
Seam Carving for Image Classification Privacy

James Pope a and Mark Terwilliger
Department of Computer Science and Information Systems,
University of North Alabama, Florence, Alabama, U.S.A.

Keywords: Privacy Protection, Adversarial Perturbations, Image Classification, Seam Carving.

Abstract: The advent of storing images on cloud platforms has introduced serious privacy concerns. The images are rou-
tinely scanned by machine learning algorithms to determine the contents. Usually the scanning is for marketing
purposes but more malevolent purposes include criminal activity and government surveillance. The images
are automatically analysed by machine learning algorithms. Notably, deep convolutional neural networks per-
form very well at identifying image classes. Obviously, the images could be encrypted before storing to cloud
platforms and then decrypted after downloading. This would certainly obfuscate the images. However, many
users prefer to be able to peruse the images on the cloud platform. This creates a difficult problem in which
users prefer images stored in a way so that a human can understand them but machine learning algorithms
cannot. This paper proposes a novel technique, termed seam doppelganger, for formatting images using seam
carving to identify seams for replacement. The approach degrades typical image classification performance
in order to provide privacy while leaving the image human-understandable. Furthermore, the technique can
be largely reversed providing a reasonable facsimile of the original image. Using the ImageNet database for
birds, we show how the approach degrades a state-of-the-art residual network (ResNet50) for various amounts
of seam replacements.

1 INTRODUCTION

With the advent of image recognition machine learn-
ing approaches, numerous privacy issues have been
raised. More recently, deep learning techniques,
such as deep layered convolutional neural networks
(CNNs), have made significant advances in image
(Traore et al., 2018) and speech recognition (Ku-
mar et al., 2018) compared to traditional machine
learning approaches, exacerbating the privacy con-
cerns. Recent research has been to provide privacy-
preserving image techniques to counter these clas-
sifiers (Moosavi-Dezfooli et al., 2016). For exam-
ple, researchers (Sanchez-Matilla et al., 2020) have
suggested exploiting vulnerabilities in deep neural
networks to protect image privacy. Conversely, re-
searchers have investigated image compression tech-
niques to counter these adversarial images (Liu et al.,
2019) (Das et al., 2017).
In general, machine learning approaches attempt to
learn correlations to predict the target class. Redun-
dant information is ideal when noise is considered and
generally improves the performance of many classi-
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fiers. Given that general machine learning approaches
exploit redundant information to improve accuracy,
an obvious counter would be to minimise redundant
information in images as much as possible while still
retaining enough for humans to recognise the image.
Of course, human recognition is very subjective.
Seam carving was proposed by Avidan and Shamir
(Avidan and Shamir, 2007) for content-aware im-
age resizing for both reduction (i.e. compression)
and expansion. Seam carving can be used to com-
press images by finding the least informative pixels
(determined to be redundant) in a corresponding en-
ergy image and discarding them along contiguous ver-
tical and horizontal paths. We propose modifying
seam carving to replace these less informative pixels
using a deterministic function of nearby pixels that
will remove the redundancy while keeping the image
human-perceptible.
To our knowledge, our work is the first to leverage
seam carving for privacy preserving images. The con-
tributions of this paper are the following.

• Novel approach for privacy preserving images by
modifying the seam carving image compression
technique
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• Comparison with deep CNNs showing the effi-
cacy of our approach

We also submit that this work can be reproduced pro-
viding sufficient information to produce similar re-
sults as the images are available from ImageNet and
the code is made freely available (Pope, 2020).

(a) Original (b) Energy

(c) Replaced (d) Restored
Figure 1: Seam Doppelganger Example: Jacamar.

This paper first details the seam doppelganger ap-
proach including seam replacement and seam restora-
tion. The approach is then evaluated using specific
images from a common image repository and a mod-
ern image classifier. An experiment on several hun-
dred images is then conducted, comparing the seam
doppelganger approach to random distortions. The
paper closes with future work and the conclusion.

2 SEAM DOPPELGANGER
APPROACH

The seam doppelganger approach includes two steps,
seam replacement and seam restoration. The seam
carving technique is first briefly explained followed
by seam replacement and then restoration.

