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Capsule Networks are an exciting deep learning architecture which overcomes some of the shortcomings of

Convolutional Neural Networks (CNNs). Capsule networks aim to capture spatial relationships between parts
of an object and exhibits viewpoint invariance. In practical computer vision, the training data distribution is
different from the test distribution and the covariate shift affects the performance of the model. This prob-
lem is called Domain Shift. In this paper, we analyze how well capsule networks adapt to new domains by
experimenting with multiple routing algorithms and comparing it with CNNs.

1 INTRODUCTION

Collecting and labelling datasets for every new ma-
chine learning task and domain is extremely expen-
sive and time-consuming. There will be scenarios
where sufficient training data will not be available.
Luckily, in this era, there are lots of open-source
datasets available for many domains and tasks. How-
ever, due to a lot of reasons, there is always a distri-
bution change or domain shift between two domains
that can degrade the performance.

Domain shift occurs when the train distribution
is different from the actual test distribution. Several
works have been proposed to learn indiscriminate fea-
tures from the source distribution and the target dis-
tribution. Thus domain shift is an important problem
in practical computer vision. Despite CNNs work-
ing very well in the deep learning paradigm, there are
a lot of concerns regarding its robustness to shape,
rotation, and noise. The idea of capsules and view-
point invariance properties of Capsule Networks and
a complete model was first introduced by Sabour et
al. (Sabour et al., 2017). Capsule Networks have re-
cently been applied to many domains, such as Genera-
tive Models (Jaiswal et al., 2018), Object Localization
(Liu et al., 2018), and Graph Networks (Verma and
Zhang, 2018). There have been many unsupervised
and supervised methods to route information between
layers in Capsule nets. Several routing techniques like
EM-routing, Self routing, and Dynamic Routing have
been previously proposed.
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CNN s are said to learn local features and not the
global object shape (Baker et al., 2018). CNNs are
also said to be highly texture biased and do not rely
on shape as humans do (Geirhos et al., 2018). In con-
trast, Capsule networks are said to explain global vi-
sual processing (Doerig et al., 2019).

In this paper, we analyze the domain shift prop-
erties of capsule networks on a few popular routing
algorithms and compare it with Convolutional Neural
Networks.

2 RELATED WORK

2.1 Capsule Nets

Convolutional Neural Networks do not capture spatial
and hierarchical relations between the parts of an ob-
ject. This problem is addressed by Capsule Networks
A capsule consists of multiple neurons that together
depict different properties of the same entity. A group
of capsules makes a layer in the capsule network. The
output of a capsule is a vector that describes various
properties of the entity in the image like pose, skew,
texture and the length of the vector denotes the prob-
ability that the object is in the image. A non-linear
process between layers are used in Capsule networks
in order to convert activation probabilities and poses
of capsules in a lower layer into the activation proba-
bilities and poses of capsules in the higher layer. Due
to this structure, Capsule Networks have properties
like equivariance and viewpoint invariance unlike tra-
ditional CNNs.
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2.2 Formation of Capsules

If Q; shows the set of capsules contained in layer /,
then for each capsule i € Q; there is a pose vector y;
and an activation scalar o; associated with it. Along
with this, there exists a weight matrix Wl-’;me which
predicts pose changes for every capsule j € Q1 as
shown in equation 1

iy = Wi u; (1)
The pose vector of capsule j is a linear combination
of the prediction vectors as shown in equation 2

uj= Zcijﬁjh' 2
l

In equation 2, ¢;; is a routing coefficient which is
determined by the routing algorithm used in the cap-
sule network. Hence capsules are formed based on
routing algorithms.

2.3 Routing Techniques

The routing algorithm decides how to assign each
lower-level capsule to one higher level capsule. These
routing techniques are crucial as they enable upper-
level capsules to learn higher-level features by com-
bining the features of capsules at the lower layer.
Dynamic Routing (Sabour et al., 2017) Self Routing
(Hahn et al., 2019) and EM routing (Hinton et al.,
2018) are recent and popular routing algorithms used
on Capsule Nets.

