
Receiving Messages in Their Correct Order: Analyzing Broadcast
Protocols in Dynamic Epistemic Logics

Spandan Das1 and Sujata Ghosh2

1Indian Statistical Institute, Kolkata, India
2Indian Statistical Institute, Chennai, India

Keywords: Broadcast Protocols, Correctness of Protocols, Dynamic Epistemic Logic, Algorithm, Complexity.

Abstract: In this paper we analyse distributed protocols in a logical framework. In particular, we provide a dynamic epis-
temic logic analysis of certain broadcast protocols, viz. Birman-Schiper-Stephenson protocol and Lamport’s
mutual exclusion protocol. In the process, we provide correctness proofs of these protocols via knowledge-
based reasoning. We also provide a detailed algorithmic analysis of the logical modeling of these protocols.

1 INTRODUCTION

Distributed systems occur ubiquitously in today’s
world of computing and as such, a great deal of ef-
fort has been provided towards improving our under-
standing of these systems. A major challenge is to
deal with such systems efficiently and effectively. The
distributed nature of control and information in these
systems lead us to consider the tasks of the systems
in terms of the global behavior of the system, even
though the actions that an individual processor per-
forms can depend only on its local information.

Since the design of a distributed system involves
the behavior and interaction between individual pro-
cessors in the system, designers frequently find it use-
ful to reason intuitively about processors’ states of
knowledge at various points in the execution of a sys-
tem. Over the years, states of knowledge of groups
of processors have become useful concepts for the
design and analysis of distributed protocols. Epis-
temic logic and its variants provide us with a proven
methodology to analyze these knowledge states of
processors and their interactions. A seminal work
in this area is (Halpern and Zuck, 1992) which pro-
vides a uniform knowledge-based framework to deal
with the sequence transmission problem in both syn-
chronous and asynchronous settings.

Over the years, such frameworks have been used
to model various authentication protocols (for a sur-
vey, see (Ahmadi et al., 2019)), and epistemic and
temporal epistemic logics played a major role in the
analyses of such protocols. Dynamic epistemic log-
ics have also been used to model such protocols, but

as described in (Dechesne and Wang, 2010), there are
certain limitations to such approaches in terms of han-
dling equivalence of messages. However, these log-
ics are quite adept in handling higher-order uncertain-
ties and partial information in protocols (e.g., see (van
Ditmarsch et al., 2014)).

In dynamic epistemic logics, the actions/events
bring in changes in the epistemic states of the agents,
but these changes happen immediately. Conse-
quently, these logics are generally not appropriate for
modelling communication of information where there
is a time gap between the send-event and the receive-
event, a natural occurrence in asynchronous systems.
Recently, some variants of dynamic epistemic logics
have been developed to deal with communication in
asynchronous systems, e.g., see (Knight et al., 2019;
Balbiani et al., 2020), both of which extends the usual
dynamic epistemic language so as to express the time-
lag in communication.

This work uses a simple variant of dynamic epis-
temic logic, where the action updates are generally
modeled as soft updates (e.g., see (Baltag and Smets,
2008)), i.e., only the agent relations get updated, and
there is no change in the set of possible worlds. The
logic is used to model communication of information
in the form of message passing in asynchronous sys-
tems. In such systems, communication speed might
differ from channel to channel leading to problems in
the arrangement of messages from different processes
in their correct temporal order. In case the messages
are not executed in their correct temporal order, the
system might act erroneously. The goal of distributed
protocols such as BSS and Lamport’s mutual exclu-

Das, S. and Ghosh, S.
Receiving Messages in Their Correct Order: Analyzing Broadcast Protocols in Dynamic Epistemic Logics.
DOI: 10.5220/0010253608510858
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 2, pages 851-858
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

851

sion is to choose an execution order so that such in-
consistencies do not occur.

The focus is on the modelling of broadcast proto-
cols (Singhal and Shivaratri, 1994) in the framework
mentioned above together with the correctness proofs
of such protocols in terms of knowledge-based rea-
soning provided by the framework. In addition, im-
plementation details and complexity analyses are also
provided. We basically model the effect of following
these protocols on certain message passing systems.
The novelty of this work is two-fold. On one hand,
broadcast protocols are natural candidates for analy-
ses in terms of dynamic epistemic logics, but to the
best of the knowledge of the author(s), such logical
analyses of these protocols have not been done be-
fore. On the other hand, a simple variant of dynamic
epistemic logic has been used to deal with these asyn-
chronous systems, and that was made possible due
to the usage of the different possible orderings of the
messages as possible worlds of the underlying Kripke
model used to describe such systems.