2.1 Seam Carving and Energy Function

The seam carving approach (Avidan and Shamir,
2007) uses an energy function to transform the red,
green, and blue (RGB) components of the original
image into an energy image. Energy functions can
measure the energy at a pixel in various ways and
typically include surrounding pixels as inputs. For

our research, we use a common differential energy
function that takes the difference of the left and right
pixel colours and adds to the difference of the top and
bottom pixel colours. The difference between two
colours is determined by Equation 1 and the energy at
the pixel location’s i’th row and j’th column is given
by Equation 2.

di f f (c1,c2) = (c1.red− c2.red)2+ (1)

(c1.green− c2.green)2+

(c1.blue− c2.blue)2

cw = image(i−1, j)
ce = image(i+1, j)
cn = image(i, j−1)
cs = image(i, j+1)

e(i, j) = di f f ((cw,ce)+di f f (cn,cs) (2)

This is similar to an edge detector kernel and records
higher energy at boundaries between colour regions.
In areas with the same or similar colour, a lower en-
ergy value is computed. Note that the values com-
puted in Equation 1 and 2 are not normalised. By
normalised, we mean to keep in the range of [0,255].
We submit that this unnormalised energy function is
sufficient for computing shortest paths. Normalised
values are simply re-scaled and the same paths will
be found.
A horizontal seam is determined from the energy im-
age by finding a constrained shortest path from the left
to the right of the image. The horizontal seam length
is constrained to be the width of the image. The seam
carving authors refer to the seam as an 8-connected
path that can be found in a variety of ways, includ-
ing Dijkstra’s shortest path algorithm or dynamic pro-
gramming (Avidan and Shamir, 2007). Our imple-
mentation uses a variation of the shortest path algo-
rithm. Similarly, the vertical seam is the shortest path
in the energy image from top to bottom with a length
of the image height.
Figure 1a shows an original image and Figure 1b
show the corresponding energy image produced us-
ing the normalised energy function (slightly enhanced
to make brighter for presentation). Note that in Fig-
ure 1c, seam carving would either remove these seams
(for compression) or expand them. Instead we replace
the seams.

2.2 Seam Replacement

For each horizontal and vertical seam found, seam
carving for compression would omit it reducing the
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size of the image. The seam is considered the most
redundant and therefore best to remove without loss
of information. For our purposes, we choose to re-
place the seam leaving the image the exact same size
but with the seam’s pixels replaced.
Each seam found and replaced produces a new im-
age. Should we want to replace more than one seam,
we have to run the entire procedure again including
producing a new energy image.

Algorithm 1: Seam Replacement (Horizontal).

1: Input: image X and n number of seams to replace
2: Output: image Y copy of X with n seams replaced
3: procedure HORIZONTALREPLACEMENT(X ,n)
4: Y = copy(X)
5: while seams replaced < n do
6: seam = findHorizontalSeam(Y)
7: replaceHorizontalSeam(Y, seam)
8: return Y
9:

10: procedure FINDHORIZONTALSEAM(Y )
11: E = energyImage(Y )
12: for each row i in E.height do
13: path = findShortestPath(E,i)
14: if length(path) < smallest path so far then
15: smallestSeam = path
16: return smallestSeam
17:
18: procedure REPLACEHORIZON-

TALSEAM(Y,seam)
19: for each col j in Y.width do
20: i = seam(j)
21: // Note we ignore value at i, j and set as
22: // a function of east, west pixel values
23: maskValue = mask(i, j, Y)
24: Y.set(i,j, maskValue)
25:
26: procedure MASK(i, j,Y )
27: north = Y.get(i,j-1)
28: south = Y.get(i,j+1)
29: rn = north.red
30: gn = north.green
31: bn = north.blue
32: rs = south.red
33: gs = south.green
34: bs = south.blue
35: r = ( bn + gs + j ) & 0xC5
36: g = ( rn + bs + j ) & 0xC5
37: b = ( gn + rs + j ) & 0xC5
38: return Colour(r, g, b)

