Enabling Monetization of Depreciating Data on Blockchains

Christian Dahdah, Coline Van Leeuwen, Ziad Kheil, Jérdome Lacan®?, Jonathan Detchart®®

and Thibault Gateau®°

Institut Supérieur de I’Aéronautique et de I’Espace (ISAE-SUPAERQ), Université de Toulouse, France
{al-cheikh-christian.el-dahdah, coline.van-leeuwen, ziad.kheil} @student.isae-supaero.fr,

Keywords:

Abstract:

Depreciative Data, Fair Exchange, Public Ledger, Ethereum, Solidity, Space Debris.

In this paper, we introduce a protocol to securely exchange data on chain while varying its price according

to their freshness, maturity and lifetime. The exchange protocol, implemented as a smart contract, is best
applied to crowdsourcing systems for fast depreciating digital goods, in which information is publicly shared
after a given delay. The smart contract acts as a trusted intermediary to make sure that the funds of a client
are delivered to the provider if and only if the data were really transferred. It also ensures that the data will be
freely shared on the blockchain when the data has sufficiently depreciated. We demonstrate our work with an
available prototype for specific space tracking data exchange.*

1 INTRODUCTION

The interest of blockchains is demonstrated for many
contexts. Cryptocurrencies are indeed the main appli-
cations but the intrinsic properties of blockchains let
alone traceability, immutability and decentralization
open new opportunities in many contexts such as sup-
ply chains or marketplaces. Smart contracts, which
allow blockchains to perform transparent computa-
tions, led to the development of Distributed applica-
tions (Dapps) resulting in powerful services through
complementary onchain and offchain procedures.

Crowdsourcing is one of many domains that can
take great advantage of distributed ledgers. The un-
derlying principle is to allow users to share data with
others. Traditionally, crowdsourcing platforms are
managed in a centralized way, prompting several po-
tential concerns about security, trust and privacy. The
decentralized structure of blockchains allows to seam-
lessly handle such issues, therefore, they are natural
candidates to deploy crowdsourcing platforms (Ko-
gias et al., 2019; Ma et al., 2020).

Although each crowdsourcing system presents its
own specificities, their common issue is that the data
is often shared freely. However, this hinders commer-
cial entities to participate in aforesaid platforms. In

https://orcid.org/0000-0002-3121-4824
5@ https://orcid.org/0000-0002-4237-5981
¢ https://orcid.org/0000-0002-8719-5044

500

Dahdah, C., Van Leeuwen, C., Kheil, Z., Lacan, J., Detchart, J. and Gateau, T.
Enabling Monetization of Depreciating Data on Blockchains.
DOI: 10.5220/0010252105000507

this paper, we propose an incentive mechanism allow-
ing users to sell digital goods on blockchain based
crowdsourcing systems, all the while respecting the
golden idea of sharing by publishing them for free af-
ter a given time.

The proposed mechanism relies on publishing en-
crypted data on the blockchain, and selling the de-
cryption key to clients interested by an immediate ac-
cess to the information.

But in order to stay in the spirit of crowdsourcing
data, the provider pledges to publicly release the de-
cryption key, free of charge, after sufficient time has
passed.

Thus the mechanism is best suited for data with
fast depreciation rates, with an interest to publish in-
formation publicly after a certain time in order to
build a reputation and establish trust. To illustrate
this, the protocol can be used to sell encrypted forex
trade signals to clients. When these signals decay the
key is publicly shared, and the information is avail-
able to everyone, and can be evaluated to establish
reputation thus attracting future audience. In our im-
plementation' we applied this to space debris posi-
tions which also lose precision over time. In this
particular case, Trusat (ConsenSys-Space, 2020), a
crowdsourcing project, aiming to store space debris
and satellite observations to promote space safety can
benefit from this Dapp.

Uhttps://github.com/ChristianDahdah/Monetization- of-
Depreciating-Data- Through- Smart-Contracts

In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 500-507

ISBN: 978-989-758-491-6

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Note that, since we are dealing with depreciating
data, the price integrated in the contract is also subject
to decline. Unrushed clients can therefore wait until
the price suits their need. The protocol implemented
in a smart contract acts as a judge by solving poten-
tial disputes between sellers and buyers. The Claim-
and-refund procedures guarantee a private and fair ex-
change.

