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Abstract: The restrictions posed by the recent trans-border regulations to the usage of biometric data force researchers 
in the fields of digitized forensics and biometrics to use synthetic data for development and evaluation of new 
algorithms. For digitized forensics, we introduce a technique for conversion of privacy-sensitive datasets of 
real latent fingerprints to "privacy-friendly" datasets of synthesized fingerprints. Privacy-friendly means in 
our context that the generated fingerprint images cannot be linked to a particular person who provided 
fingerprints to the original dataset. In contrast to the standard fingerprint generation approach that makes use 
of mathematical modeling for drawing ridge-line patterns, we propose applying a data-driven approach 
making use of generative adversarial neural networks (GAN). In our synthesis experiments the performance 
of three established GAN architectures is examined. The NIST Special Database 27 is exemplary used as a 
data source of real latent fingerprints. The set of training images is augmented by applying filters from the 
StirTrace benchmarking tool. The suitability of the generated fingerprint images is checked with the NIST 
fingerprint image quality tool (NFIQ2). The unlinkability to any original fingerprint is established by 
evaluating outcomes of the NIST fingerprint matching tool. 

1 INTRODUCTION 

Fingerprints are known to be directly linked to an 
individual and fingerprint as biometric modality is 
well accepted and widely established means of user 
authentication. The applications making use of 
fingerprints spread form biometric access control 
systems to forensic investigation of latent 
fingerprints. Empirical studies on forensic or 
biometric fingerprint processing and recognition 
require a large dataset of fingerprints for validation of 
results. Moreover, development of fingerprint 
detection and recognition algorithms based on 
machine learning is hardly possible without an 
abundant amount of training data. However, 
fingerprints as well as any other biometric data are 
seen as a special category of personal data which is 
prohibited to be processed by the recent trans-border 
regulations without exception for the purpose of non-
commercial research. A prominent example of a 
fingerprint dataset valuable for digitized forensics 
which was removed from the public access after 
establishing such regulations is the NIST Special 
Database 27 (Garris et al., 2000). Note that some 
categories of personal data can be processed after 

anonymization which is not the case for biometric 
samples because they require no meta-data to be 
linked to individuals. An elegant solution to the 
privacy-caused processing restrictions is a genera-
tion of artificial fingerprints that have the same 
characteristics as real fingerprints, but cannot be 
linked to particular persons. For biometrics, there is a 
de facto standard synthesizing tool called SFinGe 
(Cappelli, 2009). Fingerprints are generated to fit a 
certain basic pattern and a predefined set of minutitae. 
In contrast, in the field of digitized forensics the focus 
is on mimicking substrate and environmental 
influences on a digitalized latent fingerprint. Since 
such influences can be hardly formalized, modern 
data-driven image generation approaches has to be 
adopted for fingerprints. 

Recent achievements in development of deep 
convolutional neural networks and especially gene-
rative adversarial networks (GAN) allow for 
automated generation of artificial images that can be 
hardly told apart from real images. In this paper, we 
examine several GAN architectures in application to 
generation of fingerprint images and assess the 
quality of the generated images. The quality is two-
fold. The generated fingerprints must appear natural 
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and be privacy-friendly. Natural appearance means 
that the naked eye cannot see difference to a typical 
original pattern and a fingerprint is applicable for the 
further investigations (appropriate basic pattern, 
sufficient number of minutiae, etc). Privacy-friendly 
means that a generated fingerprint does not match one 
particular original fingerprint. If a generated 
fingerprint matches k (k ≠ 1) original instances, then 
k-anonymity will be indicated. As a metric for both 
criteria we use NIST tools (Ko, 2007): NFIQ2 for the 
former and the combination of the MINDTCT and 
Bozorth3 for the latter.  