We note here that these broadcast protocols have
been studied quite extensively over the years and cor-
rectness proofs are also there in the literature. Our
goal here is to showcase the use of dynamic epis-
temic logic in handling the knowledge-based reason-
ing of such systems. We believe that this method-
ology can be adopted for modelling the underlying
reasoning processes in different distributed protocols
which would provide a better understanding of such
protocols applied on asynchronous systems.

Before proceeding further, we list the assumptions
on the asynchronous systems that are made for our
analyses. These assumptions, without being neces-
sary, enhance the exposition: Each process has a lo-
cal clock with respect to which it can arrange local
send and receive events in their correct temporal or-
der; inter-process communication channels are First
In First Out (FIFO) in nature, that is, two messages
from the same process are received by other processes
in their order of generation; and, the set of messages
generated by all the processes is finite. Additionally,
each process has the same initial knowledge about
the set of all messages generated in the system, and
the actual set of messages generated in the system
is a subset of the set of messages known to each of
the processes (for a detailed explanation see (Das and
Ghosh, 2020)).

2 BROADCAST PROTOCOLS

In asynchronous distributed systems (Singhal and
Shivaratri, 1994), when the communication of infor-

mation is taken care of by message-passing, more of-
ten than not, the messages cannot be ordered accord-
ing to their time of generation, the main reason being
the fact that the global clock is unavailable. However,
there is a reasonable way in which one can say that a
message m1 is generated before another message m2.
If m1 is received by the sender of m2 before m2 is sent
then evidently m1 is generated before m2. Such an
ordering, defined by Lamport, is given as follows:

Definition 1. (Causal ordering). Let a and b be two
events. We say a causally precedes b (notation a→ b)
if one of the following three cases happen:

1. a and b are events on the same process and a
chronologically precedes b by local clock of the
process.

2. a is the send event and b is the receive event of the
same message.

3. There exist an event c such that a→ c and c→ b.

If none of these three cases happen then we say a and
b are concurrent.

Various protocols have been developed for such
distributed systems so that the causal ordering of mes-
sages could be enforced. For example, in Birman-
Schiper-Stephenson (BSS) protocol, the processes al-
ways execute messages in the correct causal order,
whereas, in Lamport’s mutual exclusion (LME) pro-
tocol critical section requests are granted in their cor-
rect causal order. Before moving any further, let us
describe those protocols. The BSS protocol helps the
processes to execute the messages received in correct
causal order. If two messages are concurrent, they are
sorted in first come first serve basis.

Definition 2. BSS Protocol is defined as follows:

1. When a process broadcasts a message it also
broadcasts how many messages it has received
from each of the other processes.

2. When a process receives a message from another
process it checks whether it has received all pre-
vious messages from that same process and also
whether it knows about at least as many messages
in the system as the sender process does. If both
checks are true, the recipient process executes the
message, otherwise it puts the message on hold
and waits.

The LME protocol helps the processes to decide
the order of accessing the critical section (a set of ob-
jects which can be modified by at most one process at
a time) in case of multiple requests coming from dif-
ferent processes. If one request causally precedes an-
other, the former process is granted access before the
latter. Additionally, the protocol assumes that each
process has a unique process ID from a totally ordered

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

852

set and in case of concurrent requests, it breaks tie
using process ID. This means that the protocol gives
first access of the critical section to the process with
the smallest ID.
Definition 3. LME protocol is defined as follows in
terms of the movements around the critical section:

- Requesting the critical section:
1. When a process wants to access the critical sec-

tion, it generates a request and a timestamp for
that request. The process keeps this request
in its own request queue sorted according to
timestamps and then broadcasts it to all other
processes along with the timestamp.

2. When a process receives a timestamped re-
quest, it keeps the request in its own request
queue sorted according to timestamps. Then it
generates a timestamped reply corresponding to
the request and sends the reply to the sender of
the request.

- Accessing the critical section: When a process ob-
serves

1. its request is at the top of its own request queue,
2. it has received at least one message (request or

reply or release) with higher timestamp than its
request from all other processes,

the process enters the critical section.
- Exiting the critical section:

1. When a process exits the critical section, it
generates a timestamped release message and
broadcasts it to all other processes. It deletes
its own request from its request queue.

