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In absence of sufficient labeled training data, it is common practice to resort to synthetic data with readily
available annotations. However, some performance gap still exists between deep learning models trained on
synthetic versus on real data. Using adversarial training based generative models, it is possible to translate
images from synthetic to real domain and train on them easily generalizable models for real-world datasets,
but the efficiency of this method is limited in the presence of large domain shifts such as between synthetic and
real depth images characterized by depth sensor and scene dependent artifacts in the image. In this paper, we
present an adversarial training based framework for adapting depth images from synthetic to real domain. We
use a cyclic loss together with an adversarial loss to bring the two domains of synthetic and real depth images
closer by translating synthetic images to real domain, and demonstrate the usefulness of synthetic images
modified this way for training deep neural networks that can perform well on real images. We demonstrate
our method for the application of person detection and segmentation in real-depth images captured in a car for
in-cabin person monitoring. We also show through experiments the effect of using target domain image sets

captured using different types of depth sensors on this domain adaptation approach.

1 INTRODUCTION

Depth information on its own or in addition to other
sensory information can be leveraged by computer vi-
sion algorithms to gain a more complete understand-
ing of the real-world. Deep learning based computer
vision algorithms however, require plenty of anno-
tated data to learn a generalizable mapping from input
features to output labels. Acquiring such a large anno-
tated dataset is a tedious task and demands abundant
human effort and time. In such scenarios, synthetic
images can be used as a reliable replacement for real-
world data due to their ease of acquisition and ready
availability of ground truth annotations. Even then,
deep learning networks trained on synthetic data do
not transfer well to real data; a phenomenon referred
to as domain shift.

A solution to cope with the domain shift is to
transform the synthetic images themselves to look
like real ones and use them in conjunction with the
original annotations corresponding to the synthetic
images to train deep neural networks for the target
task. This domain adaptation framework which re-
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Figure 1: In our image translation based domain adapta-
tion framework we use synthetic depth images (left) and
real depth images (right) of in-car cabin scenes as source
and target domain datasets respectively.

lies on image translation networks has been explored
to some degree (Dundar et al., 2018; Mueller et al.,
2018; Shrivastava et al., 2017) since the introduction
of adversarial training based image generation mod-
els called Generative Adversarial Networks or GAN's
(Goodfellow et al., 2014). So far this approach has
been used mostly to translate synthetic RGB to real
RGB images, for example from GTA (Richter et al.,
2016) to Cityscapes (Cordts et al., 2016), and to a
much lesser extent to translate from synthetic depth
to real depth image domain. In the occasional cases
where it has been done, this translation is limited
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Figure 2: Overview of our image translation based domain adaptation approach. The Refiner network comprises a couple of
generator-discriminator pairs each tasked with learning the representation of each of the source and target image domains. The
generator Gy, e takes images from synthetic domain A and maps them to real domain D (dark green). The discriminator
D,eq; gets both the transformed images D and real images C to calculate the adversarial loss (pink). A cycle loss is computed
to minimize difference between a synthetic image and its output after it has gone through the both generators (light green). A
similar cycle exists for real images as well. Finally, two task networks E are trained on realistically refined synthetic images

D (orange).

to scenes containing only a single foreground object
(Shrivastava et al., 2017; Mueller et al., 2018). This
problem is challenging for depth images as the gap
between synthetic and real domains is not just in the
lack of “realism” but also in the specific noise pat-
terns which exist in real images due to properties of
both the scene as well as the depth sensor.

In this paper we address unsupervised image
translation based domain adaptation from the syn-
thetic depth to real depth image domain and demon-
strate its usability for in-car person detection and
person segmentation tasks. With the advent of au-
tonomous and driver-less vehicles, it is imperative to
monitor the entire in-cabin scene in order to realize
active and passive safety functions, as well as ad-
vanced human-vehicle interfaces, to increase the ac-
ceptance of such vehicles by the masses. Our main
contribution thus lies in an image translation based
domain adaptation method that can realistically refine
synthetic depth images to reproduce the noise pat-
terns typical for a depth sensor like missing pixels
along object edges and depth holes as shown in Figure
1. Our secondary contribution is to show that using
these refined images, one can train deep neural net-
works that perform considerably better than networks
trained on only synthetic depth images, and with fine-
tuning we can even surpass the performance of net-
works trained on real data. To the best of our knowl-
edge, we are the first to use this approach for do-
main adaptation from synthetic depth images to real
depth images of complete scenes. Our final contribu-
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tion is to provide a quantitative and qualitative com-
parison of using different depth sensors, that work
on both time-of-flight and pattern projection princi-
ples, to capture target domain image sets for domain
adaptation. Altogether, our experiments show that
domain adaptation coupled with adversarial training
based image translation can be used to extract greater
profit out of synthetic data.