Our contribution is in demonstrating that GAN 
can be successfully applied for conversion of privacy-
sensitive datasets of fingerprint images to privacy-
friendly datasets and in comparing three currently 
very prominent GAN architectures: 
ProgressiveGAN, StyleGAN and StyleGAN2 for this 
purpose. While comparing generation perfor-mances 
of the networks, we consider the following 
characteristics: how many training iterations are 
required to obtain high-quality fingerprint images, the 
time of image generation, and the proportion of high-
quality fingerprints in the whole number of generated 
fingerprints. The better network would be able to 
generate more high-quality fingerprints in a shorter 
time frame. In order to improve the diversity of 
generated images and make the process of image 
generation more stable, we augment the training set 
by applying filters from the StirTrace benchmarking 
tool (Hildebrandt et al., 2015). Note that here we are 
not focused on generation of one particular dataset of 
artificial fingerprints, but rather propose a technique 
for compilation of such privacy-friendly datasets out 
of existing data. 

In Section 2, we overview related works. In 
Section 3, we introduce our concept of generation and 
assessment of synthetic fingerprint images. In Section 
4, we elaborate on important aspects of our 
implementation. In Section 5, we evaluate the GAN 
generated fingerprint images. Section 6 concludes the 
paper with the summary of results. 

2 RELATED WORKS 

Early works on generation of synthetic fingerprint 
images were concerned rather with reconstruction of 
ridge-line patterns from biometric templates 
considering this act as a potential attack on a 
biometric system (Galbally et al., 2008). Starting 
from the set of minutiae, a fingerprint area, an 
orientation map and a frequency map are estimated. 
Then, the iterative pattern growing approach draws 

ridges along the orientation lines by applying Gabor 
filters (Cappelli et al., 2007). This approach has been 
implemented in the software called SFinGe (Cappelli, 
2009). The most critical step in this workflow is the 
estimation of an orientation map based on the set of 
minutiae or, to be more precise, based on singular 
points of a basic pattern (core, deltas). It is shown in 
(Ram et al., 2010) that singular points can be modeled 
by the zero-poles of Legendre polynomials, resulting 
in a discontinuous orientation field. An exhaustive 
study on the possibility of modeling fingerprints by 
the phase portraits of differential equations is 
conducted in (Zinoun, 2018) and the limitations are 
outlined.  

In contrast to mathematical modeling, the modern 
trend is a data-driven generation of realistic images 
by means of generative adversarial networks (GAN). 
Recently, very impressive results have been 
demonstrated with images of human faces. Based on 
a huge amount of face images, researchers from 
NVIDIA successfully created high-quality, high-
resolution synthetic faces, which can be hardly told 
apart from the real ones (Karras et al., 2018). The first 
effort to synthesize fingerprints using a Wasserstein 
GAN is made in (Bontrager et al, 2017) aiming at 
generating so-called master fingerprints that match 
multiple original fingerprints. Later on, in (Minaee et 
al., 2018), a connectivity imposed GAN is introduced 
and applied to two datasets: FVC-2006 and PolyU. 
The size of generated images in both publications is 
rather insufficient. In (Attia et al, 2019) fingerprints 
are synthesized by a variational autoencoder. In (Cao 
et al., 2018), a combination of an autoencoder and an 
adapted Wasserstein GAN is used for synthesizing 
512x512 pixel fingerprint images. A CycleGAN is 
applied in (Wyzykowski et al., 2020) to transfer 
texture from real fingerprints to conventionally 
synthesized ridge-line patterns with added sweet 
pores which dramatically improves their realistic 
appearance. An alternative approach for generating 
high-resolution realistic fingerprints is in combining 
GAN with a super-resolution network proposed in 
(Riazi et al. 2020). In (Fahim, et al., 2020), a 
lightweight GAN is proposed for creating 128x128 
pixel images and compared with five established 
GAN architectures based on 64x64 pixel patches. The 
next breakthrough is done in (Mistry et al., 2020) by 
incorporating identity information into the fingerprint 
synthesis network which is based once again on 
combining auto-encoder and Wasserstein GAN.  