To this end, Section 2 presents our protocol en-
abling the monetization of depreciating data. Algo-
rithms for fair data exchange and for Dispute and
Refund are described. An implementation in an
Ethereum smart contract is described in Section 3.
One of the main objectives is the minimization of the
gas spent which could lead to significant contract fees.
This implementation is benchmarked in Section 4.

2 PROTOCOL DESCRIPTION

2.1 Protocol Overview

The global context of this paper is a crowdsourc-
ing system implemented over a blockchain where the
users share some data freely. Thanks to the trans-
parency provided by the blockchain, we assume that
the system implements a reputation mechanism al-
lowing to evaluate the behavior and the quality of the
data shared by users (Dennis and Owen, 2015).

The main contribution of this paper is a complete
protocol allowing the transfer of depreciating data to
different clients through a smart contract. In the case
of honest provider and clients, each client pays the
amount corresponding to the indicated price at the
time she acquired the data.

The global process is summarized in Fig. 1 and
detailed in the next paragraphs. Globally, when a
provider wants to share data, she first encrypts it and
stores it in the smart contract. The provider also an-
nounces the type of data, the price and the way it
depreciates in function of time. The Smart Contract
makes it mandatory to reveal the decryption key of
the data before a given deadline in order to allow the
provider to retrieve his earnings. This condition is es-
sential to be able to evaluate the correctness of the
provided key and the quality of the sold data.

If a client wants to access this data, she trans-
fers the funds corresponding to the current cost of the
data, and through the protocol, receives a decryption
key. During the procedure, the smart contract does
not learn the value of the key but is able to verify the
fairness of the exchange once the key is revealed.

Since this procedure requires several exchanges,
the contract takes into account any significant time

Enabling Monetization of Depreciating Data on Blockchains

delay in transactions and reimburses clients to fit the
depreciated value of the data and not the current price
at the time of purchase.

After the revelation of the key by the provider,
a certain delay is given to the client to potentially
launch a dispute procedure in case of fraud. The Dapp
verifies the exchanges and can reimburse the client.

On the other hand, if no dispute was initiated,
the smart contract allows the provider to retrieve his
funds.

Note that our system does not verify the quality of
the transferred data or that the exchanged key allows
the decryption of the message but it can be extended
by a reputation system (such as the one developed in
the Trusat project). With this kind of system, it is not
in the best interest of the seller to sell wrong key or
data because of the potential reputation repercussions.

2.2 Security Model and Objectives

We consider that the blockchain functionalities
ensure user authentication and correct executions of
smart contracts. We also consider the following hy-
potheses on the cryptographic building blocks: [H1]
the hash function returns a perfectly random value
(random oracle model) and is collision-resistant;
[H2] the random generator is assumed to be perfect
and [H3] the pseudo-random generator function PRG
used to generate the stream added to the data is
unpredictable. The security objectives are:

Provider Fairness. An honest provider receives the
client’s funds corresponding to the date of purchase.
Client Fairness. An honest client receives the key
that will be publicly shared at the end of the process or
a part of the insurance funds provided by the provider
if the latter is not honest.

Note that the second objective does not protect
against a provider that shares a key different from the
one she used to encrypt the data. This case is managed
by a reputation system which will detect the fraud at
the end of the process and thus will degrade the rating
of the provider.

The potential attackers are [A1] the provider that
wants to get the client’s funds without revealing the
data, [A2] a client that wants the data without paying
the funds, [A3] a third party who observes the block-
chain and wants to recover data without paying.

2.3 Description

Suppose a provider P wants to sell some informa-
tion I deemed depreciative. Let |I| be the length of

501

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

Provider, Client and
Provider Client Smart Contract

L~ Store Buy the encrypted Private exchange

I-‘ Start A encrypted data (funds stored of the decryption

'.__ __/.' data on the in the smart key through the
— blockchain contract) smart contract

Provider Smart Contract Smart Contract
Delay until data Key Send
has depreciated verification blocked ralnt
then Publicly (and possibly |3 | funds to the | 3 End |
reveal data rightful M
decryption key evaluation) OWIET

Figure 1: Protocol overview.

