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Abstract: Previous studies have demonstrated the applicability of electroencephalogram (EEG) in estimating mental 
workload. However, developing reliable models for cross-task, cross-subject and cross-session classifications 
of workload remains a challenge. In this study, we used a wireless Emotiv EPOC headset to evaluate workload 
in eight subjects and two mental tasks, namely n-back, and arithmetic tasks. 0-back and 2-back tasks, and 1-
digit and 3-digit additions were employed as low and high workloads in the n-back and arithmetic tasks, 
respectively. Using power spectral density as features, a signal processing and feature extraction framework 
was developed to classify workload levels. Within-session accuracies of 98.5% and 95.5% were achieved in 
the n-back and arithmetic tasks, respectively. To facilitate real-time estimation of workload, a fast domain 
adaptation technique was applied to achieve a cross-task accuracy of 68.6%. Similarly, we obtained accuracies 
of 80.5% and 76.6% across sessions, and 74.4% and 64.1% across subjects, in n-back and arithmetic tasks, 
respectively. Although the number of participants is limited, this framework generalised well across subjects 
and tasks, and provides a promising approach towards developing subject and task-independent models. It 
also shows the feasibility of using a consumer-level wireless EEG headset in cognitive monitoring for real-
time estimation of workload in practice. 

1 INTRODUCTION 

Brain-computer interface (BCI) is mainly applied to 
aid disabled persons by using the brain signals for 
communication and control while bypassing auxiliary 
muscles or nerves (Wolpaw et al., 2002). However, 
BCI is now used in healthy subjects in an application 
called Passive BCI (Zander et al., 2010). Passive BCI 
can be used to obtain information about a user’s level 
of workload, mental state, or attentiveness. This 
application can help to improve a vehicle driver’s 
performance, prevent accidents in systems and 
industries and ensure attentiveness of security 
officers in surveillance systems (Mueller et al., 2008; 
Venthur et al., 2010; Welke et al., 2009).  

Although there is no universal definition of 
mental workload (Cain, 2007; Zander et al., 2010), 
workload can be viewed as the result of the 
interaction between work demands and human 
capacity (Hart and Staveland, 1988). As the workload 
increases, the task demand approaches the upper limit 
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of human ability. Physiological correlates of 
workload have been established in many literatures.  
Some of these measures include heart rate (Brookings 
et al., 1996), blood pressure (Theorell et al., 1988), 
Electromyogram (EMG) (Mehta & Agnew, 2012) 
and EEG. Even though there seem not to be a best 
physiological indicator of workload, some studies 
showed EEG to be more promising compared to other 
indicators (Hogervorst et al., 2014; Taylor et al., 
2010). 

In mental workload classification, a variety of 
machine learning methods have been employed. 
Some of these methods include support vector 
machine (SVM) (Wang et al., 2016), artificial neural 
network (ANN) (Baldwin and Penaranda, 2012) and 
hierarchical Bayes model (Wang et al., 2012). SVM 
finds more application because it generalizes well and 
handles high-dimensional data (Burges, 1998). 
However, due to the nonstationary nature of EEG 
signals, the performance of algorithms degrades when 
the training and test data are taken from different 
sessions and subjects. Hence such algorithms need to 
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be trained or adapted for every user and session 
(personalised and bespoke models). While such data 
modelling attempts are useful, not being able to use 
previously elicited models in applications for other 
users is a weakness in terms of developing multi-user 
software tools and algorithms.  

Some attempts have been made to overcome this 
performance degradation. EEG source localization 
and functional connectivity estimation ware applied 
to classify workload across tasks (Dimitrakopoulos et 
al., 2017). Similarly, a combination of deep recurrent 
network and 3D convolutional neural network was 
used to learn detailed features for cross-task 
classification (Zhang et al., 2019). Other studies 
proposed domain adaptation and transfer learning to 
overcome the shifts in data distribution across 
different subjects (Albuquerque et al., 2019; J. Zhang 
et al., 2017). However, these studies considered either 
cross-task or cross-subject classifications separately. 
Moreover, some of them used many electrodes for 
recording the EEG signals which reduces the 
comfortability of using EEG headsets in practical and 
online scenarios.  