2 RELATED WORK

2.1 Adversarial Training based Image
Translation

The seminal work on Generative Adversarial Net-
works (GANSs) (Goodfellow et al., 2014) presented a
method to learn a generative model which can map a
random noise vector to image samples that look like
they are taken from a target probability distribution.
GAN:S rely on an adversarial loss to learn a genera-
tive model which can generate fake images reason-
ably identical to real images in the presence of a dis-
criminator which tries to discern if the output of the
generator is taken from the target probability distribu-
tion or from the generator. The authors of (Isola et al.,
2017; Karacan et al., 2016) performed supervised im-
age translation where the output translated image is
conditioned on an input image. This requires paired
input images from source and target domain. In con-



trast to these, (Zhu et al., 2017; Liu et al., 2017) per-
formed unsupervised image translation where they do
not require any supervision at ’pair’ level, reducing
the effort required to collect paired training datasets.

2.2 Image Translation based Domain
Adaptation

Most of the early works related to deep learning
based visual domain adaptation focus on feature level
adaptation between source and target domains. They
achieve this by either mapping source and target dis-
tribution to a common feature space (Hoffman et al.,
2017; Hu et al., 2015; Motiian et al., 2017) or by
learning domain invariant features which can be ex-
tracted at inference time to make predictions (Ghi-
fary et al., 2014; Tzeng et al., 2014). An alterna-
tive approach is to perform domain adaptation in the
image space by translating images from source do-
main to target domain and then using these trans-
lated images for training the final task network along
with the source annotations. For synthetic to real do-
main adaptation (Dundar et al., 2018) used a style
transfer network based on FastPhotoStyle (Li et al.,
2018) to stylize synthetic images to look realistic us-
ing randomly paired input images. Building upon
CycleGAN, many works like CyCADA (Hoffman
et al., 2018), CrDoCo (Chen et al., 2019) and (Toldo
et al., 2020) have trained their generative model us-
ing a combination of pixel-level and feature-level ad-
versarial losses, cycle-consistency loss and semantic-
consistency loss to translate from synthetic to real do-
main. PixelDA (Bousmalis et al., 2017) used both
noise vectors and synthetic images to train their gen-
erative model which they optimized using both ad-
versarial and content-similarity losses. GraspGAN
(Bousmalis et al., 2017) was trained on simulated data
refined by a GAN network for training a robotic arm
to grasp objects. For 6DoF pose estimation, (Ram-
bach et al., 2018) translated both synthetic and real
images to the common pencil filter image domain be-
fore training their network on synthetic images and
evaluating it on real images. Besides these works,
there have been few works addressing depth domain
adaptation from synthetic to real data. We consider
them in the next section.

2.3 Depth Domain Adaptation

SimGAN (Shrivastava et al., 2017) ‘refined’ synthetic
depth images which can be then used to train mod-
els for gaze estimation or hand pose estimation on
real data. (Mueller et al., 2018) adapted CycleGAN
with an additional geometric consistency loss to trans-

An Adversarial Training based Framework for Depth Domain Adaptation

late depth images of hand poses from synthetic to
real domain and used the resulting images for train-
ing a real-time 3D hand tracking network. Alike Sim-
GAN, (He et al., 2019) also learned a style-transfer
network to transform smooth hand pose depth images
to look more realistic using a GAN. However, the
source and target images used in all these methods
were not as challenging containing only hand poses
on clean backgrounds or eye gazes, therefore the do-
main difference was less significant. On the contrary,
we translate from synthetic depth images of complete
scenes to real depth domain. It is crucial to mention
here that apart from these methods to simulate depth
image noise, several works have addressed the con-
ventional depth image enhancement tasks using im-
age translation based domain adaptation as well (Gu
et al., 2020; Agresti et al., 2019).

