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Abstract: In recent years, considerable progress has been made on semantic segmentation tasks. However, most existing
works focus on only day-time images under favorable illumination conditions. In this work, we aim at night-
time semantic segmentation, which is remaining to be solved due to the problems of over- and under-exposures
caused by complex lighting conditions and the lack of trainable nighttime dataset as pixel-level annotation re-
quires extensive time and human effort. We (1) propose a hybrid network combining image pyramid network
and Gray Level Co-occurrence Matrix (GLCM). GLCM is a significant descriptor of texture information, as
statistical features to compensate the missing texture information in the over- and under-exposures problem at
night. (2) design an exposure-awareness encoder network by fusing hybrid features hierarchically in GLCM
fusion layers. (3) elaborately generate a trainable nighttime dataset, Carla-based Synthesis Nighttime dataset
(CSN dataset), with 10027 synthesis images to resolve the problem of large-scale human annotations. To
check whether the network trained on synthesized images is effective in the real world we also collect a real-
world dataset called NightCampus with 500 nighttime images with annotations used as test dataset. We prove
that our network trained on synthetic dataset yielding top performances on our real-world dataset.

1 INTRODUCTION
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Semantic segmentation is to assign a specific class
or category label to each pixel in the images accord-
ing to its semantic meanings. Credit to deep Convo-
lutional Neural Networks (CNNs) first introduced in
this field by FCN (Long et al., 2015), many semantic

segmentation methods have achieved real-time per-
formance without sacrificing too much quality (Zhao
et al., 2018; Yu et al., 2018; Nekrasov et al., 2018).
However, in outdoor scenes we hardly see the appli-
cations of these computer vision works, which mainly
focusing on only day-time images under favorable il-
lumination conditions, exert their efficiency and reli-
ability, as their accuracy declines significantly under
challenging lighting conditions like nighttime.

Most of the current night semantic segmentation
methods tend to use Far-Infrared (FIR) camera in-
stead of visible light camera. However, FIR cam-
eras are expensive and infrared images lack color in-
formation and texture information. Their contrast
and signal-to-noise ratio are relatively low. So the
methods based on infrared images is not suitable for
semantic segmentation with high resolution require-
ments. In this work, we are focusing on nighttime
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Figure 1: Examples in NightCampus dataset. Nighttime im-
ages have both over-exposure problems and under-exposure
problems. The texture and color information of vegetation
almost disappear because there is no light source, while the
street lights and headlight of cars area also loss texture in-
formation.

semantic segmentation with RGB images.

There are two main challenges to the problem of
semantic segmentation of RGB images at night:

First, the reason why semantic segmentation using
visible light cameras do not perform well at night-
time scenes is that extremely weak illuminance will
degrade the structure, texture and color characteris-
tics of input images. Nighttime images have both
over-exposure problems and under-exposure prob-
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lems. For example, in Figure. 1, the texture and color
information of vegetation almost disappear because
there is no light source, seems like an empty black re-
gion. The same situation happens in the street lights
and headlight of cars area, but looks like an empty
white region. Therefore, how to solve the problem of
those information loss caused by over-exposure and
under-exposure is the primary issue of semantic seg-
mentation in nighttime scene.

Second, there are no large-scale labeled datasets
available for nighttime scenes. Existing large data sets
for semantic segmentation mainly contain daytime
images, with little or no nighttime images. While the
training of deep neural network is dependent on the
input data. Therefore, the lack of trainable datasets in
this field has impeded the development of nighttime
semantic segmentation.

Aimed on the above challenges, we proposed a hy-
brid network combining image pyramid network and
Gray Level Co-occurrence Matrix (GLCM). GLCM
is a significant descriptor of texture information, as
statistical features to compensate the missing infor-
mation in the over- and under-exposures convolution
and decline overfitting problems. Texture is an in-
herent global feature of an image and almost cannot
be affected by noise. So its an important information
used in the segmentation task, especially in nighttime
tasks where color information is hardly exist. The
Pyramid structure allow the multi-resolution input of
original images and thus enable the network consider
both global information and local detailed features,
learning the weight between global and local infor-
mation. We design an exposure-awareness encoder
network by fusing hybrid features in GLCM fusion
layers in a single hierarchy. The GLCM fusion layer
is introduced to guide the network to learn where is
the over-and under-exposure region in order to sup-
plement GLCM features.