We address these issues by (i) applying a single 
framework to overcome cross-session, cross-subject 
and cross-task performance degradations (ii) using a 
consumer-level wireless EEG headset with just 14 
channels. We developed a simple signal processing 
and feature extraction technique to facilitate practical 
and real-time application. The model was tested 
across eight (8) subjects in two different types of task 
– n-back task and arithmetic task. We then applied a 
fast domain adaptation paradigm called Adaptive 
Subspace Feature Machine (ASFM) (Chai et al., 
2017) to improve the model performance across 
sessions and tasks. We compared the results from 
ASFM with those of SVM.  Some subjective and 
performance indices of mental workload were also 
used to verify that the experimental design reflects 
different levels of workload. 

2 METHOD 

2.1 Subjects 

Eight (8) subjects (6 males and 2 females) 
participated in the EEG experiment which was held at 
the Physiological Signal Processing Laboratory, 
Department of Automatic Control and Systems 
Engineering, University of Sheffield. Participants 
were aged between 19 and 30 (Mean = 25 ± 3 years). 
All subjects were right-handed, reported normal or 

corrected-to-normal vision, and had no history of any 
fatigue-related disorder. The experiment was 
performed in accordance with the University’s ethics 
guidelines, and participants gave written informed 
consent. 

2.2 Experimental Design 

N-back task and arithmetic task were employed in this 
study and each task had two difficulty levels. The two 
tasks have been extensively used to induce workload 
demands (Dimitrakopoulos et al., 2017; S. Wang et 
al., 2016; Zarjam et al., 2012). In the n-back task, 0-
back and 2-back tasks were used to represent low and 
high workloads, respectively.  As shown in Figure 1a, 
for the 0-back condition, the target letter is ‘X’. For 
the 2-back condition, participant decides if the letter 
displayed currently is same as the letter displayed two 
sequences earlier. Hence, the participant updates his 
memory by memorizing two previous letters as the 
sequence progresses. In both task levels, the 
participant presses the appropriate key to indicate if 
the letter is a target or not.  

In the arithmetic tasks, participants are required to 
perform arithmetic operations without any aid such as 
pen and paper or calculator. The answer from every 
arithmetic operation is memorized and retrieved after 
some seconds when an answer is displayed. If the 
number displayed on the screen is the correct result 
from the last arithmetic operation, then such number 
is the target number (T), else it is a non-target (NT). 1-
digit addition was used for low workload level and 3-
digit addition for high workload level. The 3-digit 
addition is shown in Figure 1b. 

To perform the experiment, the participants’ 
attention is focused on a cross on the screen for 30 
seconds without any movement or much eye blinking. 
Then, participants perform 5-minute blocks each of 
the 0-back task, 2-back, 1-digit arithmetic and 3-digit 
arithmetic tasks. To remove time-dependent 
confounding effects, 3 participants were asked to 
repeat the experiment after a week, while the tasks 
were presented in a counterbalanced order. The 
participant took a break after every task block and 
rated each task on an RSME scale (Zijlstra, 1993) 
based on the perceived expended effort in solving that 
task. The scale ranges from 0 to 150 in increasing 
order of perceived effort expended.  

While performing the tasks, the EEG signals of 
participants were recorded using a wireless Emotiv 
EPOC neuroheadset (EMOTIV, 2013). The Emotiv 
EPOC headset uses 14 electrodes with two additional 
electrodes for referencing (DRL) and noise 
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cancellation (CMS). All the available electrodes were 
used in this study.  

 

 
(a) 

 

 
(b) 

Figure 1: Experimental tasks used to evaluate workload 
levels. (a) N-back tasks. (b) 3-digit arithmetic task. 

2.3 Data Analysis 

2.3.1 Data Acquisition and Pre-processing 

The EEG data were sampled at 128Hz. All the 14 
channels were used, with the reference electrode 
attached to the left mastoid.  Each raw EEG 
measurement was imported into MATLAB and data 
corresponding to the fourteen channels were 
extracted. A bandpass filter of 1.5-40Hz was applied 
to remove high frequency noise and low frequency 
DC components. The bandpass filtering was done in 
in two directions to avoid phase shift or distortion of 
the EEG data.  With the aid of the markers set during 
the EEG recording, the epochs corresponding to each 
task were extracted. 

2.3.2 Feature Extraction 

The filtered data were divided into 4-second blocks 
with 2-second overlaps between adjacent blocks. The 
data in each block was normalised for zero mean as 
shown in (1) below. 
 