Here, we look for a suitable GAN architecture to 
generate high-resolution (512x512 pixel) gray-scale 
fingerprint images. This target size corresponds to the 
high-quality fingerprint image format (1000 ppi) used 
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in dactyloscopic analyses (Orandi et al., 2014). 
Images with this size and resolution are capable of 
representing a significant part of a scanned latent 
fingerprint incl. the level 1 feature (basic pattern) as 
well as a sufficient number of level 2 features 
(minutiae) and potentially, depending on the prints 
quality, also level 3 features (sweat pores). The vast 
majority of dated GAN architectures are designed to 
generate images with a resolution less or equal to 
256x256 pixels (see e.g. (Karras et al., 2017)) and 
therefore omitted in our considerations. Generating 
images of higher resolution is possible by adding 
several up-sampling layers (Zhang et al., 2016), but it 
would increase instability of the training process. 
Some GAN architectures such as ConditionalGAN 
(Wang et al., 2018) suffice the resolution criterion but 
are not capable of generating plausible images from 
fully random latent vectors. Such GANs are also not 
addressed. To the best of our knowledge, currently 
only three GAN architectures fit to our requirements: 
ProgressiveGAN (Karras et al., 2017), StyleGAN 
(Karras et al., 2018) and StyleGAN2 (Karras et al., 
2019). These networks are able to generate plausible 
high-resolution images from fully random latent 
vectors. 

3 CONCEPT 

The usage of GAN is driven by privacy concerns. The 
synthesized fingerprints in a privacy-friendly dataset 
should exactly reproduce the characteristics of a 
reference dataset, but must leak no information in 
terms of reproducing the same minutiae. 

The classic fingerprint synthesizing approaches 
start with minutiae or singular points to generate 
ridge-lines. If a set of minutia is taken from a 
reference fingerprint, the synthesized fingerprint 
would perfectly match it. Random selection of 
singular points or of a set of minutiae may lead to 
generation of implausible ridge-line patterns. Hence, 
tools like SFinGe can be successfully applied for 
generation of fingerprints with parameterizable 
characteristics reaching the diversity by randomizing 
parameters. However, SFinGe is hardly applicable to 
mimic characteristics that are presented in some 
reference data but cannot be formally described such 
as an appearance of a substrate. This is often a case 
for latent fingerprints which include not only 
characteristic of the fingerprint itself, but also 
characteristics of the environment in which the 
fingerprints were left behind (including topological 
characteristics of the surface). Table 1 summarizes 

the differences between the both aforementioned 
concepts of synthesizing fingerprint images. 

Table 1: Comparison of SFinGe and GAN for generation of 
fingerprint images. 

 SFinGe GAN 
Generation 
approach 

mathematical 
modeling 

data-driven 

Fingerprint type exemplar latent  
Reproduction of characteristics of 

a fingerprint 
(basic pattern, 
minutiae) 

characteristics of 
environment 
(incl. substrate, 
digitalization 
process etc.) 

 
Our concept for the generation of privacy-friendly 

fingerprint image datasets is illustrated in Figures 1 
and 2. The basic idea is that, for a given proprietary 
dataset of fingerprint images, we create a dataset of 
anonymous fingerprint images that are not linked to 
individuals but preserve all characteristics of the 
images in the initial dataset incl. background noise, 
image quality, frequency of ridge lines, one of the 
standard basic patterns, plausible number and 
locations of minutiae, etc. The number of samples in 
a new dataset is optional and depends only on time 
spent to the generation process. Note that images in 
the original dataset may include more than one 
fingerprint and may also vary in size. In contrast, the 
GAN training images must all have a specific size. 
Hence, a dataset specific pre-processing of images is 
required.  

 
Figure 1: Training of a GAN model. 

Figure 1 schematically describes training of a 
GAN model. In our further considerations, we take 
NIST Special Database (SD) 27 (Garris, 2000) with 
2856 latent and matching tenprint fingerprint images 
as an example source of fingerprint data. There are 
two pre-processing steps performed before images 
are fed into the network: First, the fingerprints are 
segmented from the images. The patches are cut 
around fingerprint core points so that each resulting 
image contains exactly one partial or full fingerprint. 
The core points are located using the NIST tool 
MINDTCT (Ko, 2010). Note that the MINDTCT 
sometimes falsely highlight some artifacts like letters 
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1000 dpi
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512×512 pixels
(39768 samples)