In Dynamic routing, the pose is represented using

a vector, and the length of the vector determines its
activation. In contrast, the EM routing technique has
a matrix that is used to denote the pose and a sepa-
rate activation scalar is defined. In the Self Routing
method, a vector is used to represent the pose and a
separate activation scalar is defined.
EM routing (Hinton et al., 2018) is an unsuper-
vised routing technique where the routing procedure
is based on the Expectation Maximization algorithm.
In this technique, higher-level features are determined
based on the votes from lower level features. The vote
of a capsule is calculated by multiplying the pose ma-
trix with a learnable transformation invariant matrix
W. The viewpoint invariant transformation matrix is
learnt discriminatively and the coefficients are itera-
tively updated by the EM-Algorithm. The paper (Hin-
ton et al., 2018) also shows a reduction in error rates
on datasets suitable for shape recognition tasks when
compared to CNNS.

Dynamic Routing is an unsupervised routing tech-
nique that was initially introduced by Sabour et
al.(Sabour et al., 2017). In this algorithm, an iterative
routing-by-agreement technique is used. A capsule in
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a lower layer is influenced to send its output to cap-
sules in the higher layer whose activity vectors have a
big scalar product with the prediction incoming from
capsules in the lower layer.

Unlike Dynamic Routing, Self Routing(Hahn
et al., 2019) is a supervised routing algorithm, where
agreement between capsules is not required. Instead,
every capsule is routed independently based on the
subordinates in the same layer. Hence, the way acti-
vations and poses of higher capsules are obtained is
similar to that of Mixture Of Experts.

2.4 Domain Shift

Domain Adaptation aims to minimize the domain
shift. Several Deep Domain Adaptation techniques
have been proposed (Wang and Deng, 2018) based
on the concept of adversarial training. Domain Ad-
versarial Neural Networks (Ganin et al., 2016) aims
to achieve domain transfer by learning a domain in-
variant feature representation. A domain classifier is
trained to discriminate whether the feature belongs to
the source domain or the target domain. The feature
extractor must extract features such that the domain
classifier cannot classify whether the sample belongs
to the source domain or the target domain. Essen-
tially, the network should not contain discriminative
information about the origin of the sample.

Other methods aim to minimize the divergence be-
tween the source and target data distribution by using
divergence measures like Maximum Mean Discrep-
ancy and Correlation Alignment (Sun et al., 2017).
Maximum Mean Discrepancy aims is a divergence
measure which compares whether two samples be-
long to the same distribution by comparing the means
of the features after mapping them to a reproducible
Kernel Hilbert Space.

3 MOTIVATION

Our hypothesis is that capsule networks will have a
smaller domain shift as compared to CNNs. The mo-
tivation behind this hypothesis is that since capsule
networks claim to capture the spatial relationship be-
tween parts of an object (Sabour et al., 2017), the net-
work should be less susceptible to domain shift when
compared to CNNs.



4 EXPERIMENTS AND
EVALUATION

4.1 Architecture

To compare the domain shift on different datasets, we
use a common architecture to train both CIFAR-10
and SVHN. A ResNet-20 block is used for the base
CNN architecture. As the ResNet-20 block consists
of 19 convolution layers followed by average pooling
and fully connected layers, a Capsule Network is built
on top of it by replacing the last two layers with a
primary capsule and fully-connected capsule layer. In
order to have an equal comparison between all routing
techniques, we use the same base CNN architecture
for all of them.

The main reason for choosing a ResNet-20 block
was that it is applied in various architectures and per-
forms very well on most vision-related tasks.

To compare domain shift, we also have a CNN
baseline which consists of a standard ResNet-18
block. This CNN baseline network trained on datasets
like CIFAR-10 and SVHN.

4.2 Implementational Details

We have used a Stochastic Gradient Descent(SGD)
Optimizer to optimize our parameters with an initial
learning rate of 0.1, momentum with value 0.9, and a
learning rate decay factor of 10~*. Negative log likeli-
hood loss is used while training the models. All mod-
els were trained for 100 epochs and the model with
the best validation accuracy was chosen for predict-
ing on the test set. The number of capsules per layer
is set to 16 and routing is performed once between the
primary capsule layer and the fully connected layer in
the case of Capsule Networks.