I. Transparency and reliability are required keystones
for such a transaction.

In view of such objectives, a protocol to safely ex-
change encrypted data and their keys, over a certain
validity period, is presented in Alg.1 and is detailed
in the next paragraphs. The management of the funds
during the process is illustrated in Fig. 2.

2.3.1 Store Encrypted Data on the Blockchain

To encrypt the data, P creates a random seed .S and
generates X with | K| = |I], in order to use stream
cipher encryption: [= Kol 1 "is then uploaded
to the contract. With this method, any user having
X is able to recover I from I'. To save on gas stor-
age cost, the provider can use any PRG to generate
K = PRG(S) and exchange .S, since this does not fun-
damentally change the mechanism of exchange, the
following protocol is used to transfer § which gener-
ally has a length smaller that | X|.

To safely exchange information on the blockchain,
the Diffie-Hellman (DH) protocol is used with each
client, thus P generates public and private DH keys
(Ppriv;Ppub)~

‘P contacts the smart-contract to sell his product:
she chooses a certain initial price, a function A detail-
ing the value decrease of his data, a duration of va-
lidity for his data, and the minimum quantity of data
she pledges to upload. Furthermore, P can deliber-
ately choose to offer a stake in Ether as an insurance
fund of his trustworthiness. These variables are stored
in the contract, meanwhile his DH keys are emitted
as events to cut on gas cost. The contract assigns an
identification /d to this offer.

2.3.2 Exchange Protocol

The steps of the decryption key exchange are the fol-
lowing:

1. Ata given time 7}, a client ' interested in buying

this depreciating data must generate (offchain) his
DH keys : (C[’;m, C[’;ub), and send the funds C}unds
in ether to the contract depending on the current
price A(t}) (computed from the initial price by the
price decrease function A). The funds sent are
blocked on the contract and can be withdrawn by

502

the client if step 4 is not accomplished. His public
key is emitted through a specific event.

2. With Py, and C;mb, ? and (' generate a shared

secret key % of length |S|. Offchain P gener-
ates a random binary sequence %; of length [S]
then, through the contract, emits § © X5 © X; as
an event on the contract.

3. Then, Ci computes the hash: W=HS oK &
KD K;) =H(S P %K;) and sends it to the con-
tract.

4. P can then check that C' has § & %] by verifying
that h' = H(S & X}). If it is wrong, © stops the
selling process. Else P sends % to C' through the
contract , which stores the new current price value
A(t)).

5. Finally ¢ now has 17(2’ and can compute S,
then X and eventually I. Moreover, the smart-
contract computes and reimburses the price dif-
ference A(t})) — A(t}) between the initiation of the
exchange (step 1) and its end (step 4), to ensure '
has access to the data at the current depreciation
value.

These 5 steps lead to a client having access to the
encryption key .S, meanwhile eavesdroppers can not
conclude anything. Note that another client also can-
not circumnavigate the logic behind this, by using the
same 17('2’ as the first client for example, because steps
2 to 5 need to be done independently for each client,
thus the provider generates a different key 7(2’ for each
client.

2.3.3 Finalization

If the provider does not reveal .S, she will not be able
to withdraw his/her earnings and insurance funds, and
the clients will be refunded. If the provider does re-
veal the key, she must wait an additional time. During
this time window, any client can choose to set a dis-
pute (see next paragraph).

Finally after the fixed time window, the provider
can withdraw his remaining unclaimed funds and the
remaining funds from the insurance deposit. Note that
this operation can only be done once, and only after
the time window has passed. No client can set a dis-
pute after the provider withdraws his/her money.

Buys at current price P

y -

4

-

Smart Contract

Provider

Enabling Monetization of Depreciating Data on Blockchains

unds in SC!
P -8P :
unds go to rightful |

]
to fit; owner : verification:

t: time of
purchase

end of transaction

t+ &t : time of tmax : time of

end of validity

Figure 2: Funds transactions over contract validity.

2.3.4 Dispute and Refund

If client ' deems that the seed received does not cor-
respond to § publicly published by the provider, he
calls the contract to raise a dispute (see Alg. 2) by
simply specifying the Id bought. The contract checks
whether § was released by the provider or not. Then,
the contract must check if a full-on fraud has hap-
pened on S by checking if H(S @ %) = h'. The funds
paid by the client, and the insurance deposited by the
provider (divided by the total number of clients), can
be retrieved by the party who is right.