GAN Model

D G
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Segmentation Augmentation 
(StirTrace)

Training 
of GAN
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on the scanned trace cards in NIST SD 27 images as 
core points leading to non-fingerprint patches. 
However, we decided not to remove these outliers 
from the training data because they should be 
automatically sorted out in the later steps of the 
generation process. The number of extracted 
fingerprint patches is 39768. Second, the resulting set 
of fingerprint patches is augmented by their filtered 
versions (see Section 3.1) increasing the number from 
39768 to 516984 for 12 StirTrace filters applied. This 
is done to improve the diversity of the generated 
images and to make the process of image generation 
more stable. 

 
Figure 2: Generation of synthetic fingerprint images. 

Figure 2 demonstrates the generation process of 
fingerprints and assessment of their quality. During 
GAN training, random latent vectors are fed into the 
generator resulting in synthetic fingerprint images. 
The snapshots of generated fingerprints are automa-
tically stored at some training iterations. From each 
snapshot, we randomly pick 1000 fingerprint images 
for further analysis. For every image in every 
snapshot, we obtain a quality score using the NIST 
Fingerprint Image Quality estimator - NFIQ2 (Elham 
et al., 2013). From each snapshot, we calculate the 
mean value of the NFIQ2 scores and the number of 
images with NFIQ2 scores higher than 35 to 
determine at which iteration of the training process 
the generation model works best. Images with such 
scores correspond to the two highest quality classes 
in the 5-class NFIQ scale (Galbally et al., 2019) and, 
therefore, are referred to as high-quality fingerprints. 
The best snapshot has the highest number of high-
quality 512x512 pixel fingerprints. Fingerprints with 
NFIQ2 scores lower or equal to 35 are filtered out. 

Each remaining fingerprint is biometrically matched 
to all training fingerprints using NIST tools (see 
Section 3.3).   

3.1 Data Augmentation with StirTrace 

StirTrace (Hildebrandt et al., 2015) is designed for 
benchmarking pattern recognition tasks in the context 
of digitized forensics. This tool can be seen as a set of 
filters to mimic typical artifacts that usually arise in 
the process of digitizing fingerprints, especially 
addition of noise. The most relevant filters used here 
for data augmentation are additive noise (strengths: 3, 
5 and 9), additive Gaussian noise (strengths: 3, 5 and 
9), median cut (strengths 3, 5 and 9) and salt and 
pepper noise (strengths: 3, 5 and 9). Note that filtering 
does not change the number and location of minutiae 
in a fingerprint. Hence, it is sufficient that the 
generated synthetic fingerprints are matched only 
against original patches and not against all training 
samples. 

3.2 GAN Architectures 

The term Generative Adversarial Network (GAN) 
was proposed in 2014 by Ian Godfellow for the 
architecture containing two neural networks 
Generator (G) and Discriminator (D), which are 
trained interchangeably. Generator produces synthe-
tic data from random vectors and discriminator tries 
to distinguish these data from genuine data. The basic 
idea is that the generator improves with training while 
the discriminator’s performance gets worse. 
However, after the point where the discrimi-nator is 
unable to tell apart genuine and synthesized data, the 
generator cannot be improved further, making the 
training process rather unstable. When operating with 
images, D is represented by a convolutional neural 
network and G by a de-convolutional neural network. 

Progressive growing GAN (ProgressiveGAN) is 
an elegant solution to the convergence issue of the 
GAN training (Karras et al., 2017). Training begins 
with low-resolution images e.g. 4x4 pixels and the 
input images are re-scaled to this resolution. After the 
training process converges at the selected resolution, 
the resolution is increased and the training is repeated. 
This is done until the target resolution is reached. This 
is how the generator learns rough characteristics of 
training images first and then gradually fine 
characteristics. Technically, switching of resolution 
happens by gradual addition of intermediate layers 
into the network. Progressive-GAN was the first 
architecture that enabled gene-ration of high-
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resolution naturally looking fake faces which can be 
hardly told apart from real ones. 