Besides, to tackle the lack of trainable nighttime
dataset, and to solve the problem of extensive time
and human effort wasted when annotating large train-
able nighttime dataset, we elaborately generate 10072
synthesis campus-like nighttime images called CSN
dataset based on Carla simulator instead. The CSN
dataset is pixel-wise annotated by computer and has
no annotation errors undoubtedly. To check whether
the network trained on synthesized images is effec-
tive in the real world, we collect a real-world dataset
called NightCampus with 500 real-world nighttime
images with pixel-level label annotations used as test
dataset.

We prove that our Hybrid Feature based Pyramid
Network (HFPNet) trained on synthetic dataset yield-
ing top performances on our real-world dataset. As
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shown in our experiments, our work slightly superior
to other real-time algorithms in daytime as we got
73.9% mloU at 32 FPS on CityScapes test dataset,
and substantially improved performance on nighttime
scenes as we obtained nearly 5% mloU improvement
comparing to the other dattime methods on CSN vali-
dation dataset and 88.3% mloU on NightCampus test
dataset.

2 RELATED WORKS

Infrared Information based Fusion Methods for
Nighttime. Most of the current night semantic seg-
mentation algorithms use thermal imaging images
based on infrared cameras. (Zhiyi Liu, 2020) pro-
posed a semantic segmentation algorithm for un-
manned vehicle night infrared images based on the
improved DeepLabv3+ network. A monocular vi-
sion system (Ge et al., 2009) is proposed for real-time
pedestrian detection and tracking using near infrared
(NIR) cameras while driving at night. Xu F. et al. (Xu
and Fujimura, 2002) proposed a method for pedes-
trian detection and tracking using a single night vi-
sion camera mounted on a vehicle. (Wang, ) collected
infrared scene image data sets, combined with the
ideas of InceptionNet and ResNet, proposed a 100-
layer parallel residual network structure PresNet-100,
and constructed a multi-scale semantic segmentation
network Multi-PresNet based on PresNet.

However, infrared images contrast and signal-to-
noise ratio are relatively low. Most of them it needs
to be aligned and merged with RGB images, the op-
eration of which is more complicated. Also data they
used are usually in subdivided scenes. So the methods
based on infrared images is not suitable for semantic
segmentation with high resolution requirements.
GAN based Day-night Conversion Methods for
Nighttime. Although most existing works focus on
the standard daytime conditions under favorable il-
lumination, there are also some works that address
the challenging scenarios. Christos Sakaridis] et al.
(Sakaridis et al., 2019) designed a Curriculum frame-
work by adapting daytime models to nighttime scenes
without using nighttime scene annotations by GAN.
They also collected the dark Zurich dataset, which in-
cluded 151 pixel-level annotated night image as test
dataset (dataset keeps private). Lei Sun et al.(Sun
et al., 2019) trained a day-night conversion network
by CycleGAN. CycleGANs are used to transfer night-
time images to the daytime and different ratio of day-
time images in the dataset to the nighttime while
keeping their label.

They require pixel-level matches, images corre-
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Figure 2: Our Hybrid Feature based Pyramid Network pipline. Given RGB images, ResNet extracts 4 resolution feature
maps which form an image pyramid and corresponding Laplacian pyramid in the shallowest two layers. GLCM feature maps
calculated by gray level input images are used as a mask of the fused feature maps in GLCM fusion layer. L1,L.2 are Laplacian

pyramid feature maps, blue line represent up-sampling.

sponding to the same position and the same angle
during the daytime and other periods, which is harsh
for dataset collecting. And their networks are mainly
used to generate datasets, does not directly solve
the problem of information loss caused by over- and
under-exposure at nighttime.

