−7 +Wi−7 + r(s(Wi−4))+ rcon(i−3)/4 =

=Wi−16 + r(s(Wi−4))+ rcon(i−3)/4
(5)

To detect these dependencies we then require five
successive key columns. Since AES-128 performs
10 SubWord operations, we can produce six equa-
tions which describe the dependencies between all
columns:

W19 =W3 + r(s(W15))+ rcon4

...
W39 =W23 + r(s(W35))+ rcon9

(6)

If the captured table accesses do not adhere to
these expressions, then we know that the accesses are
not a part of the key expansion process or the assump-
tions above have been violated. We can make use
of this fact by finding the correct ordering of bytes

Automatic Detection and Decryption of AES by Monitoring S-Box Access

175



in each word by simply trying them all and checking
which leads to satisfying all the expressions.

In this fashion we can can recover every fourth
column of the expanded key W3,W7, ...,W35. Then
we can make use of the algorithm of key expan-
sion to calculate the remaining columns, e.g. Wi+3 =
Wi+Wi+4 for i∈ 3,7, ...,35, Wi =Wi+4+r(s(Wi+3))+
rcon(i+4)/4 for i∈ 0,4,8 etc., eventually recovering all
the columns of the key.

The key for AES-192 can be recovered in a similar
fashion, although only two equations can be used to
verify that we are indeed performing key expansion:

W41 =W5 +W17 +W29 + r(s(W35))+ rcon6

W47 =W11 +W23 +W35 + r(s(W41))+ rcon7
(7)

With AES-256, the recovery is complicated by the
fact that not all columns which entered SubWord can
be used for the expression of dependencies – we know
the value of W27 and W31, but we can not express it
using other columns:

W39 =W7 + s(W35)

W47 =W15 + s(W43)

W55 =W23 + s(W51)

W43 =W11 + r(s(W39))+ rcon5

W51 =W19 + r(s(W47))+ rcon6

(8)

As a result, we do not have sufficient informa-
tion to calculate the correct ordering of the bytes in
a word; W27 and W31 allow for 4! = 24 different valid
orderings each, giving us 242 = 576 different keys
which all satisfy the defined expressions. This obsta-
cle can be overcome by deferring the final calculation
of the ordering until the encryption phase, behavior
of which will help us detect which specific key was
actually used.

3.4 Monitoring Encryption

During encryption we will observe substitution table
access in every round of the cipher. Assume the fol-
lowing:

• While encryption is being performed, no other ac-
cess to substitution tables is performed except by
that block’s encryption.

• All substitution table accesses are ordered exactly
as the rounds themselves.

• No two rounds overlap.

• The data is being encrypted with the key expanded
in the last monitored Key Expansion phase.

We do not make any assumptions on the order of
accesses within one round.

The first input to SubBytes within a round is cre-
ated simply as a sum of the plaintext and the first
round key. It is passed through SubBytes and the out-
put is then processed according to the cipher’s specifi-
cations (rows shifted, columns mixed, next round key
added) and forms the input to the second round’s Sub-
Bytes. Repeat the process for the rest of the rounds,
skipping MixColumns in the last round.

With the assumptions above, we know the ex-
panded key, except possibly the ordering in some of
its columns. We can make use of this information to
determine the proper ordering of the states. Given S
the input state of one round’s SubBytes, T the out-
put state of the previous round’s SubBytes and K the
round key, we know that:

S = MixColumns(ShiftRows(T ))+K (9)

Unfortunately, we do not know the ordering of
SubBytes calls for the individual bytes of states S and
T . We can, however, re-formulate and relax the ex-
pression as:

∀x : x ∈ InvMixColumns(S+K) ⇐⇒ x ∈ T (10)

We could now check all 16! possible permutations
of state S and locate the matching one, but that would
require quite a lot of computational power. We can,
however, further relax the expression and apply it to
each column of the state separately:

∀x : x ∈ InvMixColumns(Si +Ki) =⇒ x ∈ T (11)

Now we only need to check 4× 16!
(16−4)! variations

of the ordering of S. For each selection we verify that
all of its bytes appear in T . If that is not the case, then
we know that we are not using the correct key. Oth-
erwise we can apply the same reasoning to the next
(or previous) round and express the condition on the
whole sequence. E.g. if S was the SubBytes output of
the last round and T its input, we can now focus on U
the output of the second-to-last round’s SubBytes, T
its input and L its key. Then:

∀x : x ∈ InvMixColumns(Ui +Li) =⇒ x ∈V (12)

We can substitute for U and express the left side
as:

InvMixColumns(InvSubBytes(T )i +Li) (13)

Substitute for T and again express the left side as:

InvMixColumns(InvSubBytes(InvShiftRows(
InvMixColumns(S+K))i +Li)

(14)