2. Upon receiving a release message, a process re-
moves the request of the sender process from its
own request queue.

In the remainder of this paper we will model these two
protocols in a variant of dynamic epistemic logic, so
as to exemplify a novel way of formal modeling such
protocols towards proving correctness of the proto-
cols using knowledge-based reasoning.

3 MODELLING PROTOCOLS IN
DYNAMIC EPISTEMIC LOGIC

Let us first provide a brief introduction to a relevant
variant of dynamic epistemic logic before moving on
to the modelling of the protocols. For a detailed ex-
position, see (van Ditmarsch et al., 2007).
Syntax. Given a finite set of propositions P , a finite
set of agents A and a finite set of actions Act, the
language L is defined as follows:

φ := p | ¬φ | φ∧φ | Kaφ | Aφ,

where p ∈ P , a ∈ A , A ∈ Act. The formulas φ∨ψ,
φ→ ψ are defined as usual. A formula of the form
Kaφ reads as “φ is known to agent a” and Aφ reads
as “φ holds after some action A”. The actions are
generally considered to be protocol-dependent and
changes the model suitably. We use Laφ to denote the
formula ¬Ka¬φ.

Semantics. A model M for this language is a tuple
(W,R,V) where W denotes a non-empty set of worlds,
R denotes a set of agent-relations and V denotes a val-
uation function. Each agent defines a relation Ra ∈ R
such that Ra ⊆W ×W . In essence, Ra models knowl-
edge of an agent a which can be modified by certain
events or actions. A valuation function V : P → 2W

associates propositions to sets of worlds. An action
A can modify an agent’s knowledge, which we will
explain in details while modelling the protocols. The
effect of an action A on a model M is given by the
model MA. The truth definition of a formula at a world
w ∈W in the model M is as follows:
M,w |= p iff w ∈V (p),
M,w |= ¬φ iff M,w 2 φ,

M,w |= φ∧ψ iff M,w |= φ and M,w |= ψ,

M,w |= Kaφ iff for all w̃ ∈W with wRaw̃, M, w̃ |= φ

M,w |= Aφ iff MA,w |= φ.

M |= φ means that for all w ∈W , M,w |= φ.

3.1 BSS Protocol

Before we define the language for analyzing BSS pro-
tocol, let us first note some important notations and
definitions. Let A denote the set of agents/processes
in the distributed system, and let M denote the set of
messages whose causal ordering we are interested in.
Each message is denoted by xi, which can be read as
the ith message from agent x.
Definition 4. (Permutation). We say π is a permu-
tation on a finite set S iff π : S→ {1,2, . . . , |S|} is a
bijection.
Definition 5. (Allowed permutation). A permutation
π on M is an allowed permutation iff π(xi)< π(x j)
whenever i < j. Here, π(xi) (π(x j)) denotes the posi-
tion of xi (x j) in the permutation π.
Definition 6. (MSN). For an agent x, MSN (message
to send next) of x (denoted MSN(x)) is k ∈ N if x has
sent xk−1 ∈M but not sent xk ∈M . However if x has
sent all its messages in M then MSN(x) is ∞.

3.1.1 Language

Now we are ready to define the language L that can
describe the content of the exchanged messages. Let

Receiving Messages in Their Correct Order: Analyzing Broadcast Protocols in Dynamic Epistemic Logics

853

P be the set of propositions. We have,

P ={Px,i | x ∈ A ; xi ∈M }∪

{Qx, j
a,i | a,x ∈ A ; ai,x j ∈M ; ai 6= x j}.

Here Px,i reads “agent x has spoken i times” and Qx, j
a,i

reads “agent a in its ith message notifies that jth mes-
sage from agent x has reached it”. The formulas are
given by,

φ :=> | p | ¬φ | φ∧φ | Kaφ | Aa
φφ.

Here Kaφ reads “agent a knows φ”. We include Aa
φ
ψ in

the language only for Boolean formulas φ (no restric-
tion on ψ) and not for more complex formulas since
they are not needed for modeling the BSS protocol.
For a Boolean formula φ and a general formula ψ in
the language, Aa

φ
ψ reads “ψ is true after φ is received

by a”. Let us now have the following definitions for
the Boolean formulas in the language:

Definition 7. (Sender of a formula). The sender of a
Boolean formula φ is defined recursively,

• sender(φ) = x if φ = Px,i.

• sender(φ) = a if φ = Qx, j
a,i .