𝒙 ൌ 𝒙 െ 𝒙 (1)
 

where x is the whole data in a 4-second block, 𝒙 
is the mean of the data in such block and  𝒙 is 
the normalised data in the block. The power spectral 
density (PSD) in each normalised block was 
computed using Welch’s method with 1-second 
Hamming window and 50% overlap. Windowing was 
necessary to reduce signal leakage, and the overlaps 
allow for smooth transition between windows. In 
each block, the power spectral densities of eight 
frequency bands were computed thus: 4-8Hz, 8-
12Hz, 12-16Hz, 16-20Hz, 20-24Hz, 24-28Hz, 28-

32Hz, 32-36Hz. For each frequency band, the root-
mean-square (RMS) value was calculated as follows: 

𝑅𝑀𝑆 ൌ
‖𝑃𝑆𝐷‖

√𝑙

 
(2)

where ||PSD|| is the Euclidean length of the PSD in a 
frequency band and 𝑙 is the length of the PSD vector. 
With 14 channels and 8 frequency bands, 112 (14 × 
8) features were generated. 

2.3.3 Data Classification 

An SVM (with a linear or RBF kernel) was used for 
classifying the workload levels in the n-back and 
arithmetic tasks. In addition, the performance of the 
SVM was investigated for cross-session, cross-task, 
and cross-subject classifications. ASFM was also 
applied and the results were compared with those 
obtained from SVM.  

ASFM was proposed in (Chai et al., 2017) as a fast 
domain adaptation technique for EEG-based emotion 
recognition to overcome the performance degradation 
when EEG data are sampled from different subjects 
or sessions. The nonstationary nature of EEG and 
variability of brain dynamics with individuals and age 
cause a mismatch between the marginal and 
conditional distributions of the source domain 
(training data) and target domain (testing data). In 
other words, if there is a source domain 𝑋௦  with label 
Ys and a target domain 𝑋௧  with label 𝑌௧ , ASFM 
formulates a new feature to reduce the marginal 
distribution mismatch between 𝑃௦𝑋௦  and 𝑃௧𝑋௧ , and 
conditional distribution mismatch between 𝑃௦ሺ𝑌௦|𝑋௦ሻ 
and 𝑃௧ሺ𝑌௧|𝑋௧ሻ.  

First, a Subspace Alignment (Fernando et al., 
2013) is used to unify the marginal distribution of the 
source and target domains through principal 
component analysis (PCA). The eigenvectors form 
the new subspaces 𝑍௦  and 𝑍௧  for the source and 
target, respectively. A linear transformation is then 
obtained to map 𝑍௦ to 𝑍௧. If there is a transformation 
B, an objective function can be formulated to align 
the subspaces as follow: 

 

𝑚𝑖𝑛 ሺ‖𝑍௦𝐵 െ 𝑍௧‖ி
ଶ ሻ (3)

where ‖. ‖ி
ଶ  is Frobenius norm. The above equation 

can be rewritten as: 
 

F ሺBሻ ൌ ‖𝑍௦
்𝑍௦𝐵 െ 𝑍௦

்𝑍௧‖ி
ଶ

ൌ ‖𝐵 െ 𝑍௦
்𝑍௧‖ 

(4)

 

where T denotes transpose. Hence, the objective 
function is minimised when 𝐵∗ ൌ 𝑍௦

்𝑍௧ . Then, the 
subspace can be transformed thus: 
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𝑍் ൌ  𝑍௦𝑍௦
்𝑍௧ (5)

To reduce the marginal distribution mismatch 
between 𝑃௦ሺ𝑋௦ሻ  and 𝑃௧ሺ𝑋௧ሻ , 𝑋௦𝑍் ൌ  𝑋௦𝑍௦𝑍௦

்𝑍௧ 
and 𝑋௧𝑍௧ are then computed. 

Next, the conditional distributions in 𝑋௦𝑍் and 
𝑋௧𝑍௧ are adapted by obtaining the probability for an 
input target in the transformed subspace and moving 
the target to the training set.  In other words, the 
discrepancy between 𝑃௦ሺ𝑌௦|𝑋௦𝑍்ሻ  and 
𝑃௧ሺ𝑌௧|𝑋௧𝑍௧ሻ  is reduced. If 𝑋௦𝑍் is denoted as L, 
then the transformed source domain can be 
represented as ሼ𝑙ଵ, 𝑙ଶ … 𝑙ሽ with labels ሼ𝑦ଵ, 𝑦ଶ … 𝑦ሽ. 
Logistic regression is applied to compute the 
conditional distribution of the source. Probabilistic 
model of logistic regression is given as: 

 