2.4 Security Analysis

The analysis presented in this Section is a summary
of the main arguments demonstrating the security of
our proposal.

In attack [A1] (see Section 2.2), the funds are
transferred to the provider only if she wins the dis-
pute and refund procedure. This is equivalent to the
provider finding values of §, §' and X', such that
H(S'® Kj) =h' = H(S® %), which is implies find-
ing a collision in the hash function. This is not pos-
sible from hypothesis [H1]. For attack [A2] to occur,
the first possibility is that the client recovers directly
I by guessing .S. However, this is impossible accord-
ing to hypotheses [H2] and [H3]. The second possi-
bility is to deduce H(S) from H(S & %) by guessing
%, which is impossible considering hypothesis [H2].
There are no over possibilities to recover I without
paying the funds. Attack [A3] can succeed only if
the user guesses S which is impossible in view of hy-
potheses [H2] and [H3].

2.5 Related Work

Our work is connected to several existing projects
in the domains of security, cryptography and block-
chains. More specifically, it is related to some well-
known problems.

The first one is the time commitment (Boneh and
Naor, 2000): a user presents a commitment of a hid-
den data and promises to reveal it before a given
time. Solutions were already proposed on Bitcoin
(Andrychowicz et al., 2014) and Ethereum (Li and
Palanisamy, 2018). In our context, the encrypted data
is stored on the blockchain, and thus the smart con-
tract is able to check whether the seed is revealed and
whether this seed allows the data decryption. Note
that this justifies our choice to store data on-chain,
enabling the implementation of reputation systems
through data validation in a Dapp.

The second problem is the fair exchange of digi-
tal goods. A third party is mandatory (Pagnia and
Girtner, 1999) and blockchains can assume this role
(Bentov and Kumaresan, 2014). An efficient solution,
called Zero Knowledge Contingent Payment protocol,
has been proposed (BitcoinWiki, 2016), but a prac-
tical and secure solution was not proposed for data
exchanges until 2017 (Campanelli et al., 2017). The
ingenuity of this solution lies in the fact that the seller
and the buyer make offchain exchanges using zero-
knowledge (ZK) proofs. One should notice that some
smart contracts avoid quite complex ZK computations
and are able to manage disputes (Dziembowski et al.,
2018). These proposals can not be used directly in
our context because we need to manage time related
aspects relative to the data depreciation (depreciation
function, time of interest of the client, time delay in
reception of the decryption key).

503

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

Algorithm 1: Exchange protocol.

Algorithm 2: Dispute and refund protocol.

1 while CurrentTime < TimeLimit do

2 Do in parallel
3 ‘ Provider uploads data ;
4 end
5 Do in parallel
6 Clients buy data at the current price
A(t)) ;
7 for i < 1 to |Clients| do
8 DH exchange and computation of
the secret key %G;
9 Provider generates random key
17(2i offchain;
10 Provider emits § & K; & K]
through the contract;
11 Client i stores h' = H(S & %) on
the contract;
12 if i is validated by the provider
then
13 Provider stores 17(2’ on the
contract;
14 Smart Contract reimburses the
client by the price difference
(A(t)) — A(1})) to ensure the
data is bought at the current
depreciated rate ;
15 end
16 end
17 end
18 Wait;
19 if TimeLimit almost reached then
20 | Provider reveals ;
21 end
22 end

23 if CurrentTime > TimeLimit + DisputeTime
then
24 Provider withdraws the remaining funds
that hasn’t been claimed by clients ;
25 end

The last point considered in the design of our pro-
tocol is the (possible) depreciative value of some data.
Indeed, according to the type of data, their value can
decrease more or less quickly. If we follow the ex-
ample of Trusat data (ConsenSys-Space, 2020), the
computation of the localization of a space debris - po-
sition and speed vector at a given date - lose accuracy
over time, which may render old observations quickly
obsolete depending on usage (e.g. in collision avoid-
ance, accuracy is critical). This concept of perish-
able or depreciating data was recently studied in the
context of Internet of Things (Jiao et al., 2018) and in