Image Pyramid Structure. FPNNet (Lin et al.,
2017) fuse the low-resolution feature maps with
strong semantic information and the high-resolution
feature maps with weak semantic information but rich
spatial information under the premise of increasing
less computational complexity. OrSi¢ et al.(Orsi¢ and
Segvic, 2020) proposed a approach based on shared
pyramidal representation and fusion of heterogeneous
features along the upsampling path. The proposed
pyramidal fusion approach is especially effective for
dense inference in images with large scale variance
due to strong regularization effects induced by feature
sharing across the resolution pyramid.

3 HYBRID FEATURE BASED
PYRAMID NETWORK

We propose a hybrid network (HFPNet), which com-
bines an image pyramid network and GLCM. The
pipeline of HFPNet is shown in Fig. 2. The well-
designed exposure-awareness decoder network in HF-
PNet consists of GLCM fusion layers and Fusion
Blocks hierarchically to force encoder network learn
effective features in image pyramid.
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Figure 3: The calculation process of co-occurrence matrix.

3.1 Gray Level Co-occurrence Matrix
Feature Map

The gray-level co-occurrence matrix is based on stud-
ies of the statistics of pixel intensity distributions. It
is a matrix describing the gray-scale relationship be-
tween a pixel in a local or whole area of an image
and neighboring pixels or pixels within a certain dis-
tance d. The co-occurrence matrices provide raw
numerical data on the texture, however in practical
applications, from the perspective of the calculation
efficiency of texture features and the storage of the
GLCM matrix, the gray level of the original image is
usually first compressed. For example, from 8-bit im-
ages with gray levels of 0 — 255 to 5-bit images with
gray levels of 0-31, the dimension of the correspond-
ing co-occurrence matrix is reduced from 256 x 256
to 32 x 32.

Calculation of GLCM. During the graying process,
we use the formula

Gray =0.114B+0.587G + 0.299R, N
where R,G,B are the value of three channel of RGB
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image. In order to construct a co-occurrence matrix, it
is necessary to consider the fixed distance of all pixel
pairs from each other, without considering the relative
direction formed by the line connecting them and the
image reference direction, which means that the only
parameter is the distance d, the system can have any
number of optional matrices:

Clk t:d) = Y X 8k~ g(i, /)3~ (s((i,j) +di)),
2)

where 7 is the unit vector pointing in a chosen direc-
tion, g(i, j) is the gray value of pixel (i, j), (g((i, j) +
df)) is the gray value of another pixel that is at dis-
tance from pixel (i, j) and at the orientation defined by
unit vector /i (e.g. assume A = (0, 1), representing the
horizontal direction, thus g((i, j) +dn) = g(i,j+ 1),
and C(k,l;d) is the total number of pairs of pixels
at distance d from each other identified in the image,
such that the first one has gray value k and the second
has gray value /, as shown in Figure. 3. 3(x) repre-
sents the Dirac delta function, it equal to 1 if x =0
and results in O when x # 0.

GLCM Feature. The 9 statistical attributes of texture
features calculated form GLCM matrix used in this
paper are Mean, Variance, Std, Homogeneity, Con-
trast, Dissimilarity, Entropy, Angular Second Mo-
ment, Correlation. Thus each pixel is associated to
9 statistical features obtained from GLCM, forming a
9 x s x s global feature map, where s is the size of
original image. During the graying process, if the
gray value of the target point is directly divided, it
will cause the image sharpness to be reduced. There-
fore, we first convert the picture to perform histogram
equalization, so as to increase the dynamic range of
the gray value, which increases the overall contrast
effect of the image. Different textures shows distin-
guishing features, thus proving the GLCM features
are applicable descriptor for textures.

3.2 Image Pyramid Structured Network

In order to enhance multi-resolution information and
employ global and local features at the same time, we
used a pyramid-structured CNN in our work. Image
pyramid (Adelson et al., 1984) is a powerful but con-
ceptually simple structure that can interpret images at
multiple resolutions. Originally designed for machine
vision and image compression applications. By multi-
sampling the original image, images of different res-
olutions can be generated as a sequence.