• sender(¬φ) = sender(φ).
• sender(φ ∧ ψ) = sender(φ) if sender(φ) =

sender(ψ) and undefined otherwise.

Definition 8. (Index of a formula). The index of a
Boolean formula φ is defined recursively,

• index(φ) = i if φ = Px,i.

• index(φ) = i if φ = Qx, j
a,i .

• index(¬φ) = index(φ).
• index(φ∧ψ) = index(φ) if index(φ) = index(ψ)

and undefined otherwise.

3.1.2 Semantics

We define the model M as the tu-
ple (W,R,V) where, W = {π |
π is an allowed permutation on the underlying

message set },
R = {Ra | a ∈ A ;Ra is a binary relation on W},
V : P → 2W is given as follows,

V (Px,i) =W for all xi ∈M

V (Qx, j
a,i) = {π ∈W | π(x j)< π(ai)} for all ai,x j ∈M .

Here π(x j) (π(ai)) denotes the position of message x j
(ai) in the permutation π and the order between two
positions is shown by the relation ‘<’.

Definition 9. (Semantics). Let a model M be given.
We inductively define the interpretation of formula
φ ∈ L on (M,π) as follows,

M,π |=>, always ,
M,π |= p ∈ P iff π ∈V (p),
M,π |= ¬φ iff M,π 2 φ,

M,π |= φ∧ψ iff M,π |= φ and M,π |= ψ,

M,π |= Kaφ iff for all π̃ with πRaπ̃, M, π̃ |= φ,

M,π |= Aa
φψ iff Mφ,a |= ψ,

where Mφ,a is the updated model under the action Aa
φ
.

We now provide the details of the model updates (ac-
tions) that we consider for BSS protocol.

In BSS protocol the content of each message is a
formula in L either of the form φ = Px,i or of the form
φ = Px,i ∧

∧
y 6=x Qy, j

x,i , since the sender also broadcasts
the messages she has received from each of the other
agents along with the current message. We now con-
centrate on such formulas to model the BSS protocol.
The initial model is M = (W,R,V) where W is the set
of all allowed permutations on M and for each agent
x, Rx is a universal relation on W , i.e., Rx = W ×W .
Suppose the formula φ is received by agent x. Then
the corresponding action will transform the current
model M into the model Mφ,x = (W,Rφ,x,V) where
only the agent relations are modified. The new set
of agent relations is Rφ,x = {R′a | a ∈ A} where,

• For each y 6= x, R′y = Ry,

• R′x is the intersection of Rx and the com-
plete relation on E ′ where, E ′ = {π ∈ W |
π(sender(φ)index(φ))< π(xMSN(x)) and M,π |= φ}.

When a message having content φ is received by an
agent x, the corresponding action Ax

φ
is performed on

the current model M, transforming it to Mφ,x. We
note that the operator Ax

φ
acts globally. After all mes-

sages are received, the set of permutations can be
partitioned into two sets. In one set, each permuta-
tion π is isolated with respect to every Rx, i.e., π��Rxσ

for all σ ∈ W and for all x. The other set is uni-
versal with respect to every Rx (i.e., for any π, σ in
the set, πRxσ for all x) and in each of them the mes-
sages appear in correct causal order. Formally, xi→ y j
if and only if we have that in the final model M f in,
M f in |= ∧a∈A(La>→ KaQx,i

y, j). For a worked out ex-
ample, see (Das and Ghosh, 2020).

3.2 LME Protocol

For the analysis of LME Protocol, we will develop
the language corresponding to request messages only,
as the other kinds of messages do not play a role in

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

854

generating the order of these messages. The order-
ing of request messages generated by LME Protocol
is an index-based ordering where ties between request
messages with equal indices are broken based on the
IDs of the requesting processes. We will later show
that this is actually a causal ordering of the request
messages. Let A denote the set of agents/processes
in the distributed system, and M denote the set of
request messages whose causal ordering we are inter-
ested in. Each request is of the form xi, which means
that it is the ith request made by agent x. Permutations
and allowed permutations are defined as earlier.

Definition 10. (Index of a message). Index of a mes-
sage generated by a process is 1 if the process has not
sent or received any other message before. Otherwise
it is k+ 1 where k is the maximum index of all mes-
sages received or sent by the process before.

Definition 11. (Timestamp of a message). Times-
tamp of a message is generated by concatenating
its index (definition 10) at the front of the ID of the
sender process.