504

1 if 17(2’ is not revealed thel_l '

2 | Refund client with C},,, (= A(1}));

3 elseif S is reveqled then

4 | ifH(S®K;) # h' then

5 Refund client with C;}unds +

InsuranceF unds/#0 fClients,

6 else if ProvidedData < M inData then

Refund client with C}.,, ;c +
InsuranceFunds/#0fClients,

8 end

9 else if CurrentTime > TimeLimit and S is
not revealed then

10 Refund client with

C}und“, + InsuranceFunds [#O fClients ;

11 end

blockchain-based vehicular networks (Xi et al.,
2019), but these contexts focus mainly on the deter-
mination of the best price of the data. However, our
proposal is a contribution to integrate the depreciating
aspect of the data in the data exchange protocol.

3 SMART CONTRACT
IMPLEMENTATION

The Solidity code of our implementation can be found
on Github: https://github.com/ChristianDahdah/
Monetization-of-Depreciating-Data-Through-
Smart-Contracts

3.1 Gas Price and Gas Limit

One of the main limitations that greatly impact the
contract’s logic is the gas usage. The use of for-loops
with an unknown number of iterations or searching in
a table should be avoided in functions that do require
gas. Consequently, when a provider 2 sets the seed S,
the hashes of § & 17(2’ (i : 1 — number of clients) are
not automatically compared with the ones provided
by each client to settle disputes.

Moreover, selling a product requires the initialisa-
tion and storage of a lot of variables: deploy time,
product end time, provider’s address, initial price,
depreciation type, insurance deposit, .S, clients’ ad-
dresses and their respective %3, hashes and funds.
This sets a significant gas price to sell data which
needs to be updated often. For this matter it was best
seen to group a set of information into one reference,
all encrypted with the same .§. This would be conve-

nient for both the provider and the client since it im-
plies exchanging less keys and calling less functions.

3.2 Block Validation Time and
Transaction Delay

The process of creating a new reference of products,
exchanging keys and uploading data, can take several
minutes or even hours on Ethereum. Therefore the
contract cannot be functional for products that have a
really fast depreciation rate, unless the client buys (or
subscribes to) the reference beforehand and gets the
keys. Afterwards the provider progressively uploads
the data as soon as it is available. In this setting the
client will be able to access critical information in real
time without any delay. At the end of the offer time,
if the provider did not upload at least the minimum
number N of information agreed upon, the client can
raise a dispute and claim his funds.

Furthermore, getting the absolute time in a smart
contract depends on the block it was mined in. This
could raise security problems and multiple exploita-
tion opportunities. For example a malicious node
could mine a block and alter the time it was mined,
making a dispute in favor of a client instead of a
provider. Fortunately block timestamps cannot be
tempered a lot. A block with an abnormal timestamp
is rejected by the network (Goldberg, 2018). On the
long run the timestamp could be offset by a few min-
utes which could be acceptable.

3.3 Smart Contract Versatility and
Organisation

For clarity and ease of use, the protocol mechanism
was distributed over three solidity files:

e “Depreciation_Contract.sol” contains mainly all
the needed variables for the protocol inside the
structure “DataReference”.

e “Client_Depreciation_Contract.sol” inherits from
the previous contract, and implements all the
functions needed for the client.

e “Provider_Depreciation_Contract.sol” inherits
from “Client. Depreciation_ Contract.sol” (con-
sequently from “Depreciation_Contract.sol”)
and implements all the functions related to
the provider, such as creating a new reference,
withdrawing funds, setting keys, and viewing the
clients’ addresses.

To make use of the protocol, it is sufficient to only
deploy the “Provider_Depreciation_Contract.sol”
once and define the contract’s interface and address

Enabling Monetization of Depreciating Data on Blockchains

in a fourth contract that contains the data types for our
application. In our case we simulated an exchange of
space tracking data. The fourth contract “TLE.sol”
helps to store Two Line Elements data (TLEs)(Kelso,
2019) which is equivalent to a representation of a
space object’s location and velocity vector at a given
time. The satellite’s name (or line 0) is not encrypted
and the Two-Line Orbital Element Set Format (lines
1-2) are encrypted and stored in 49 bytes for minimal
gas usage. For developing and testing purposes,
“TLE.sol” inherits but does not implement the
interface of ‘“Provider_Depreciation_Contract.sol”.
Nevertheless, defining the interface is straightforward
and will drastically cut gas usage for deployment
(refer to section 4). Hence it is possible to include
multiple structures and data types inside one refe-
rence. In our case this could be useful to share TLEs
along with telescope images using IPFS (Benet,
2014).