Place the highest resolution images at the bottom
and arrange them in a pyramid shape. Since the base
level M is size 2M x 2™ or N x N, where J = log,N,
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the intermediate level m is size 2™ x 2", where 0 <
m < M. Fully populated pyramids are composed of
M + 1 resolution levels from 2 x 2M to 20 x 20.

That is, in general, the general limitation of P will
reduce the resolution approximation of the original
image; for example, the single-pixel approximation
of the 1 x 1 or 512 x 512 image has little value. The
total number of elements in a P+ 1 level pyramid for
P>0is

1 1 1 4 5

CIANCEACTEES

The Laplacian pyramid (Burt and Adelson, 1983)
retains the blurred version of the difference image be-
tween each level. Only the minimum level is not a
differential image, so that a higher-level differential
image can be used to reconstruct a high-resolution im-
age.

N?(1+

L/(x7y): g/(xvy)_EXPAND(g/+l(x7y))7 4)

where L;(x,y) denotes the j-th level of Laplacian
pyramids and G;(x,y) and Gj1(x,y) denotes the j-th
level of Gaussian pyramid, the EXPAND is the up-
sampling operation.

3.3 Hybrid Feature based Network
Structure

Backbone. We use the ResNet-101 ( S1 to S4 in
Figure. 2) pretrained over the ImageNet(Krizhevsky
et al., 2012) dataset as the backbone to get 4, 8, 16
and 32 down-sampled feature maps.

GLCM Feature Map. As introduced in Section 3.1,
GLCM features form a 9 x s x s feature map, and this
global feature map is then sent into a 1 x 1 convolu-
tional layer to expand channels as the same as CNN
feature maps, thus we got final GLCM feature map g.
In other words, GLCM Feature Maps g are extracted
by compressing the input images into different-bits
grayscale images.

GLCM Fusion Layer. To learn where are the texture-
lost regions, we introduce the GLCM fusion layer
G to augment GLCM features which contain com-
pensated information from nearby pixels. This layer
forces our model to learn the effective combination of
GLCM features that help predict the correct label and
guide the segmentation task towards an optimal per-
formance. Semantic segmentation requires both large
region context information and rich spatial informa-
tion. The former is mostly obtained through deep
hierarchies. For a single layer level, after we obtain
fused feature from image pyramid feature maps and
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Figure 4: Class distribution in CSN dataset.

Laplacian pyramid feature maps mentioned above,
this feature map and GLCM feature map g are sent
into 1 x 1 convolutional layers separately followed by
a sum operation.

Image Pyramid Structure in Encoder. The Pyramid
structure enable a network consider both global infor-
mation and local detailed features, which respectively
corresponds to context information and spatial infor-
mation for semantic segmentation.

Fusion Block. Fusion blocks are used in each hierar-
chy to fuse high-resolution feature map f; | obtained
from image pyramid network and the feature map f;
obtained from GLCM Fusion Layer G. Inside the fu-
sion block, each path is convolved with 3 x 3 convolu-
tion to determine the weight between two sets of fea-
ture maps and then upsampled to the same resolution
as fi+1. Two paths are summed up, and analagoulosly
further propagated through next fusion blocks until
the desired resolution is reached.

4 NIGHTCAMPUS AND CSN
DATASETS

As annotating large trainable nighttime dataset re-
quires extensive time and human effort, we elabo-
rately generate 10072 synthesis campus-like night-
time images based on Carla instead. Carla is an open
source simulator that can simulate real-world road
scenes. The Carla dataset is pixel-wise annotated by

Table 1: Distribution on different maps.