3.2.1 Language

We will now define the language for modeling the
LME protocol. The set of propositions is given by,

P = {Qy, j
x,i | x,y ∈ A ; xi,y j ∈M ; xi 6= y j}.

Here, Qy, j
x,i reads “request xi causally precedes request

y j”. The formulas are given by,

φ :=> | p | ¬φ | φ∧φ | Kaφ | Axi, j
s φ | Axi, j

r,y φ,

where, p ∈ P . As earlier, the formula Kaφ reads as
“agent a knows φ”. Axi, j

s φ reads “after request xi with
index j is sent, φ holds” and Axi, j

r,y φ reads “after request
xi with index j is received by y, φ holds”.

3.2.2 Semantics

We define A model M as a tuple (W,R, Ind,V) where,
W = {π | π is an allowed permutation on M },
R = {Ra | a ∈ A ; Ra is a binary relation on W},
Ind = {Inda | a ∈ A} where, Inda = {(ai, j) | ai ∈
M , index(ai) = j ∈ N} (Inda stores the requests ob-
served by agent a and their corresponding indices),
V : P → 2W is given by V (Qy, j

x,i) = {π | π(xi)< π(y j)}.

Definition 12. (Semantics). Let a model M be given.
The truth definition of the formulas φ of the language

above at (M,π) is given as follows,

M,π |=>, always ,

M,π |= Qy, j
x,i iff π ∈V (Qy, j

x,i)

M,π |= ¬φ iff M,π 2 φ,

M,π |= φ∧ψ iff M,π |= φ and M,π |= ψ,

M,π |= Kaφ iff for all π̃ with πRaπ̃, M, π̃ |= φ,

M,π |= Axi, j
s ψ iff M′,π |= ψ,

M,π |= Axi, j
r,y ψ iff M′′,π |= ψ.

Here M′ denotes the updated model under Axi, j
s and

M′′ denotes the updated model under Axi, j
r,y (with re-

spect to the current model M). We now provide the
details of model updates under these actions.

The model M changes when a request is gener-
ated or received by a process. The corresponding
action transforms the model M to the model M′ =
(W,R′, Ind′,V) where only the agent relations and Ind
sets corresponding to the agents are modified.

- Suppose request xi is generated by agent x.
• If y 6= x then Ind′y = Indy.

• Ind′x = Indx∪{(xi, j)} where j = index(xi).

• If y 6= x then R′y = Ry.

• R′x is the intersection of Rx and the complete rela-
tion on E ′ where

E ′ = {π ∈W | ∀(y j,k) ∈ Indx;π(y j)< π(xi)}.

- Suppose request xi is received by agent y.
• If z 6= y then Ind′z = Indz.

• Ind′y = Indy∪{(xi, j)} where j = index(xi).

• If z 6= y then R′z = Rz.

• R′y is the intersection of Ry and the complete rela-
tion on E ′ where,
E ′ = {π ∈W | ∀(z j,k) ∈ Indy;π(xi)<π(z j) iff
index(xi)<k and π(xi)>π(z j) iff index(xi)>k}.

The initial model is M =(W,R, Ind,V) where W is the
set of all allowed permutations on M , for each agent
x, Rx is a universal relation on W (i.e., Rx = W ×W)
and Inda = /0 for all a ∈ A . When an agent x sends its
ith request or when an agent y receives the request xi,
the corresponding actions Axi, j

s or Axi, j
r,y is performed

on the current model respectively. The model update
happens according to the rules defined above. After
all requests are received, the set of permutations gets
partitioned into two sets, as in the case of BSS Pro-
tocol. In one set, each permutation is isolated with
respect to every Rx (i.e., π��Rxσ for all σ ∈W and for
all x) and the other set is universal with respect to ev-
ery Rx (i.e., for any π, σ in the set, πRxσ for all x)

Receiving Messages in Their Correct Order: Analyzing Broadcast Protocols in Dynamic Epistemic Logics

855

and in each world of it, the requests appear in correct
causal order. Observe that index(xi)< index(y j) iff in
the final model M f in |=∧a∈A(La>→KaQy, j

x,i), i.e., ev-
ery agent considers only those permutations where the
requests are ordered according to their indices. For a
worked out example, see (Das and Ghosh, 2020).

4 CORRECTNESS OF THE
PROTOCOLS

In the following, we prove the correctness of the pro-
tocols, using knowledge-based reasoning as provided
by the formal frameworks we just discussed.