𝑃ሺ𝑦|𝑙; 𝑤ሻ ൌ  
1

1  expሺെ𝑦𝑤்𝑙ሻ
 

(6)

 
where 𝑦 ൌ  േ1 and 𝑤 is a weight vector that can be 
learnt with gradient descent algorithm. The 
conditional distribution of the source domain can then 
be written according to Equation (2.34) as follows: 
 

𝑃௦ሺ𝑌௦ ൌ 1|𝐿; 𝑤ሻ
ൌ  𝑃௦ሺ𝑌௦ ൌ 1|𝑋௦𝑍்; 𝑤ሻ  

ൌ  
1

1  expሺെ𝑤்𝑋௦𝑍்ሻ
 

(7)

 
On the other hand, the conditional distribution 

𝑃௧ሺ𝑌௧|𝑋௧𝑍௧ሻ  of the target domain cannot be exactly 
calculated since the target data are not labelled. A 
solution is assumed that 𝑃௧ሺ𝑌௧|𝑋௧𝑍௧ሻ  ൎ
 𝑃௦ሺ𝑌௦|𝑋௦𝑍்; 𝑤ሻ. In an iterative manner, logistic 
regression could be used to estimate 𝑃௦ሺ𝑌|𝑋௧𝑍௧; 𝑤ሻ  
to indicate the level of certainty that  𝑋௧𝑍௧ belongs to 
the predicted label y. Consequently, a confidence 
level c is defined to determine the target samples that 
would be moved to the training set. 

 

𝑐 ሺ𝑍்ሻ ൌ ቄ1   𝑖𝑓  𝑃௦ሺ𝑌|𝑋௧𝑍௧; 𝑤ሻ   𝜏
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

 
where 𝜏 is a threshold between 0 and 1. Samples with 
confidence level of 1 in the target set are moved to the 
training set and the conditional distribution 
𝑃௦ሺ𝑌௦|𝑋௦𝑍்; 𝑤ሻ is recomputed. As the process is 
repeated in more iterations, the marginal distribution 
discrepancy between the source and target domain is 
reduced. 

3 RESULTS 

3.1 Subjective Measure (RSME) 

The mental workload perceived by subjects increased 
with memory load, with average rating of 44 for 0-
back task and 86 for 2-back task on the RSME scale. 
Paired-samples t-test showed that the two task levels 
were significantly different (t(7) = -9.361, p<0.05). 
The average ratings for the 1-digit and 3-digit 
arithmetic tasks were 42 and 73 respectively, and the 
two task levels differed significantly (t(7) = -4.47, 
p<0.05). The averages of both the n-back tasks and 
arithmetic tasks confirmed that our experimental 
design provides two discriminative levels of 
workload (low and high). 

3.2 Performance Measures 

Average response time increased with workload from 
0-back 547.9ms (0-back) to 853.9ms (2-back). Due to 
non-normality, we used Wilcoxon signed-rank test 
and found a significant difference in response times 
of the two workload levels (p = 0.012; p < 0.05).  
Response time on the arithmetic task also increased 
with workload level from 972.5ms (1-digit) to 
1251.8ms (3-digit). The difference was statistically 
significant (t(7) = -4.773, p = 0.002; p < 0.05), 
implying a significant interaction between the speed 
of performance of a task and workload. 

The average accuracy of response to stimuli 
significantly degraded (t(7) = 3.399, p = 0.011; p < 
0.05) as the workload increased from 0-back (98.2%) 
to 2-back (91.4%). Increase in workload from 1-digit 
to 3-digit arithmetic also resulted in significant 
decrease in average accuracy from 92.5% to 78.5% (p 
= 0.048; p < 0.05). The results from both tasks 
confirmed the expected difference between the 
difficulty levels of low and high mental workloads. 

3.3 Variation of EEG Spectral Power  

Grand averages of spectral powers across all the eight 
subjects for some brain regions are shown in Figure 
2. In consonance with previous studies, alpha power 
(8-12Hz) decreased with workload across all the 
electrodes, gamma power (>25Hz) increased with 
workload, and theta power (4-7Hz) increased with 
workload. Similar to the findings in (S. Wang et al., 
2016), increase in power with workload was observed 
in the high beta band (20-25Hz), especially at the 
frontal sites (AF4 and FC6). Furthermore, the effect 
of workload on spectral power is prominent in the 
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gamma band across all electrodes. The results support 
the use of EEG spectral power as a feature for 
estimating mental workload.  
 