And so on for all n rounds of the cipher, yielding
n−1 conditions. We can now use these conditions to
find the correct ordering of the bytes in each interme-
diate state. Once we recover the first state, we can get
the plaintext by adding the first round key to it.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

176



In the previous chapter we noted that it may not
be possible to get the correct ordering of the whole
key, e.g. in AES-256. Instead, we only recovered a
set of candidate keys. It’s clear we could use them
all in the state-ordering calculations above, but that
would lead to a significant performance penalty. In-
stead, we can perform these calculations just for the
fourth columns of each state, because we have recov-
ered the most information for these: With AES-128,
we know the fourth columns of all round keys ex-
cept for the last, with AES-256 we know the fourth
columns of all round keys except for the first and the
last, and with AES-192 we know the fourth columns
of each third round’s key and we can calculate the
others from them. We do not need to know the ac-
tual permutation of the key, because we can test for
all of them if necessary. By applying these keys to the
conditions on states, we can conclusively state which
keys could not have led to the observed substitution
table accesses.

4 RESULTS AND DISCUSSION

In order to demonstrate this approach we created ap-
plication AesSniffer. It is written in C++ and con-
sists of three main parts: A system-dependent li-
brary for performing the debugging and memory ac-
cess work, a system-independent library for recover-
ing keys and plaintexts and a console tool for perform-
ing these tasks on third-party applications. This orga-
nization allows for a simple adaptation of the tool to
different operating systems: while the supplied appli-
cation is intended for Microsoft Windows, it is pos-
sible to adapt it to other OSes by reimplementing the
debugging core and the user interface while keeping
the recovery part unchanged – or improve the recov-
ery part and apply it to all variants of the application.

4.1 Library and Application Tests

The tests were performed using Microsoft Windows
7 SP1 x86 in a virtual machine provided by Ora-
cle VM VirtualBox with AES-NI and SSEx instruc-
tions disabled. Several popular cryptographic li-
braries were tested: OpenSSL2, CryptoPP3, Botan4

and WinCrypt5; in all cases a simple application for
encrypting and decrypting a sample block in the ECB
operation mode with a random 128-bit, 192-bit and

2https://www.openssl.org/
3https://www.cryptopp.com/
4https://botan.randombit.net/
5https://botan.randombit.net/

256-bit key. As a further test, two existing third-party
applications which use their own implementation of
AES, were tested: 7-Zip6 and Putty7; both of these
libraries use the CTR operation mode. Finally, we
tested our application’s ability to recover data sent and
received by PowerShell’s Invoke-WebRequest com-
mand over the HTTPS protocol using the CBC oper-
ation mode.

In all of these cases, the application was success-
ful in recovering both the key and the plaintext, al-
though with some limitations:

4.1.1 OpenSSL

All encryption and decryption of data was success-
fully detected and all keys and data were recovered.
We did encounter 8 unrecognized accesses to the sub-
stitution tables due to the cache prefetch code which
is a part of the OpenSSL implementation.

4.1.2 CryptoPP

The T-tables used by the library are calculated at run-
time from the standard SubBytes tables. While these
tables were eventually found by our application, ac-
cesses to them detected and data and keys recovered,
this process did consume some time during which
some encryption was already performed, leading to
the loss of the early data. We also noticed 256 un-
recognized accesses to the SubBytes table while the
T-tables were being constructed.

4.1.3 Botan

Much like CryptoPP, Botan also calculates the T-
tables at runtime, leading to the loss of early data be-
fore the calculated T-tables could have been found.
Other than that, our application was able to detect all
encryptions and recover both the keys and the data.

4.1.4 WinCrypt

WinCrypt is a part of the Windows family of opera-
tion systems. We were able to recover all keys and
data, but we did encounter an error in the library
shipped with Windows 7 and Windows 8.1: After the
key expansion, four unexpected accesses to the sub-
stitution table were encountered, probably as a result
of an unnecessary SubWord call for the last column
of the expanded key, because the data were success-
fully recovered regardless. In Windows 10, no such
accesses were observed.

6https://www.7-zip.org/
7https://www.putty.org/

Automatic Detection and Decryption of AES by Monitoring S-Box Access

177



4.1.5 7-Zip

7-Zip supports encryption of the archives using the
AES cipher in CTR mode. We performed a test with
a file consisting of 32 zero bytes (two AES blocks)
in the “Store” mode (without compression). Our ap-
plication successfully detected two encryptions; both
used the same key and the plaintext were two suc-
cessive counter values (0x01, 0x00, 0x00, 0x00,
... and 0x02, 0x00, 0x00, 0x00, ...), as ex-
pected.