Based on ProgressiveGAN, an improved archite-
cture called StyleGAN (Karras et al., 2018) was 
developed to take apart aggregated characteristics of 
images also referred to as styles and to move from one 
style to another. For face images the styles are e.g. a 
haircut or a skin color. Technically, the analysis and 
clustering of the latent space is done by introduction 
of adaptive instance normalization (AdaIN) layers 
and addition of noises to control the intensity of a 
particular style. However, StyleGAN often produces 
characteristic imperfection e.g. droplet or phase 
artifacts which are attributed to the network 
architecture. Droplet artifacts arise due to 
independent normalization of means and variations of 
different style feature maps in AdaIN layers and 
phase artifacts arise due to progressive growing. A 
variation of the StyleGAN architecture called Style-
GAN2 (Karras et al., 2019) was proposed to avoid the 
aforementioned imperfections. Adaptive instance 
normalization is replaced by weight demodulation 
making normalization of means and variations of the 
different styles not independent anymore. The 
progressive growing issue is solved by generating 
images with only target resolution by adding up the 
weighted outcomes of all layers of the generator. It 
does not change the idea of progressive learning of 
image characteristics (from rough to fine), but helps 
to get rid of phase artifacts. 

3.3 Fingerprint Anonymity Assessment 

Biometric matching of fingerprints is done by using 
NIST tools: MINDTCT and Bozorth3 (Ko, 2007). 
MINDTCT extracts the list of minutia from a finger-
print while Bozorth3 compares two such lists and 
produces a similarity score representing the number 
of matched minutiae. Note that MINDTCT requires 
500 dpi images to properly detect minutiae. Since the 
target resolution of our synthesized fingerprints is 
1000 dpi, the images are downscaled with a factor 2 
before applying MINDTCT. The documentation of 
Bozorth3 suggests values over 40 for the perfect 
match. However, we use here a value of 30 as a 
decision threshold to guarantee better anonymity.  

4 IMPLEMENTATION 

We use the original NVIDIA implementations of the 
addressed GAN architectures from GitHub reposito-
ries: http://github.com/NVlabs/stylegan and http:// 
github.com/NVlabs/stylegan2. The implementation 

of ProgressiveGAN is a part of the StyleGAN repo-
sitory. The GANs are used in their default configu-
ration, we only set the target image size to 512x512 
pixel and kImages to 7500. The parameter kImages 
refers to the amount of real images which the GAN 
discriminator has seen during training. We switch off 
the estimation of the perceptual path length and linear 
separability of all GANs because these metrics do not 
work with gray scale images (for reasons see (Karras 
et al., 2018)). The amounts of layers used and the 
trainable parameters of each GAN are summarized in 
Table 2. For the training of the GANs we used a 
workstation with two NVIDIA Titan RTX graphic 
cards with 24 GB VRAM each.  

The StirTrace tool is used in version 4 as provided 
at https://sourceforge.net/projects/stirtrace. The 
applied filters as well as the composition of the 
training set after this data augmentation step are 
summarized in Table 3. 

The NFIQ2, MINDTCT and Bozorth3 are the 
parts of the NIST Biometric Image Software (NBIS) 
which is available at https://www.nist.gov/services-
resources/software/nistbiometric-image-software-
nbis.  

Table 2: Configurations of the addressed GANs. 

GAN type network type amount 
of layers 

trainable 
parameters 

Progressive
GAN 

Generator 
Discriminator 

43 
44 

23.067.048 
23.075.169 

StyleGAN Generator 
Discriminator 

76 
44 

26.174.696 
23.075.169 

StyleGAN2 Generator 
Discriminator 

67 
29 

30.270.551 
28.982.721 

Table 3: Composition of the training dataset. 

Filter Kernel size Number of samples 
without filter - 39768
+ additive noise 3, 5, 9 3 x 39768 = 119304
+ additive Gaussian 
noise 

3, 5, 9 3 x 39768 = 119304

+ median cut 3, 5, 9 3 x 39768 = 119304
Salt & pepper noise 3, 5, 9 3 x 39768 = 119304

 Total: 516984

5 EVALUATION 

We compare GAN architectures regarding the 
following aspects: how many training iterations are 
required to obtain high-quality fingerprint images, the 
speed of image generation, and the proportion of 
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high-quality fingerprints in the whole number of 
generated fingerprints. The better network is able to 
generate more high-quality fingerprint images in a 
shorter time frame. Additionally, we validate the 
“anonymity” of the created datasets. 