4 BENCHMARKS AND RESULTS

All possible scenarios proved to be correctly func-
tional and gas usage was recorded on Ethereum-
Client Besu. The initial deployment of the smart con-
tract costs 3 675 449 gas. Note that deployment oc-
curs only once, meaning one common contract can
handle selling all future products from any provider
for any future application.

The only functions a client needs are detailed in
Fig. 3 with their gas costs. Keep in mind that a client
only needs to call each function once. This brings the
client to a grand total of 181 600 gas (roughly 1.02
USD at the time of writing). But keep in mind that
most probably clients will not need to raise a dispute.

On the other hand the provider has to call some
functions several times (indicated in fig-4) depending
on what she intends to sell and to how many clients.
The general case is described in Fig. 4. Furthermore,
the gas usage for uploading data varies depending on
its length.

Ideally P can sell information in bulk to multi-
ple clients. All in all, an example of selling 10 TLEs
(~ 96 bytes each) to 50 clients, would cost P roughly
6 300 000 gas (40.19 USD at the time of writing)
which averages out to 126 000 gas per client (0.8
USD at the time of writing). The results seem to com-
pare favorably to other solutions (Dziembowski et al.,
2018) which needs to deploy a new contract for each
pair provider/client.

Finally, keep in mind that these tests were done
for the TLE crowdsourcing usecase. Gas costs can be
greatly optimized, a simple idea would be to imple-

505

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

ment DH on Elliptic Curves (ECDH) to shorten the
keys.

200000
27600 181600
150000 —
28000
% 0
8 100000
50000
0

Send Raise
Hash Dispute

Figure 3: Client Gas Usage on benchmarks.

Buy Subtotal

103000
o000 (avg per TLE)
45600
400000 s .
(per Client) |l
g 300000 RN B
per Clien
] Y
200000 204000 e
100000
0
Sell Send Send Release Add Data

Offer K®K2@K3 Decoder Key (TLE)

Figure 4: Provider Gas Usage on benchmarks.

S LIMITATIONS

This protocol is based on the veracity/value of the
traded information, in other words a non-honest
provider could sell worthless information, a fraud that
the smart-contract cannot detect. To counteract this
we elucidated the importance of an on-blockchain
reputation system.

We should also note that on a permissioned block-
chain, gas cost is less of an issue, storage and compu-
tation are therefore less restrictive. This can eliminate
the need of a PRG since the whole Key can be stored
for the exchange of heavy sized data. Moreover, a
reputation system is less necessary due to the fact that
the providers would be more known and the informa-
tion’s value more trustworthy.

On the other hand, exchanging on the mainnet
promotes the reach of a greater range of actors, audi-
ence, and information, which is necessary for crowd-
sourcing purposes. This requires the implementation
of the full protocol (i.e. usage of PRGs to cut gas
costs) along with a reputation based system to ensure
the safety of both parties.

506

A reputation system could take the form of an au-
tomatic (such as in Trusat (ConsenSys-Space, 2020)),
on-chain verification (if the nature of the information
empowers this such as comparing numbers from one
provider to another), or user ratings indicating the
honesty of a provider. The penultimate idea justi-
fies the necessity of Xor operations, since complex
encryption/decryption methods cannot be used in a
smart contract and the decryption must be computed
on-chain.

Finally, the whole paper targets volatile and de-
preciating information because it binds the provider
to publicly reveal the Key before a fixed time and thus
reveal the published information. Outside this scope,
the protocol can be burdensome, and it may be best to
use other on-chain exchange protocols.

6 CONCLUSION

This paper introduces a full solution to monetize de-
preciating data in blockchain-based crowdsourcing
systems. The system ensures a fair exchange of digi-
tal goods while ensuring that the data will be released
freely before a given time. The algorithm described,
has been implemented on an Ethereum smart contract,
and benchmarked. An example was applied to a space
tracking data system and is available on Github'.