4.1.6 Putty

Putty uses the SSH protocol to encrypt the transferred
data, and AES is one of the supported ciphers in this
protocols. We attempted to recover data from a con-
nection where AES-256 in CTR mode was the agreed-
upon cipher between client and server. Two distinct
key expansions were detected and recovered as well
as a lot of encryptions. After we XORed the recov-
ered plaintexts with the encrypted data captured by
WireShark, we were able to observe data structure ex-
pected in the unencrypted contents of the SSH proto-
col.

4.1.7 PowerShell

PowerShell is a scripting language which, among
other things, supports reading web data using the
HTTPS protocol using the Invoke-WebRequest
command. When we enforced the use of TLS ver-
sion 1.0, the client and server agreed upon using the
AES-128 cipher in CBC mode. Our application suc-
cessfully detected both the key expansion and the en-
cryption as well as decryption of data and we were
able to verify that the recovered plaintext contained
the expected data of the HTTP protocol.

4.2 Performance Tests

During our tests we measured the speed of our ap-
plication in different scenarios using 7-Zip. The tool
was chosen because it allows precise specification of
the size of the data as well as precise measurement of
time; at the same time it is a real-world application
and as such can provide a real-world benchmark, un-
like a custom benchmarking application which would
be heavily dependent on the actual organization of the
AES code (e.g. whether the substitution tables were
located in the same memory page(s) as some other
frequently used data or code items). We created files
of 256, 4096 and 65536 bytes and measured how long
did 7-Zip take processing these files without compres-
sion but with AES-256 encryption in different scenar-

ios based on our application’s settings. The results
can be seen in Table 1.

It is apparent that the presence of our application
carries a significant performance penalty even if no
key- and plaintext-recovery is being done. This is
caused by the fact that on any access to the memory
page containing a detected substitution table causes a
page fault, a number of context switches between the
application, our AesSniffer and the operating system,
and several VirtualProtectEx calls, not to mention
the possible need for using a software decoder of the
affected instruction. While this penalty can be re-
duced if the monitored application used a friendlier
memory layout (e.g. the substitution tables would be
located in dedicated memory pages), the opposite is
also possible – if, for example, the substitution table
occupies the same memory page as a virtual method
table of some frequently used object class, the penalty
could be much more pronounced, even more so if
some frequently used code was located there as well.

Another significant increase in the processing time
can be observed if the detection of AES-192 is acti-
vated. The reason for that is that with AES-192 there
are far more possible permutations of the key than
with AES-128 and AES-256 because the columns of
the 192-bit key depend on five other columns rather
than three columns with 128- and 256-bit keys.

Finally, the size of the data to be encrypted ob-
viously increases the overall time because more ac-
cesses to the substitution table are required – 160 ac-
cesses per block in case of AES-128, 192 accesses per
block in case of AES-192 and 224 accesses per block
in case of AES-256.

While these penalties may seem overwhelming,
it should be noted that they are still far more man-
ageable than other dynamic approaches. We imple-
mented a very simple tracer into our application, one
which forces single-stepping of all instructions with-
out any additional processing (i.e. no AES detection
at all). Encryption of a 256-byte would then take more
than 38900 seconds, or something like 200-times the
worst case of our code with full detections enabled.

If better performance was desired, it is possible
to separate the gathering of data (monitoring accesses
to substitution tables) from the processing of the data
(key and plaintext recovery): While the first phase
must by necessity be performed at the time the ac-
cesses are done, the second phase does not need to – it
is quite sufficient to process the data asynchronously,
e.g. in a different thread or even offline from a record
of the accesses in a file. That would at the very least
resolve the penalty for using AES-192 which is un-
necessarily incurred synchronously in the current im-
plementation.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

178



Table 1: Performance penalty of AES detection in 7-Zip based on the size of encrypted data and the settings for the detection.
The “Simple Tracer” scenario represents a minimal trap-after-each-instruction implementation without any additional logic.

File size [B] 256 4096 65536
Time to process [s]
Without AesSniffer 0.06 0.06 0.15
AesSniffer, no detection 148.83 150.96 166.93
AesSniffer, only AES-256 150.06 182.26 329.56
AesSniffer, AES-256 and 128 159.52 204.53 347.51
AesSniffer, full detection 199.97 662.81 8138.84
Simple tracer 38964.26 – –

4.3 Limitations

From the presented tests it is obvious that the ap-
proach works in general. However, it does have cer-
tain limitations from the real-world-usage point of
view:

The whole approach is based on a set of assump-
tions which seem to hold true in may real-world li-
braries, but that is certainly no guarantee that it would
hold for all of them. In particular, with better com-
pilers and more aggressive optimization techniques in
them, we may well expect that loop unrolling could
violate the “no mixing of rounds” requirement. Sim-
ilarly, the use of true multithreading for encryption
might violate the condition of blocks being processed
sequentially, although in this case the use of thread
identifiers could be added to the processing code to
distinguish table accesses from different threads.