Geographlcal Maps vehicles pedestrian
environment
Urban townO1 | [0,50,100] | [0,100,200]
Urban town02 | [0,50,100] | [0,100,200]
Halt-Urban -\ o 63 | 10,80,160] | [0,160,320]
Half-Suburbs T U
H};Ell;fsglr)z?gs town05 | [0,80,160] | [0,160,320]
Suburbs town04 | [0,100,200] | [0,200,400]

Figure 5: Sample images in CSN and corresponding
ground-truth label maps.

Figure 6: Sample images in NightCampus and correspond-
ing ground-truth label maps.

computer and has no annotation errors undoubtedly.
To check whether the network trained on synthesized
images is effective in the real world, we collect a
real-world dataset called NightCampus with 500 real-
world nighttime images with pixel-level label annota-
tions used as test dataset. We prove that the network
trained on synthetic dataset is able to perform well in
real-world scenes.

4.1 The CSN Dataset and Label
Annotation

The Carla simulator is in a town environment, with
roads, buildings, streets, traffic lights and so on. How-
ever, pedestrians or vehicles are added by running
python script. We generate 10072 images which are
similar to real scenes lighting effect, 6000 of which
are used for training, 4072 of which are used for val-
idation. Size of those images is 1280 x 720. We set
different densities of pedestrians and vehicles, diver-
sity of geographical environment, as listed in Table. 1.
The class information is same as Cityscapes dataset,
as shown in Figure. 4,the class distribution in each im-
age is quite balanced. Figure. 5 shows sample images
and corresponding ground-truth label maps.

4.2 The NightCampus Dataset

Images in our dataset are from real world night-
time road scene captured in a campus. These im-
ages are captured by Logitech c270 size of images is
1280 x 960. Compared to urban road scenes, Night-
Campus has more pedestrians, vegetation, and fewer
vehicles, and darker scenes which means the contrast
of images is greater and the problem of over-exposure
and under-exposure is more serious. And in campus
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scenes there are fewer types of vehicles, for example,
there is no train in campus, truck and bus seldom ap-
pear, so we merge all types of cars into one ’vehicle’
class. Similarly, terrain is in no need. Finally we get
9 classes in total, that is ’vehicle’ ’road’ ’sidewalk’
’sky’ ’pole’ ’vegetation’ ’person’ traffic sign’. Some
regions that are too difficult to define even by humans
are labeled as ’uncertain’ so that they are ignored dur-
ing training and evaluation. Figure. 6 shows sample
images and corresponding ground-truth label maps.

S EXPERIMENTS

5.1 Implementation Details

All experiments are on a workstation with Tesla V100
GPU under CUDA 9.0 and CuDNN 7.0. The ex-
periments are conducted based on pyTorch. The
network use mini-batch stochastic gradient descent
(SGD) (Krizhevsky et al., 2012) with batch size 20,
momentum 0.9 and weight decay le™ in training.
The initial learning rate is different with encoder and
decoder, for encoder is 5¢~* and for decoder is 5¢ 3.
Training is divided into three stages with different
learning rate, at the beginning of each training stage,
initial learning rate is reduced by half.

5.2 D Parameter Selection in GLCM

We tried different distance parameter d = 1,2, 3,4 set-
tings, to find the best performance for GLCM feature
extraction on our CSN dataset. The experiment result
is shown in Table 2. We use mean Intersection over
Union (mloU) to evaluate the semantic segmentation
performance in our experiments.

When d = 1,2 pixel of interest (POI) cannot get
enough texture information from nearby pixels, and
when d = 4, POI may learn feature which is not from
instrumental classes. The following experiments were
all taken under d = 3.

5.3 Ablation Study

We have tried to add GLCM guidence layers to sev-
eral different layers combinations. We number the
layer level from the shallowest to deepest from 1 to
4. Experiments on CSN vilidation set are shown in

Table 2: Experiments on CSN Validation Dataset with Dif-

ferent d.