Algorithm 1 shows the procedures for replacing hori-
zontal seams (vertical seams are replaced in a similar
fashion). The HorizontalReplacement (Line 3) and

findHorizontalSeam (Line 10) procedures are simi-
lar to the original seam carving approach. We differ at
Line 7 where we replace instead of elide or expand the
seam. The replaceHorizontalSeam (Line 18) proce-
dure enumerates each pixel location in the seam and
replaces with a mask colour value derived from the
surrounding pixels. The mask procedure (Line 26)
details how this colour is determined.
There are two desirable properties regarding seam re-
placement. First, we would like for subsequent seams
to not find the replaced seam (i.e. the seam should
have relatively high energy values). The second prop-
erty is that we would like to be able to find the seam
later so that we can attempt to restore the values.
The mask procedure first extracts the red, green, and
blue colour components from the pixels to the north
and south of the pixel to be replaced. At Lines 35,
36, and 37, each colour component is mixed with a
combination of the north and south, however, using
different colour components. For instance at Line 35,
red is mixed with blue from the north pixel and green
from the south pixel. The intent of this mixing is to
reduce the possibility of the transformed colour be-
ing similar (i.e. to make it stand out from the east
and west colour). If the derived colour is very similar
then it is redundant and will likely be found again as
part of the next seam to replace. Furthermore, the col-
umn location j is also mixed with each colour compo-
nent. If there is a series of similar colour values to the
north and south, adding the column location causes
the mask colour to change gradually giving a gradi-
ent effect. We believe that this will better confuse an
image classifier as the replaced seams will be corre-
lated creating their own patterns. Finally the sum is
a bit-wise and with 0xC5. This takes the lower eight
bits in a hash-like way to ensure the resulting value is
in the range of [0,255]. The 0xC5 is for convenience
and other approaches may work equally well.
We submit that the replaceHorizontalSeam proce-
dure with the mask colours achieves the two desirable
properties. The colours are sufficiently different from
neighbouring pixels to avoid re-selection of the seam
pixels for replacement. Second, the mask colour val-
ues are computed using a deterministic function of the
neighbouring pixels (NB: as long as the neighbouring
pixel values do not change later).

2.3 Seam Restoration

Based on the seam replacement, the original picture
cannot be 100% restored perfectly. The seam values
are completely replaced as a function of the neigh-
bouring pixel values. However, the seam pixels by
definition are highly redundant. Thus, we can sim-

ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

270



(a) Region 20x20 of
original image with
horizontal and vertical
seams replaced

(b) Region 20x20
seam restoration
with artefacts from
horizontal seam

Figure 2: Seam Restoration Example.

ply take the pixel value to be the average of the north
and south pixels for horizontal seams (and west and
east for vertical seams). To detect a replaced pixel we
check to see if its colour is equal to the value com-
puted by the mask procedure. We check to see if it
could have been a pixel in a vertical seam and then if
it could have been a pixel in a horizontal seam. We
check every pixel in this way. To be clear, we do not
explicitly find the seam again. If the pixel could have
been replaced, we assume it was and take the aver-
age of the neighbouring pixel values overwriting its
current colour value.
A notable exception to replaced pixels is when we
first replace horizontal seams followed by replacing
vertical seams. Horizontal seams have to intersect
with vertical seams. The vertical replacement will
overwrite the neighbouring pixels used to mask the
horizontal seam and it will not be able to detect that
it was replaced. Though the vertical seam’s masked
value will be found, the horizontal seam’s pixel will
not be detected, leaving artefacts. Figure 2a shows
the results of a 20x20 pixel region (near the back of
the bird) of the image in Figure 1c where a horizon-
tal and then vertical seam were replaced. Figure 2b
shows the corresponding results of the seam restora-
tion. A masked horizontal pixel near the centre was
not detected and remains as an objectionable artefact
(darker blue). Future work is to address this issue.
Note that the vertical seam was replaced and the dark
green pixel near the centre was restored as the average
of the left and right colours (this shows as a lighter
blue pixel next to the darker blue artefact).
Figure 2 clearly shows that the horizontal and vertical
seams can largely be restored with minimal distortion
of the original image. This is because, by design, the
pixels replaced were redundant and not very informa-
tive. Restoring then from neighbouring pixels results
in a near facsimile of the original image.

Table 1: ImageNet Query.