The key- and data recovery process is fairly slow
to the point of being unusable in scenarios where a
large amount of data is being processed, and it is
certainly possible to write code in such a way that
the slowdown might become even more pronounced.
While the speed could be improved in the general
case, against a targeted attack there is little to be done.

The major problem with our approach is that it
is only suitable for AES implementations which use
substitution tables located in the main memory. Bit-
slicing implementations are completely immune to
this approach, as is the usage of AES-NI instructions.
Fortunately, AES-NI can be readily disabled in cur-
rent environments, forcing the AES implementations
to fall back to the software-based implementation.
Also, it might be possible to replace the AES-NI in-
struction codes in memory with an INT3 instruction to
effect a breakpoint and then read the arguments from
the respective registers, although this approach suf-
fers from other issues (i.e. it is difficult if not impos-
sible to avoid false positives and the whole approach
is vulnerable to various anti-debugging techniques).
The bit-slicing implementations seem completely im-
mune even against this option.

It should be noted that even with a traditional soft-
ware implementation of AES, our algorithm may run
into trouble if the substitution tables do not exist in the
actual executable and instead are precalculated during
the program’s runtime. The less time there is between
the precalculation and the use of the tables, the more
likely it is that some encryption may escape the detec-
tion. The applications which only perform one task
and then quit may be particularly prone to this issue.
Research is needed to establish what, if anything, can
be done about it.

5 CONCLUSION

In this paper we proposed to introduce an algorithm
which can automatically detect the use of AES ci-
pher and to automatically recover both the key and
the plaintext. Our approach is based on the observa-
tion that traditional software implementation of AES
make use of precalculated substituted tables which
can be detected in the application’s memory, and that
by evaluating the accesses to these tables we can de-
duce the desired information. While this approach
carries a significant performance penalty and does not
work against more hardware-based implementations
such as Bit-slicing or the use of AES-NI, it still suc-
ceeds in a number of situations: We verified that we
are able to recover key and plaintext with several com-
monly used encryption libraries using our own test
applications, and we demonstrated that we could do
the same with existing third-party applications, two
of which use their own custom implementation of the
AES cipher. It can be expected that other applications
would be vulnerable to this approach as well, partic-
ularly so if they offload the encryption work to the
libraries we tested.

At the moment, there is little to be done with the
AES implementations which do not use a substitution
table. However, further research may provide some
ways of overcome this problem. It may well be worth
the while to try to distinguish AES-NI instructions

Automatic Detection and Decryption of AES by Monitoring S-Box Access

179



from the rest of the machine code and non-code data
in the code segment and introduce breakpoints in their
place. That remains to be seen. Similarly, further re-
search may enable us to discover ways of automati-
cally recovering keys and plaintexts of other encryp-
tion algorithms, although the widespread use of AES
seems to make that a lower priority than the support
for AES-NI.

Even though our implementation does not work
against these special cases, it seems to work well
enough in practice. After all, AES-NI can be purpose-
fully disabled, if we desire so, and when that’s been
done, our tool can be used to automatically recover
keys and plaintext data in many real-world scenarios,
giving the users a simple way of observing the en-
crypted traffic which would otherwise be difficult to
replicate. We believe that is a worthwhile contribu-
tion.

ACKNOWLEDGEMENTS

The authors acknowledge the support
of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/000 0765 “Research
Center for Informatics”.

REFERENCES

Auxier, B., Rainie, L., Anderson, M., Perrin, A., Kumar,
M., and Turner, E. (2019). Americans and privacy:
Concerned, confused and feeling lack of control over
their personal information.

Daemen, J. and Rijmen, V. (2002). The design of Rijndael:
AES – the Advanced Encryption Standard. Springer-
Verlag, Berlin, Heidelberg, 1st edition.

DeBlasio, J. (2020). Protecting users from insecure down-
loads in google chrome.

Gueron, S. (2010). Intel Advanced Encryption Standard
(AES) New Instructions Set. Technical report, Intel
Corporation.

Intel Corporation (2019). Intel 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B: Sys-
tem Programming Guide, Part 2. Intel Corporation.

Käsper, E. and Schwabe, P. (2009). Faster and timing-attack
resistant AES-GCM. Cryptographic Hardware and
Embedded Systems – CHES 2009, pages 1–17.

Malbrain, K. (2007). Higher performance AES C byte-
implementation.

Matsui, M. (2006). How Far Can We Go on the x64 Proces-
sors? Fast Software Encryption, pages 341–358.

Polyakov, A. (2016). crypto/aes/asm/aes-586.pl. [online].
Rijmen, V., Bosselaers, A., and Barreto, P. (2000). Opti-

mised ANSI C code for the Rijndael cipher.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

180