In future work, we plan to extend the concepts and
algorithms introduced here, for example to manage
larger data files. The formalization of the algorithm
and of the security proof will further be developed in
future publications.

REFERENCES

Andrychowicz, M., Dziembowski, S., Malinowski, D., and
Mazurek, L. (2014). Secure multiparty computations
on bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 443-458.

Benet, J. (2014). Ipfs-content addressed, versioned, p2p file
system. arXiv preprint arXiv:1407.3561.

Bentov, 1. and Kumaresan, R. (2014). How to use bitcoin
to design fair protocols. In Garay, J. A. and Gennaro,
R., editors, Advances in Cryptology — CRYPTO 2014,
pages 421439, Berlin, Heidelberg. Springer Berlin
Heidelberg.

BitcoinWiki (2016). Zero knowledge contingent pay-
ment. https://en.bitcoin.it/wiki/Zero_Knowledge_
Contingent_Payment.

Boneh, D. and Naor, M. (2000). Timed commitments.
In Bellare, M., editor, Advances in Cryptology —

Thttps://github.com/ChristianDahdah/Monetization-of-
Depreciating-Data- Through- Smart-Contracts

CRYPTO 2000, pages 236-254. Springer Berlin Hei-
delberg.

Campanelli, M., Gennaro, R., Goldfeder, S., and Nizzardo,
L. (2017). Zero-knowledge contingent payments re-
visited: Attacks and payments for services. In Proc.
of the 2017 ACM SIGSAC Conference on Comp. and
Comm. Security, CCS *17, page 229-243.

ConsenSys-Space (2020). Trusat white paper.
https://trusat-assets.s3.amazonaws.com/TruSat+
White+Paper_v3.0.pdf.

Dennis, R. and Owen, G. (2015). Rep on the block: A next
generation reputation system based on the blockchain.
In 2015 10th International Conference for Internet
Technology and Secured Transactions (ICITST), pages
131-138.

Dziembowski, S., Eckey, L., and Faust, S. (2018). Fair-
swap: How to fairly exchange digital goods. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 18,
page 967-984.

Goldberg, P. (2018). Smart contract best prac-
tices revisited: Block number vs. timestamp.
https://medium.com/@phillipgoldberg/smart-
contract-best-practices-revisited-block-number-
vs-timestamp-648905104323.

Jiao, Y., Wang, P., Feng, S., and Niyato, D. (2018). Profit
maximization mechanism and data management for
data analytics services. IEEE Internet of Things Jour-
nal, 5(3):2001-2014.

Kelso, T. (2019). Norad two-line element set format.
https://www.celestrak.com/NORAD/documentation/
tle-fmt.php.

Kogias, D. G., Leligou, H. C., Xevgenis, M., Polychronaki,
M., Katsadouros, E., Loukas, G., Heartfield, R., and
Patrikakis, C. Z. (2019). Toward a blockchain-enabled
crowdsourcing platform. IT Professional, 21(5):18—
25.

Li, C. and Palanisamy, B. (2018). Decentralized release
of self-emerging data using smart contracts. In 37th
IEEE Symposium on Reliable Distributed Systems,
SRDS 2018, Salvador, Brazil, October 2-5, 2018,
pages 213-220. IEEE Computer Society.

Ma, Y., Sun, Y., Lei, Y, Qin, N., and Lu, J. (2020). A
survey of blockchain technology on security, privacy,
and trust in crowdsourcing services. World Wide Web,
23:393-419.

Pagnia, H. and Girtner, F. C. (1999). On the impossibility of
fair exchange without a trusted third party. Technical
report, Darmstadt University of Technology.

Xi, R., Liu, K., Liu, S., Chen, W., and Li, S. (2019). Perish-
able digital goods trading mechanism for blockchain-
based vehicular network. In 2019 IEEE Intl Conf
on Parallel Distributed Processing with Applications,
Big Data Cloud Computing, Sustainable Comput-
ing Communications, Social Computing Networking
(ISPA/BDCloud/Social Com/SustainCom), pages 147—
154.

Enabling Monetization of Depreciating Data on Blockchains

507