4.1 Correctness of BSS Protocol

It is claimed that in BSS protocol, each agent executes
messages in the correct causal order. To prove this
we will show that after all the messages are received,
each agent knows the causal order between any two
messages. In logical language, we will show that the
final model M f in |= ∧a∈A(La>→ KaQx,i

y, j) iff xi→ y j.
The following theorems prove this.

Theorem 1. (Agreement). After all the messages
are received, an agent a is sure that xi precedes y j
iff every other agent in the system is sure about this.
Formally, we have that M f in |= (La> → KaQx,i

y, j)↔
(∧b∈A ;b6=a(Lb>→ KbQx,i

y, j)).

Proof. The detailed proof of this theorem is provided
in (Das and Ghosh, 2020).

Definition 13. (Basic precedence). We say a causal
precedence ai→ b j is a basic precedence iff either a=
b and ai is sent before a j or a 6= b and ai is received
by b before b j is sent.

It is easy to observe from the definition of causal
order that if ai→ b j then either it is a basic precedence
or there are c(1)i1 , . . . ,c(m)

im such that ai→ c(1)i1 → ··· →
c(m)

im → b j where each precedence is a basic prece-
dence. Let us use this observation to show that each
agent knows all the causal orders when BSS protocol
is used.

Theorem 2. If xi → y j is a basic precedence then
agent y knows xi precedes y j. In other words, in the
final model M f in |= Ly>→ KyQx,i

y, j.

Proof. We have provided the detailed proof in (Das
and Ghosh, 2020).

Theorems 1 and 2 show that each basic prece-
dence is known to all agents. Since any causal prece-
dence can be built up from basic precedence only,
we get that all causal precedence are known to ev-
ery agent. Thus the claim that each agent knows all
and only the causal orders after message passing, is
true. Thus, no agent can violate the causal order while
executing messages. We also observe that BSS pro-
tocol generates a unique allowed permutation iff for
any two messages xi and y j, either every agent knows
xi → y j or every agent knows y j → xi. In logical
language, BSS protocol generates a unique permuta-
tion iff the final model M f in |= ∧xi 6=y j((∧a∈A(La>→
KaQx,i

y, j))∨ (∧a∈A(La>→ KaQx,i
y, j))).

4.2 Correctness of LME Protocol

For LME protocol, we have to show that no two re-
quests can access the critical section at the same time.
To prove this we show that all agents agree on a
unique permutation of the requests and the critical
section is accessed in that order. Thus there cannot be
any conflict between the decisions of any two agents.
We will also show that the permutation each agent
agrees on, is actually a causal order of the requests.

Theorem 3. If two requests xi and y j are such that
xi→ y j, then index(xi)< index(y j).

Proof. We have provided a detailed proof in (Das and
Ghosh, 2020).

Theorem 4. (Agreement). Each agent agrees on per-
mutations where requests appear in correct causal or-
der and all agents agree on same set of permutations.

Proof. We have provided a detailed proof in (Das and
Ghosh, 2020).

Now if every agent breaks tie between requests
with same index using process ID (i.e., the process
with smallest ID wins in case of a tie in indices), they
must agree on a unique permutation since without us-
ing process ID they agree on same set of permuta-
tions. Thus LME protocol leads to a unique permu-
tation of requests which is agreed upon by all agents.
This proves the correctness of the protocol. In other
words, each agent knows the order in which the re-
quests should access the critical section.

5 ON IMPLEMENTATION AND
TIME COMPLEXITY

In all these models we have only used allowed per-
mutations as states. Let us first provide an estimate

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

856

for the number of allowed permutations. Let for each
agent a ∈ A , Ma be the set of messages sent by agent
a. Then M =∪a∈A Ma. Since Ma∩Mb = /0 for a 6= b,
|M | = ∑a∈A |Ma|. Let SA be the set of allowed per-
mutations. Then,

|SA|= |M |!
∏a∈A |Ma|!

In case each agent sends only one message, we have
|SA|= |M |!. Once again, the detailed analysis is pro-
vided in (Das and Ghosh, 2020).

5.1 Time Complexity for BSS Protocol

In this section we provide a possible implementation
of the action update model for BSS protocol and its
time complexity. The implementation has two steps:
1. Given set of agents A and set of messages M

build the initial model according to BSS protocol.