3 METHODS AND MATERIALS

3.1 Realistically Refining Synthetic
Depth Images

We base our network that translates from synthetic
depth images to real depth images on CycleGAN in-
troduced by (Zhu et al., 2017) which uses, in addition
to the standard adversarial loss, a cycle-consistency
loss to ensure that the result of successive forward and
reverse mappings on an input image is consistent with
the original input image. We refer to this as Refiner
network. The Refiner network therefore comprises
two generators Gyn—reqr aNd Greai—ssyn, paired with
their corresponding domain discriminators D,y and
Dy, respectively. For the synthetic—real translation,
Giyn—sreal TEpresents the convolutional neural network
which transforms the image such that the discrimi-
nator D,,, maximizes the probability that the trans-
formed image is taken from the real domain. D,y
on the other hand is trained to assign correct prob-
ability to samples taken from the real domain and
the ones generated from Gy, _.req. This is imple-
mented as using a cross-entropy loss to train D,,q;.
In parallel, Gyeqi—ssyn and Dyy, are trained in simi-
lar fashion. Additionally, the cycle consistency en-
forces that when both the transformed images in ei-
ther direction are transformed back to their original
domain using the two generators, then the reverse
mapping is as close to the original image as possi-
ble. We use L1 loss to measure the deviation of the
translated image from the source image after consecu-
tive source—target and target—source mapping have
been applied to the source image.
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(a) SVIRO (b) CABIN

(c) AZURE

(d) Kinect V2 (e) Kinect V1

Figure 3: Example synthetic and real images used for image translation and domain adaptation.

CycleGAN does not require paired input images
from source and target domain for training and there-
fore is ideal for our requirement as in our experiments
we do not have access to paired synthetic and real
depth images for the same scene, for example, in the
form of real depth images captured using a depth sen-
sor and synthetic depth rendering of the same scene
acquired from a depth simulator. Moreover, the cycle
consistency imposes a stronger constraint than a stan-
dard GAN with only reconstruction loss to bring the
mapped image closer to the real image domain.

Figure 4: Data capture setup with a Kinect AZURE fixed at
the front of a driving simulator.

Figure 2(B) illustrates how CycleGAN fits in our
image translation based domain adaptation frame-
work. We use it for mapping images from synthetic
domain to real domain and vice-versa using cycle-
consistency and adversarial losses. We use the same
network architecture for the generator and the dis-
criminator as in the CycleGAN paper. All images are
resized to size 512x512 and normalized to the range
[-1,1] before passing them into the refiner network.
We use nine residual blocks in the generator for pro-
cessing our 512x512 size image due to memory lim-
itations. We train this network for 20 epochs with
a batch size of 2. We use Adam (Kingma and Ba,
2015) for optimization with an initial learning rate of
0.0002. We do not use the identity loss mentioned in
the original CycleGAN paper.
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3.2 Training Person Detection and
Segmentation Networks

After synthetic depth images have been realistically
modified by the image translation network, we pair
them with the corresponding bounding box and seg-
mentation mask annotations acquired from the syn-
thetic dataset to train Faster R-CNN (Ren et al., 2015)
and Mask R-CNN (He et al., 2017) networks for per-
son detection and segmentation respectively. This
method can be trivially extended to other task net-
works in the presence of given annotations. Doing so
is possible because the refiner network does not se-
mantically alter the source images and only changes
the style. Our Faster R-CNN network uses VGG16
network (Simonyan and Zisserman, 2015) as its back-
bone and is pretrained on ImageNet dataset (Deng
et al., 2009). For Mask R-CNN we adopt the ResNet-
101 (He et al., 2016) network as its backbone and ini-
tialize it with weights pretrained on COCO dataset.

All images are resized to 600x600 before training
to maintain aspect ratio same as the real images and
shorter side same as in the original Faster R-CNN im-
plementation. Faster R-CNN uses an initial learning
rate of 0.001 while Mask R-CNN uses a learning rate
of 0.005. The learning rate for both networks is de-
creased by a factor of 10 every 3 epochs. Both net-
works are trained with Stochastic Gradient Descent
(SGD) optimizer and momentum of 0.9.