Class # Instances Search

bird 608

Animal, animate being,
beast, brute, ...
Chordate
Vertebrate, craniate
Bird

3 EVALUATION

This section evaluates the seam doppelganger ap-
proach by applying it to selected images from a com-
mon image repository and examining how it affects an
image classifier. The evaluation shows that many re-
placed images are still human perceptible but degrade
the classifier’s performance. We also show a counter
example where the approach fails.

3.1 Experimental Data

The images are retrieved from ImageNet (Rus-
sakovsky et al., 2014). To make the analysis more co-
herent, we narrowed to just the birds synsets. The im-
ages for each were queried from the ImageNet repos-
itory where the image URLs were saved to a file.
The images were then retrieved restricting to just the
URLs starting with http://farm. The ImageNet query
(IMA, ease) and resulting number of instances are
shown in Table 1.
The images were resized to be 244 x 244 (similar
to VGG (Simonyan and Zisserman, 2014)) with the
three red, green, and blue channels. The values were
normalised to be between 0.0 and 1.0.
We would like to show that our seam doppelganger
approach works comparable to randomly modifying
the image. To ensure comparisons are valid, the same
number of pixels are modified for both the random
and seam doppelganger approaches. The following
equation is used to calculate the number of pixels
modified for the seam approach.

p = r× image.width+ c× image.height− (r× c)

where p is the number of pixels modified, r is the
number of rows seamed, and c is the number of
columns seamed.
Note that we are careful to subtract the row-column
intersections as they are modified twice.

3.2 Albatross

Figure 3 shows the four variations of the image. Sub-
figure 3a shows the original image from ImageNet
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(a) Original (b) Random

(c) Replaced (d) Restored

Figure 3: Examples Images: Albatross 30% Replacement.

Table 2: Example Prediction Comparison Albatross.

Scenario Class Probability
albatross 0.974

Original pelican 0.006
stork 0.006

ptarmigan 0.383
Random albatross 0.313

drake 0.160
ptarmigan 0.848

Replaced bustard 0.065
albatross 0.044

(ALBATROSS 027) that is 224 pixels wide by 224
pixels tall. Sub-figure 3c shows where 34 row seams
and × 34 column seams have been replaced. This
replaces a total of 14076 pixels, roughly 30% of the
image (34 is roughly 15% of the width and height).
Sub-figure 3b shows the same number of pixels mod-
ified by randomly selecting pixels and then changing
them to a random colour. To avoid modifying the
same pixel twice, we assign a unique integer to each
pixel location, shuffle these indices, and then select
the first p to modify. Finally, sub-figure 3d shows the
results of the restoration process run on sub-figure 3c.
There are clear artefacts where the seams cross and
also where two parallel seams were close and over-
wrote each other (e.g. back of the bird’s neck). How-
ever, the image well represents the original.
We use ResNet50 to predict the original, random, and
replaced images. We take the top-3 predicted classes
and show their probabilities in Table 2.

(a) Original (b) Random

(c) Replaced (d) Restored

Figure 4: Examples Images: Dowitcher 30% Replacement.

Table 3: Example Prediction Comparison Dowitcher.

Scenario Class Probability
dowitcher 0.827

Original red-backed sandpiper 0.154
ruddy turnstone 0.014
chainlink fence 0.233

Random ant 0.222
window screen 0.123

padlock 0.320
Replaced window screen 0.181

jigsaw puzzle 0.161

3.3 Dowitcher

Figure 4 shows several dowicher birds on the beach
with a 30% random and seam replacement. Table 3
shows the top-3 results of running ResNet50 against
the original, random, and replaced images.

3.4 Goose

Figure 5 shows a single goose with 30% of the pixels
replaced randomly and by seam replacement. Table 4
shows the top-3 results of running ResNet50 against
the original, random, and replaced images.

Table 4: Example Prediction Comparison Goose.

Scenario Class Probability
goose 0.496

Original flamingo 0.394
albatross 0.045
ostrich 0.736

Random eel 0.200
starfish 0.013
ostrich 0.968

Replaced flamingo 0.022
crane 0.003
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(a) Original (b) Random

(c) Replaced (d) Restored

Figure 5: Examples Images: Goose 30% Replacement.