4.3 Datasets

Datasets used to examine domain shift are CIFAR-
10 (Krizhevsky et al., 2009), STL-10 (Coates et al.,
2011), SVHN (Netzer et al., 2011) and MNIST (Le-
Cun et al., 2010).

MNIST is a database of handwritten digits has a
dataset size of 70,000 samples.

MNIST-M is a dataset that is synthetically gener-
ated by randomly replacing the foreground and back-
ground of MNIST samples with natural images.

The Street View House Numbers dataset (SVHN)
(Coates et al., 2011) used, contains around 100,000
digit images procured from Google Street View Im-
ages. This real-world dataset has images which are of
size 32X32.

Domain Shift in Capsule Networks

The CIFAR-10 (Krizhevsky et al., 2009) dataset
contains around 60,000 coloured images belonging to
10 classes which are 32x32 in size.

The STL-10 (Coates et al., 2011) consists of the
same 10 classes as that of the CIFAR-10 dataset, but
with higher resolution images of size 96X96.

While training on CIFAR-10 and SVHN, we use
augmentation techniques like random flip and random
crop.

S RESULTS AND ANALYSIS

We analyze different routing algorithms and their do-
main shift when trained on two important datasets:
CIFAR-10 and SVHN. Capsule Networks with dif-
ferent routing techniques are trained on the source
dataset and tested on the target dataset. In all the ex-
periments, the test accuracies on the source and target
domains are reported.

In the first experiment, as shown in Table 1
the model is trained on the SVHN dataset and pre-
dicted on the MNIST dataset. From this experi-
ment, we show that EM-Routing has minimal domain
shift when compared to other routing techniques and
CNNs.

In the second experiment as shown in Table 2,
we choose the SVHN dataset as our source domain
and MNIST-M as the target domain. The domain
shift of EM-Routing and CNNs are comparable. Self-
routing and Dynamic Routing algorithms underper-
form in terms of domain shift.

Finally, in the last experiment as depicted in Ta-
ble 3, CIFAR-10 is trained as the source dataset and
its performance is evaluated on the target STL-10
dataset. Domain shift of EM-Routing is on par with
CNN. Dynamic and Self-Routing techniques slightly
underperform.

We can hence show that EM-routing performs
well amongst all routing techniques, and most of the
time performing better than CNNs in terms of mini-
mizing domain shift. Dynamic Routing technique and
Self-Routing are more susceptible to domain shift de-
pending on the experiments performed.

6 CONCLUSION AND FUTURE
WORK

In this paper, we have carried out a comprehensive
analysis of Domain Shift in Capsule Networks by
considering different routing algorithms. Using a
Capsule network with different routing techniques,
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Table 1: Source SVHN Target MNIST.

Model Source Accuracy | Target Accuracy | Domain Shift
Dynamic Routing 95.25 69.79 25.46
EM-Routing 94.3 75.13 19.17
Self-Routing 92.91 60.03 32.88
CNN 96.11 74.01 22.1
Table 2: Source SVHN Target MNIST-M.
Model Source Accuracy | Target Accuracy | Domain Shift
Dynamic Routing 95.25 47.94 47.31
EM-Routing 94.30 51.31 42.99
Self-Routing 92.91 46.92 45.99
CNN 96.11 53.23 42.88
Table 3: Source CIFAR-10 Target STL10.
Model Source Accuracy | Target Accuracy | Domain Shift
Dynamic Routing 85.15 30.62 54.53
EM-Routing 82.67 39 43.67
Self-Routing 79.63 38.55 41.08
CNN 91.88 47.06 44.82

we examined how well these models adapt to new
domains. These Capsule network models are then
compared with a baseline CNN architecture to prove
the former’s superiority in adapting to new domains.
A lower domain shift hence proves the Capsule net-
work’s viewpoint invariance and equivariance proper-
ties. This can be further enhanced by experimenting
on larger different datasets and routing techniques to
better understand the Domain Shift in Capsule Net-
works. Further work can be done to use Capsule net-
works for domain adaptation and domain generaliza-
tion.
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