5.1 Training and Generation Time 

The training time strongly varies from one GAN to 
another. Due to the time constraints, we initially 
limited the training parameter kImages to 7500. 
Nonetheless, only StyleGAN reached the image size 
of 512x512 pixels with 7500 kImages on one GPU. 
The training of ProgressiveGAN with 7500 kImages 
resulted in images of 256x256 pixels. Hence, the 
training was continued with 12000 kImages on two 
GPUs. For the proper comparison the 256x256 
images are upscaled to 512x512 pixels. The training 
time of StyleGAN2 is extremely long (see Table 4), 
so that we first switched from one GPU to two GPUs 
after 3429 kImages and stopped training of after 4452 
kImages (ca. 11 days). Nevertheless, even at this 
point, the generated fingerprint images already 
reached a good subjective quality (to be attributed to 
the residual structure of generator and discriminator). 
Note that StyleGAN2 has an advantage over the two 
other architectures because training already starts 
with 512x512 pixel images while the other two start 
with very small images und gradually upscale them. 

Table 4: Training time of the GANs on our reference PC. 

GAN type Used 
GPUs 

kImages Training 
time 

Reached 
image size

Progressive 
GAN 

1 < 7500 2d 1h 44m 256x256 

Progressive 
GAN 

2 7501-
12000 

4d 22h 57m 512x512 

StyleGAN 1 < 7500 3d 3h 36m 512x512 
StyleGAN2 1 < 3429 8d 5h 12m 512x512 
StyleGAN2 2 3430-

4452 
2d 20h 46m 512x512 

5.2 Quality of Generated Images 

Figures 3 and 4 demonstrate the development of the 
average NFIQ2 score and the ratio of high-quality 
images of 1000 images randomly selected from GAN 
snapshots over the course of training, respectively. 
We see that StyleGAN2 starts genera-ting high-
quality fingerprints after only few training iterations 
and the fingerprint quality even degrades with the 
higher kImages parameter. The diagrams also 
demonstrate that StyleGAN clearly outperforms 

ProgressiveGAN regarding both the average NFIQ2 
score and the number of fingerprints with NFIQ2 
scores higher than 35. For StyleGAN and Progres-
siveGAN, the snapshot at which the targeted 
resolution of 512x512 pixels is reached is marked. 
For all three GANs, the average NFIQ2 scores 
stabilize between 25 and 30. 

 
Figure 3: GAN training: average NFIQ2 scores. 

 
Figure 4: GAN training: ratio of high-quality fingerprints. 

 
Figure 5: Distributions of NFIQ2 scores of 1000 random 
GAN fingerprint images from the selected snapshots. 

We compare the performances of GANs by 
comparing the snapshots at which GAN reaches the 
highest average NFIQ2 score with the possibly low 
kImages parameter. The optimal value of kImages is 
7870, 6840 and 1925 for ProgressiveGAN, Style-
GAN and StyleGAN2 respectively. The distributions 
of NFIQ2 scores for the selected snapshots are 
depicted in Figure 5. The histograms shows that 
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fingerprint images with the highest quality are 
generated by StyleGAN followed by Progressive 
GAN and StyleGAN2. Out of 1000 images in a 
corresponding snapshot, StyleGAN generated 371 
images with NFIQ2 higher than 35, Progressive GAN 
266 images and StyleGAN2 191 images. Note that all 
GAN generated images have on average higher 
NFIQ2 scores than original training images. 

Table 5 visualizes the difference between GAN-
generated fingerprint images of high (NFIQ2 > 35) 
and of relatively low quality (25 ≤ NFIQ2 < 35). The 
perceptual quality of the fingerprint images is 
extremely high, with plausible level 1 and level 2 
features and, in the case of StyleGAN, even 
something that already looks like some sweat pores. 