(a) Original (b) Random

(c) Replaced (d) Restored

Figure 6: Examples Images: Peacock 30% Replacement.

In the original image, the classifier is already con-
fused between goose and flamingo. Interestingly in
this case, the certainty of the classifier is increased for
both the random and replaced images, however, with
a class that is not in the top three of the original image.

3.5 Peacock

Figure 6 shows a peacock with 30% of the pixels re-
placed randomly and by seam replacement. Table 5
shows the top-3 results of running ResNet50 against
the original, random, and replaced images.
This counter example shows that the seam replace-
ment approach does not always work. The peacock
image does not have easily identified redundancy and
the seam replaced image is not noticeably different
than the original. The classifier performance is hardly
degraded at 0.997 certain that the image is a peacock.

Table 5: Example Prediction Comparison Peacock.

Scenario Class Probability
peacock 0.999

Original fountain 0.000
doormat 0.000

chainlink fence 0.593
Random chain 0.208

chain mail 0.121
peacock 0.997

Replaced chainlink fence 0.000
shovel 0.000

4 EXPERIMENT AND RESULTS

To demonstrate the effectiveness of the approach, the
predictions of Resnet50 are compared to random and
seam replaced images with varying amounts of re-
placement (a.k.a. distortion). We use the average pre-
diction probability for measurement comparison.

4.1 Average Prediction Probability

Based on the 608 bird images from ImageNet, we
seam replace each image with 10%, 20%, 30%, 40%,
and 50% of the pixels replaced. For comparison, we
also change exactly this same number of pixels ran-
domly. Resnet50 is run on the original images (0%
distortion), the seam replaced images, and the ran-
domly distorted images. As shown previously, some
image probabilities will be worse and some may be
better. We take the average of the image predictions
for each distortion percentage. Ideally, increasing the
distortion will cause the average probability to de-
crease for both the seam replaced and randomly dis-
torted images. As a comparison, the random results
are treated as an ideal distortion of the images for our
privacy preserving scenario. We expect the random
distortions to reduce more than the seam replacement.
However, it is desirable that the seam replacement re-
sults be close to the random results.

Figure 7 shows the results of the experiment. The
results for both the seam replaced and randomly dis-
torted images does indeed decrease as the distortion
increases. Importantly, the seam replaced results re-
main close to the random results for each amount of
distortion. These results provide evidence that the
seam carving approach can be used to degrade the
prediction probability of deep neural network image
classifiers.

At 30% distortion, the probability prediction of
Resnet50 on the random images continues to reduce
closer to zero. In actuality, each of the 1000 image

Seam Carving for Image Classification Privacy

273



0.00 0.10 0.20 0.30 0.40 0.50
0.00

0.20

0.40

0.60

Distortion

Pr
ed

ic
tio

n

Seam Replaced
Random

Figure 7: Resnet50 predictions on 608 distorted bird im-
ages.

classes is becoming equally likely (i.e. maximum en-
tropy). The seam carving approach is levelling out at
about 3-4% for the 50% distorted images.

4.2 Experimental Issues and Future
Work

We are careful to note several issues with our ex-
perimental setup and exposition. We use ResNet50
as an example of a deep CNN. However, this was
trained with 1000 classes that include many other
non-bird classes. Specifically, ResNet50 includes
chainlink fence, windows screen, and jigsaw puzzle.
The seam carving moves the bird images closer in ap-
pearance to these classes. If the deep CNN was re-
stricted to only bird images, it may not be so easily
fooled. Future work is to train a more modest CNN
on a restricted set of classes and evaluating other Im-
ageNet categories. Future work also includes using
different energy functions such as histogram of gradi-
ents and entropy (Avidan and Shamir, 2007).

5 CONCLUSIONS

In this paper, we presented the seam doppelganger ap-
proach for privacy preserving images. The paper de-
tailed how redundant pixels can be identified using
the seam carving technique and then replaced. This
produced distorted, though still human recognisable,
images. We also demonstrated how the image can be
restored to a close facsimile of the original, though
with some objectionable artefacts. We then showed
how the distorted images degraded the accuracy per-
formance of a leading edge image classifier.
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