                
(a)                                             (b) 

Figure 2: Grand averages of spectral power vary with 
workload across frequency bands. (a) Power spectra in 
frontal region. (b)  Power spectra in temporal region.  

3.4 Classification Accuracies  

3.4.1 Within-session Classification 

The EEG obtained from a subject in an experiment 
session was used to train and test the accuracy of the 
model for such subject in a 10-fold cross-validation. 
Figure 3a shows the performance of the SVM (with 
linear kernel) in classifying the workload levels for 
the two types of task. The algorithm classified the two 
levels of workload in n-back task with an average 
accuracy of 98.5% (SD = 2.1%) as against a mean 
accuracy of 95.5% (SD = 4.1%) for the two workload 
levels in arithmetic task. The average accuracies are 
close to the 98.6% (0-back vs 2-back) and 94.2% (1-
digit vs 2-digit multiplication) obtained in (Hwang et 
al., 2014) using same Emotiv EPOC headset. About 
100% accuracy was also reported by (Wang et al., 
2016) using Emotiv headset for 0-back vs 2-back 
tasks. 

The highest and lowest accuracies achieved for 
the n-back task were 100% and 93.5%, respectively. 
The arithmetic task produced 100% and 88.4% as the 
highest and lowest accuracies, respectively. The 
classification accuracies in the n-back and arithmetic 
tasks were significantly different p=0.028 (p<0.05). 
The difference in accuracy for the two tasks could be 
because be the two levels of workload in the 
arithmetic tasks have more similarities than those of 
the n-back tasks. Hence, there are likely more 
common features in the 1-digit and 3-digit subtasks 
which makes it less easy for the algorithm to 
discriminate between the two arithmetic workload 
levels. It could also be that there are more cross-
subject variabilities in the arithmetic task than the n-
back task, therefore, the model could generalise better 

for the latter task. As shown in the results, accuracies 
of the two tasks varied between subjects. Very high 
accuracies were achieved for subjects P05 and P08. 
These discrepancies point to the variation of brain 
dynamics with individuals and age; hence, a model 
may not generalise well across subjects and therefore 
require tuning for every user. However, the model 
developed in this work generalised across many 
subjects without individual-based tuning. 

3.4.2 Cross-session Classification 

Due to the nonstationary nature of EEG signals, the 
performance of a model degrades if the training and 
test data are from different sessions or times. As a 
result, training is often repeated for every session. To 
test the performance of the model across different 
training sessions, three participants were asked to 
repeat the tasks after seven days. Then, the data from 
the first day were used for training while the data from 
the eighth day were used for testing. Here, SVM and 
ASFM were applied for classification and compared 
against each other as shown in Figure 3b. 

The performance of SVM degraded when the 
trainings from the previous experiment session were 
used to classify data obtained many days later without 
retraining. The accuracy of SVM, without any feature 
adaptation, reduced to as low as 43.9% (below 50%) 
in one of the cases. Conversely, the use of ASFM, a 
domain adaption technique, achieved high average 
cross-session accuracies of 76.6% (SD = 2.5%) and 
80.5% (SD=16%) in the arithmetic and n-back tasks, 
respectively. 

ASFM reduced the marginal and conditional 
distribution mismatch of EEG data across two 
different experimental sessions.  This result suggests 
that the model with ASFM could be used for a subject 
at every session without retraining. ASFM was first 
applied for emotion recognition using differential 
entropy as features (Chai et al., 2017). In that work, it 
achieved a cross-session accuracy of 75.1% (SD = 
7.7%). Our work has however shown that it can be 
successfully applied to mental workload using power 
spectral density as features.  
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(a)                                                          (b) 

   
(c)                                                           (d) 

Figure 3: Classification accuracies of the model (a) Within-session classification accuracy using SVM with linear kernel. (b) 
Cross-session performance on arithmetic task. (c) Cross-subject performance on arithmetic task. (d) Cross-task classification 
accuracies. 

Table 1: Average classification accuracies. 

3.4.3 Cross-subject Classification 

To evaluate the effect of variability of brain dynamics 
across subjects, the model was evaluated for cross-
subject performance. Leave-one-subject-out 
classification method was applied by using data from 
one subject for testing and the data from the 
remaining seven subjects for training. The procedure 
was repeated eight times so that data from every 
subject was used for testing. To limit the size of the 
training data, only about 60-second data window (60 
samples) was selected from each subject for inclusion 
in the training set. Hence, the training set contained 
420 samples. In the test set, the whole 5-minute length 
of data from a subject was used. Furthermore, the 
kernel of the SVM was changed to RBF kernel 
because the linear kernel could not find a linear 
hyperplane for one of the cases. SVM with RBF 
kernel was compared against ASFM as shown in 
Figure 3c. SVM achieved a mean classification 
accuracy of 60.4% (SD = 20.5%) and 52.6% (SD = 
4.2%) on n-back and arithmetic tasks, respectively. 