3.3 Dataset
3.3.1 Synthetic Dataset

In this paper, we show the efficacy of using an ad-
versarial training based generator to realistically mod-
ify synthetic depth images and using those depth im-
ages to train person detection and segmentation net-
works. We demonstrate the usability of task networks
trained in this manner for the use-case of driver moni-
toring inside a car cabin. To achieve this we used two
datasets containing synthetic and real depth images
of car in-cabin scenes as the source and target domain
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Table 1: Overview of the size and usage of the synthetic and real datasets used in this work.

| Domain | Description \ Usage | images |
Svnthetic Images from SVIRO Train refiner network 4000
y Images from SVIRO Train task networks (lower limit) | 10000
Captured in driving simulator with .
Kinect AZURE (CABIN) Train Refiner(syn—CABIN) 4176
Captured indoor scenes with .
Real Kinect AZURE (AZURE) Train Refiner(syn—AZURE) 1000
Kinect V1 images from SUN RGB-D | Train Refiner(syn—Kinect V1) 1000
Kinect V2 images from SUN RGB-D | Train Refiner(syn—Kinect V2) 1000
Captured in driving simulator with . e
Kinect AZURE (CABIN) Train task networks (upper limit) | 3300
Captured in driving simulator with
Kinect AZURE (CABIN) Evaluate all models 876

dataset respectively where the scene is viewed from
the front.

We use SVIRO (Dias Da Cruz et al., 2020) which
is a dataset of synthetically generated car rear in-cabin
scenes and contains RGB, depth and infrared images
for 10 different car models along with ground truth
labels for classification, object detection, semantic
segmentation and keypoint estimation tasks. We use
4,000 images from this dataset as the source domain
images to train the image refiner network. In addition
to it, we use 10,000 synthetic images from this dataset
to train our baseline person detection and person seg-
mentation networks which we use to compare against
the same models trained on the images realistically
refined by our image refiner network. This gives us
the lower performance limit for our method. Figure
3a shows an example image from this dataset.

3.3.2 Real Dataset

We created our own dataset of real depth images
showing front-view of a car cabin using a Kinect
AZURE camera fitted in the driving simulator intro-
duced in (Feld et al., 2020) and as shown in Figure
4. We fix the camera in front of the driving simula-
tor where the rear view mirror would be in a real car
and point it slightly downwards so that the front-seat
compartment is well captured. We capture sequences
of 6 subjects in total where either one or two of the
subjects are present in the scene. We always have at
least one person in the scene driving, and in the se-
quences where a passenger is present in the scene, he
or she is doing predefined actions like accessing the
glove compartment, talking to the driver, etc. This
gives us an image set of 4176 depth images to which
we refer as CABIN dataset (Figure 3b). Note that un-
like SVIRO we capture front seat images only. We
split the 4176 images such that frames belonging to
a sequence are part of either training or testing set.

Splitting in this manner gives image sets of 3300 and
876 images which we use to train and test respectively
the person detection and person segmentation mod-
els. The task models trained on this training set thus
give the upper performance limit against which we
can compare the same task models but trained on re-
alistically refined synthetic images. The test set con-
sisting of 876 images is used for evaluating the mod-
els trained on synthetic images, real images and real-
istically modified synthetic images in different exper-
iments.

For training the image refiner network we make
use of this complete dataset of 4176 images as the
target domain image set. Furthermore, for one of our
experiments that evaluates the benefit of using a more
general image set as the target domain, we extend this
real image set by 1000 images of indoor scenes cap-
tured with the same Kinect AZURE camera. We refer
to this dataset containing in total 5176 images from
both the driving simulator and indoor scenes captured
with Kinect AZURE as AZURE dataset (Figure 3c).

Since one of our goals in this work is to study
the effect of using different image sets captured us-
ing different types of depth sensors on domain adap-
tation, we create two separate datasets of 1000 im-
ages each containing images acquired with Kinect V1
and Kinect V2 cameras. These images are taken from
the SUN RGB-D dataset (Song et al., 2015). We
combine these 1000 images with the CABIN dataset
to create two datasets we call Kinect V1 and Kinect
V2 datasets. Figure 3d and 3e show sample images
from Kinect V2 and Kinect V1 respectively. For an
overview of different image sets used in this work,
please refer to Table 1.
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Table 2: Comparison of mAP score, and IoU and Precision scores for Faster R-CNN and Mask R-CNN networks
respectively, trained on synthetic images, real images and different image sets refined by refiner network.