Table 5: Examples of GAN-generated fingerprint images. 

 Progres.GAN StyleGAN StyleGAN2 
  NFIQ2 
  > 35 

 
42 

 
39 43

  NFIQ2 
  < 35 

 
26 26 25

5.3 Anonymity of Generated 
Fingerprints 

After filtering out the low-quality fingerprint images 
with NFIQ2 score below 35, we compare each high-
quality fingerprint image with all training images. 
Low Bozorth3 scores indicate that the generated 
fingerprints cannot be linked to any person who 
provided fingerprints to the training dataset. The 
average Bozorth3 scores range between two and six 
depending on the fingerprint and the GAN type. 
However, there are few generated fingerprints with 
exactly one Bozorth3 score higher than 30 indicating 
the match between a generated fingerprint and one of 
the fingerprints in the training dataset. Table 6 shows 
the ratio of synthesized fingerprints with Bozorth3 
scores lower than 30, between 30 and 39, and higher 
than 40 for each considered GAN type. For 
StyleGAN for instance, 59 images have a score above 
40 meaning 15.9% of high-quality non-anonymous 
images in the selected snapshot. 

Table 6: Number of GAN fingerprints with Bozorth3 scores 
(s) in a certain range in the selected snapshots. 

 Progres.GA
N 

StyleGAN StyleGAN2 

s < 30 169/266 ~  
63.53% 

182/371 ~ 
49.06% 

106/191 ~ 
55.50% 

30 ≤ s < 40 65/266 ~    
24.44% 

130/371 ~ 
35.04% 

66/191 ~   
34.55% 

s ≥ 40 32/266 ~ 
12.03% 

59/371 ~ 
15.90% 

19/191 ~ 
9.95% 

 
The experimental results suggest that Progressive 

GAN with 63.53% of Bozorth3 scores lower than 30 
generates on average the highest number of anony-
mous fingerprints and therefore can be seen as the 
most privacy-friendly generation approach.  Progres-
siveGAN is followed by StyleGAN2 (55.5% anony-
mous fingerprints) and then StyleGAN (49.06% 
anonymous fingerprints). Considering the absolute 
number of the high-quality anonymous fingerprints in 
the selected snapshot, StyleGAN has clearly the best 
generation performance with 182 images followed by 
ProgressiveGAN (169 images) and then StyleGAN2 
(106 images). 

In our case study, we conducted experiments only 
with the NIST SD 27 database. The proportions of 
anonymous high-quality fingerprints within the 
whole number of generated fingerprints as well as the 
generation time cannot be generalized for any 
reference database taken as training data for a GAN. 
However, the experimental results clearly show that 
GAN is a suitable technique for "anonymization" of 
privacy-sensitive fingerprint datasets. 

6 CONCLUSION 

We demonstrate that a GAN is in general a suitable 
technique for generation of high-quality anonymous 
fingerprint images. As a data-driven approach a GAN 
takes a privacy-sensitive dataset and converts it to 
privacy-friendly dataset without loss of dataset 
characteristics. The resulting datasets can be used for 
research on fingerprints without privacy-caused 
limitations. In a case study with the NIST SD27 
dataset, we show that all three addressed GAN 
architectures (ProgressiveGAN, StyleGAN and Style 
GAN2) are capable of converting original privacy-
sensitive fingerprint images to privacy-friendly ones. 
StyleGAN2 has an advantage that the fingerprint 
images with high NFIQ2 scores are generated after 
only a few iterations of training. In contrast, 
ProgressiveGAN and StyleGAN require many 
training iterations to reach the target image 
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resolution. However, StyleGAN2 is the worst 
approach regarding the absolute number of high-
quality anonymous fingerprints generated. From the 
perspective of fast generation, StyleGAN is clearly 
superior. ProgressiveGAN is preferable regarding the 
better anonymity. Our future work will address the 
training of GAN models based on multifarious 
fingerprint images from many independent sources 
and conditional generation of fingerprint patterns 
such as predefined locations of minutia or substrate 
characteristics. 
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