ASFM improved the cross-subject accuracies to 
74.4% (SD =13%) and 64.1% (SD = 9.5%) in the n-
back and arithmetic tasks, respectively.  

Even though using a non-linear kernel can 
improve performance of SVM or even find a solution 
where using linear kernel is infeasible, SVM without 
feature adaptation is limited in capturing the cross-
human variability that exists in brain dynamics. Such 
limitation is observed in subject P01 where the model 
performance deteriorated below the average level. 
The results show that feature adaptation with ASFM 
can mitigate the effect of subject variability on model 
performance. 

3.4.4 Cross-task Classification 

Cross-task performance of the model was examined 
by training on n-back tasks and classifying on 
arithmetic tasks. The result of the cross-task 
classification is shown in Figure 3d. SVM with RBF 
kernel provided an average accuracy of 52% (SD = 
5.5%) while ASFM yielded a higher average 

Cross-Task Acc. (%)
N-Back Arithmetic N-Back Arithmetic N-Back Arithmetic

SVM 98.5 (SD = 2.1) 95.5 (SD = 4.1) 63 (SD = 18.5) 57.6 (SD = 6.2) 60.4 (SD = 20.5) 52.6 (SD = 4.2) 52 (SD = 5.5)

ASFM --- --- 80.5 (SD = 16) 76.6 (SD = 2.5) 74.4 (SD = 13) 64.1 (SD = 9.5) 68.6 (SD =15.8)

Within-Session Acc. (%) Cross-Session Acc. (%) Cross-Subject Acc. (%)
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accuracy of 68.6% (SD = 15.8%). The deterioration 
in performance could be attributed to the difference 
in absolute workload levels in the two tasks. For 
example, low workload level in the n-back task (0-
back) may not be equivalent to low workload level in 
the arithmetic task (1-digit). This effect is also 
observable in the differences of average subjective 
ratings on the RSME scale presented earlier. Besides, 
the underlying brain dynamics resulting from 
performing the n-back tasks could be different from 
those of the arithmetic tasks. Nevertheless, the use of 
ASFM as a feature adaptation technique reduced the 
mismatch between the different workload types. The 
classification results are summarised in Table 1. 

4 CONCLUSION 

This work proposed a robust modelling technique for 
online estimation of mental workload using a 14-
channel wireless EEG headset. The subjective and 
performance measures indicated that the 
experimental design provided discriminative 
workload levels. Using SVM with linear kernel, the 
model could classify workload levels in more than 
one type of task without requiring subject or task 
adaptation. Furthermore, a domain adaptation 
technique, ASFM, was used to overcome the 
variabilities that exist across subjects, experimental 
sessions, and tasks. ASFM showed better 
performance than SVM (with RBF kernel) in the 
presence of these variabilities. ASFM – to the best of 
our knowledge – has not been used in estimating 
workload before. However, it was successfully 
applied in this work and yielded good performance in 
cross-subject, cross-session and cross-task 
classifications of workload. This research provided a 
promising framework for estimating mental workload 
across subjects, sessions, and tasks. It also shows the 
feasibility of developing models that would not 
require retraining or recalibration when there are 
changes in users, sessions, or types of task.  

In this preliminary study, only 8 subjects were 
included in the trials for performance evaluation, and 
3 subjects for cross-session classification. Based on 
the very promising results obtained, it is 
recommended that a larger study is conducted with 
more participants to establish the generalisation and 
robustness of the proposed method.  

In addition, this work has used two separate types 
of task to estimate workload, more tasks can be 
designed to further investigate the generalisability of 
the model across different tasks. In addition, multi-
class workload levels can be used instead of the two-

class workload levels to capture more levels of 
workload such as ‘very low’, ‘very high’, etc. 
Validation on many tasks and workload levels can 
facilitate the development of a task-independent 
model for within-task and cross-task classification in 
practical settings. The model can also be tested in 
real-time when the subjects are performing cognitive 
tasks. Ultimately, this research work highlights the 
potential for the creation of a robust online cognitive 
monitoring system for assessing mental workload in 
practical situations. 
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