| |

Training set

| mAP [ IoU [ Precision |

Baseline Synthetic 72.1 | 23.6 56.4
Real 82.9 | 80.7 87.7
Synthetic+Real(FineTuned) 89.7 | 81.7 91.6
Refined(syn—CABIN) 78.0 | 35.3 47.8
Refined Refined(syn—AZURE) 83.9 | 25.1 344
Refined(syn—Kinect V2) 79.8 | 42.6 44.9
Refined(syn—Kinect V1) 80.1 | 39.9 43.7

| Finetuned | Refined(syn—AZURE)+Real(FineTuned) | 89.3 [ 862 | 89.8 |

4 EXPERIMENTS

4.1 Baseline Experiments

We first conduct some experiments to establish the
baselines as described in sections 3.3.1 and 3.3.2
to effectively evaluate the advantage of our domain
adaptation approach over using only synthetic or only
real data for training. We train three person detection
networks and three corresponding person segmenta-
tion networks on the following sets of training im-
ages: a) only 10000 synthetic images from SVIRO;
b) only 4176 real images from CABIN dataset and
¢) 10000 synthetic images from SVIRO with further
fine-tuning on 4176 real images from CABIN dataset.

The first three rows of Table 2 show the mean
Average Precision (mAP) of the three Faster R-CNN
models trained this way, and the Intersection-over-
Union (IoU) and Precision of the three Mask R-CNN
models. As mentioned in section 3.3, all models are
evaluated on the held-out test set of 876 real depth
images. We can note that as expected the Faster R-
CNN and Mask R-CNN models trained on real im-
ages perform better than the model trained on only
synthetic images, and further fine-tuning these mod-
els using real images improves the performance met-
rics even beyond the baseline of the model trained on
real images only.

4.2 Refinement using Only CABIN
Dataset

Keeping the model architecture and training hyper-
parameters same, we first perform image translation
from synthetic images to real domain using only the
depth images captured in the driving simulator as the
target domain images. Since our ultimate goal is to
perform person detection and segmentation on these
images, it should be sufficient to use these images for
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image translation. However there is very limited vari-
ation in the background of these images, noticeably
the vertical lines/bars that are present due to the phys-
ical data capturing setup. In such a case, as shown in
Figure 5b, these structural elements are mistaken as
the ’style’ of the image and therefore while translating
the image from synthetic domain to real domain, the
generator introduces these structures in the translated
image. We can see that despite introducing new se-
mantics in the image in the form of background struc-
ture, the image translation network adapts the style of
depth images quite well in the form of missing pixels
along the edges and overall holes in the image. More-
over, the grey values of the refined image are also
shifted to match the CABIN image set which means
the depth values have been adapted. Although this re-
sult may be undesirable in some cases, for our target
domain these images look more realistic.

Quantitatively, in the fourth row of Table 2 we can
observe that training with these realistically refined
images improves the performance of Faster R-CNN
for person detection by a significant margin compared
to when the network is trained on only synthetic im-
age (first row). Whereas for Mask R-CNN, this im-
provement is seen only in the IoU metric while the
precision decreases.

4.3 Refinement using AZURE Dataset

Since using only real images from the driving sim-
ulator as the target domain introduces artifacts in
the realistically refined images, we extend the tar-
get domain dataset by additional 1000 images captur-
ing indoor scenes but with the same camera (Figure
3c). These images add some variability to the dataset
scenery and consequent noise patterns so that the re-
finer network does not attribute the style of the depth
images to the presence of physical structures in the
scene. As seen in Figure 5c, this decreases the back-
ground artifacts in the refined images while keeping
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(a) Synthetic (b) Syn—CABIN (c) Syn—+AZURE (d) Syn—Kinect V2 (e) Syn—Kinect V1

Figure 5: Qualitative comparison of out of refiner network trained using different target domain image sets.

the depth-specific noise patterns. We can also ob-
serve that training with additional indoor scene data
improves the mAP for object detection compared to
the model trained on only CABIN data surpassing
the set upper performance limit on real images. This
shows that using plentiful realistically refined images
for person detection in depth images is a better al-
ternative to using limited real-world data. We think
that this improved result may be explained by a big-
ger target domain image set of real images which has
sufficient scene variation. However, surprisingly this
approach hampers the performance of person segmen-
tation network. We think it is a result of loss of details
in the translated images that happens possibly due to
the target domain image set comprising mixed images
from car cabin and indoor scenes. This loss of image
details is evident from comparing Figure 5b with 5Sc.
Since for image segmentation such details are impor-
tant, the refined image set does not serve Mask R-
CNN well. This is a point for more investigation.