2. Update the model according to the BSS proto-
col as messages are received by agents until each
message is received by all the other agents except
for the sender.
The time complexity of each of the above steps

is O(|A ||M |!). Thus total time complexity of the
entire implementation is O(|A ||M |!+ |A ||M |!), i.e.,
O(|A ||M |!) (for a detailed analysis see (Das and
Ghosh, 2020)).

5.2 Time Complexity for LME Protocol

In this section we provide a possible implementation
of the action update model for LME protocol and its
time complexity. The implementation has two steps:
1. Given a set of agents A and a set of requests M

build the initial model according to LME protocol.

2. Update the model according to LME protocol as
messages are sent and received by agents until
each message is received by all the other agents
except the sender.
The time complexity of each of the above steps

is O(|A ||M |!). Thus total time complexity of the
entire implementation is O(|A ||M |!+ |A ||M |!), i.e,
O(|A ||M |!) (for a detailed analysis see (Das and
Ghosh, 2020)).

6 CONCLUSION AND FUTURE
DIRECTIONS

To summarize, we have shown that simple variants of
dynamic epistemic logic can indeed be used to model

distributed protocols in asynchronous settings. The
knowledge-based framework can be used to model
the effect of these protocols, and the underlying rea-
soning process becomes explicit. In some sense, the
action update operators model the effect of receipt of
messages, and can be considered as private announce-
ments to the individual processes/agents. However,
the logical languages developed here are protocol-
specific and quite ad hoc in nature. It would be in-
teresting to see whether a uniform framework could
be developed and how that framework would relate
to the existing literature on announcement logics. We
leave this for the future.

Another direction to work on is to bring other
distributed protocols in the purview of the logical
framework described here. To this end, one can con-
sider Maekawa’s quorum based mutual exclusion al-
gorithm (Singhal and Shivaratri, 1994), where each
process consults only a proper subset of all processes
before accessing the critical section. It would be in-
teresting to see the variant of dynamic epistemic logic
which could be used to model the underlying reason-
ing process of the protocol.

REFERENCES

Ahmadi, S., Fallah, M. S., and Pourmahdian, M. (2019).
On the properties of epistemic and temporal epistemic
logics of authentication. Informatica, 43(2).

Balbiani, P., van Ditmarsch, H., and González, S. F.
(2020). From public announcements to asynchronous
announcements. In Giacomo, G. D., Catala, A., Dilk-
ina, B., Milano, M., Barro, S., Bugarı́n, A., and Lang,
J., editors, Proceedings of the 24th European Confer-
ence on Artificial Intelligence, volume 325 of Fron-
tiers in Artificial Intelligence and Applications.

Baltag, A. and Smets, S. (2008). A qualitative theory of
dynamic interactive belief revision. In Bonanno, G.,
van der Hoek, W., and Wooldridge, M., editors, Logic
and the Foundations of Game and Decision Theory
(LOFT07), volume 3 of Texts in Logic and Games,
pages 9–58. Amsterdam University Press, Amster-
dam.

Das, S. and Ghosh, S. (2020). Receiving messages in their
correct order: Analyzing broadcast protocols in dy-
namic epistemic logic (a technical report). Technical
report, Indian Statistical Institute.

Dechesne, F. and Wang, Y. (2010). To know or not to know:
epistemic approaches to security protocol verification.
Synthese, 177(1):51–76.

Halpern, J. Y. and Zuck, L. D. (1992). A little knowledge
goes a long way: knowledge-based derivations and
correctness proofs for a family of protocols. Journal
of the ACM (JACM), 39(3):449–478.

Knight, S., Maubert, B., and Schwarzentruber, F. (2019).
Reasoning about knowledge and messages in asyn-

Receiving Messages in Their Correct Order: Analyzing Broadcast Protocols in Dynamic Epistemic Logics

857

chronous multi-agent systems. Mathematical Struc-
tures in Computer Science, 29(1):127–168.

Singhal, M. and Shivaratri, N. (1994). Advanced Concepts
in Operating Systems: Distributed, Database, and
Multiprocessor Operating Systems. Computer Science
Series. McGraw-Hill.

van Ditmarsch, H., Ghosh, S., Verbrugge, R., and Wang,
Y. (2014). Hidden protocols: Modifying our expec-
tations in an evolving world. Artificial Intelligence,
208:18–40.

van Ditmarsch, H., van der Hoek, W., and Kooi, B. (2007).
Dynamic Epistemic Logic, volume 337 of Synthese Li-
brary. Springer Verlag, Berlin.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

858