We also explore the fine-tuning with real data ap-
proach in this direction, meaning that instead of train-
ing the two task networks on the synthetic images we
train them on their realistically refined counterparts
and then fine-tune those networks on real images. As
shown in the last row of Table 2, this gives a signifi-
cant improvement for all performance metrics of both
tasks, vastly surpassing the upper performance limit
of task networks trained on real images. On top of
this, the task models trained this way almost close the
gap to the model trained with the Synthetic+Real(FT)

strategy, while even surpassing it in the IoU metric
proving that refined images are a more beneficial re-
placement for synthetic images.

4.4 Refinement using Images from
Kinect V2

Kinect V2 works on the time-of-flight principle to
capture depth much like the Kinect AZURE camera,
but unlike AZURE it has higher power requirements
and is not as portable. Nonetheless, we would like
to compare how different depth sensors working on
same depth capturing principle affect the image trans-
lation output and thereby the domain adaptation re-
sults. For this we use the SUN RGB-D dataset which
has depth images from various sensors working on
both time-of-flight and pattern projection principles.
We keep the 4196 images from the CABIN dataset
and add 1000 images from SUN RGB-D which were
captured using Kinect V2 sensor (Figure 3d). We per-
form image translation and domain adaptation simi-
larly as in previous experiments and evaluate the re-
sults. Figure 5d shows visually the results of image
translation using CycleGAN. Note that while fewer
pixels are missing along the object edges, there is a
heavy loss of details in the images with smaller ob-
jects and children completely blurred. Our expecta-
tion was that due to similar depth capture mechanism
but difference in the sensor itself the performance of
the task networks trained on these images should be
lower than the networks trained on images refined us-
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ing image-set created using same camera as test set.
But as seen in sixth row of Table 2, this decrease is
seen in only mAP and again the IoU and Precision
metrics do not follow expectations.

4.5 Refinement using Images from
Kinect V1

Lastly, we want to compare against images refined us-
ing a different sensor working on a different depth
capture principle altogether, that is, pattern projec-
tion. Similar to last section, we prepare a dataset of
4186 + 1000 images using CABIN dataset and Kinect
V1 images from SUN RGB-D dataset. We then train
the refiner network on this combined image set and
thereafter train the task networks on the consequently
refined images. As seen in Figure 3e, images cap-
tured with this camera having missing depth values or
holes but do not have the missing edge pixels char-
acteristic to time-of-flight depth sensors. Here one
would expect the domain adaptation to be slightly
worse than domain adaptation with Kinect V2 images
since the depth sensors works on a different princi-
ple. As evident from last column of Figure 5, im-
ages refined this way do not exhibit any missing val-
ues close to object border in the images. Instead
they show only large holes in the images similar to
what is found in depth images captured using a pat-
tern projection depth sensor (Figure 3e). We can also
note that these refined images lose semantic details
to a much lesser extent compared to images refined
using any of the other time-of-flight sensor image
sets. This is perhaps why the performance of Mask
R-CNN on image segmentation metrics is quite high
compared to Refined(syn—AZURE) image set. The
mAP metric shows negligible improvement compared
to Refined(syn—Kinect V2) image set but is in the
end inferior to the image set refined using same depth
sensor as the target image set on which evaluation is
performed, that is, Refined(syn—+AZURE).

S CONCLUSION AND FUTURE
WORK

In this paper, we studied one of the less frequently
explored methods for domain adaptation, namely Ad-
versarial Image Translation based Domain Adapta-
tion. We showed that in absence of paired source
and target domain images, one can resort to unsu-
pervised image translation to first realistically modify
synthetic depth images to look as if they come from
a real depth sensor and then use them for training fi-
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nal task networks. More specifically we demonstrate
the viability of this approach for person detection and
segmentation tasks in real depth images captured with
a Kinect AZURE inside a car-cabin. We saw how we
can stretch the potential of this approach using stan-
dard fine-tuning strategies where synthetic data is re-
placed with data refined by our image refiner network.
Through visual analysis of the refined images we con-
firmed that it is possible to generate visually convinc-
ing ‘realistically refined” images that mimic the noise
patterns of the real depth images acquired by a depth
sensor. Lastly, we demonstrated experimentally that
the choice of the depth sensor used to capture tar-
get domain image set for image translation affects the
end result of domain adaptation. Using same depth
sensor or similar kind of depth sensor improves per-
formance of domain adaptation for person detection
task. Whereas for person segmentation, it is more im-
portant to use a target domain image set which does
not cause loss of details during image refinement. We
leave it as future work to improve the image refiner
network to minimize loss of image details and to val-
idate this approach on other larger depth datasets.
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