GLCMpara |d=1|d=2 |d=3|d=4
mloU (%) 92.1 934 94.2 92.8
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Table 3. For single layer cases, the deeper layer did
not achieve good results because for global features,
context information is more important. The following
experiments were all taken under 1 4 2 situation.
And to verify the effectiveness of the pyramid
structure, we conduct experiments on CSN valida-
tion dataset. when GLCM are excluded, performance
drops significantly to 87.8% mloU, which confirms
the importance of GLCM focusing on the missing tex-
ture information. And pyramid structure also can help
learn useful features at both w&w/o GLCM situation.

5.4 Experiment on Nighttime Datasets

We trained HFPNet on the training set of CSN, and
compare it with other real-time networks on the CSN
validation set and NightCampus dataset.
Experiment on CSN and NightCampus. As shown
in Table 4, our work substantially improved perfor-
mance on nighttime scenes as we obtained nearly 5%
mloU improvement comparing to the other dattime
methods on CSN validation dataset and 88.3% mloU
on NightCampus test dataset. Due to the difference
between synthetic and real pictures, the performance
is reduced in NightCampus dataset, but not much se-
vere. We prove that our HFPNet trained on synthetic
dataset is able to perform well on real-world scenes.
The visualization examples are shown in Fig-
ure. 7. Compared to BiseNet, our HFPNet can seg-
ment over- and under-exposure regions more credi-
bly. Particularly, our model can produce more ac-
curate and clear boundaries in the segmentation of
buildings and vegetation. In addition, it makes the
sidewalk clearer and more complete. BiseNet ignores
some poles, but our street lights have been success-
fully identified in those cases.
Experiment on WildDash 2. WildDash 2 has 325
nighttime images, we test with WildDash 2 using HF-
PNet pretrained on Carla and got 56.7% mloU, per-
formance declined much than on NightCampus be-
cause of severe motion blur and mirror reflection. No-
tice that classes of datasets are different so we set
those not corresponded as ignore label thus we do not
compare with others whose classes are inconsistent
with ours.

5.5 Experiment on CityScapes Dataset

CityScapes (Cordts et al., 2016) is a urban street
scene dataset from cars perspective, including 5000
high-resolution images as large as 1024 x 2048.
CityScapes has 19 semantic classes not counting ig-
nore label 255. We uploaded our semantic segmenta-
tion predictions to CityScapes organizers evaluation
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Table 3: Experiments on Differenet Combination of Layers.

Layer Selection/single layer 1 2 3 4
mloU(%) on CSN 89.2 | 915 88.2 83.8
Layer Selection/combination 1+2 | 14243 | 1+2+43+4
mloU(%) on CSN 94.7 | 90.1 854

Table 4: Results on CSN and NightCampus Dataset.

Method CSN validation set | NightCampus test set
SegNet (Badrinarayanan et al., 2017) 51.3 45.6
BiSeNet (Yu et al., 2018) 89.6 84.3
ICNet (Zhao et al., 2018) 80.1 74.8
CCNet (Huang et al., 2018) 85.2 80.6
PSPNet (Zhao et al., 2017) 72.7 68.3
RefineNet-LW101 (Nekrasov et al., 2018) 85.9 82.8
HFPNet 94.7 88.3

Table 5: Results on Test Set of Cityscapes.

Method Backbone | Coarse | Mean IoU(%) | FPS
Deeplab (Chen et al., 2017) VGG16 X 63.1 0.25
FCN-8s (Long et al., 2015) VGG16 X 65.3 2

Dilation10 (Yu and Koltun, 2015) VGG16 X 67.1 0.25
LRR (Ghiasi and Fowlkes, 2016) VGG16 X 69.7 -
LRR (Ghiasi and Fowlkes, 2016) VGGI16 N 71.8 -

ICNet* (Zhao et al., 2018) Res101 X 69.5 30.3

GUN* (Mazzini, 2018) DRN-D-22 X 70.4 333

PSPNet (Zhao et al., 2017) Res101 V4 81.2 0.78

RefineNet-LW101* (Nekrasov et al., 2018) Res101 X 72.1 36.8

HFPNet* Res101 X 73.9 32

*real-time semantic segmentation method.
Input

GT

HFPNet |

BiseNet

Input GT HFPNet

Figure 8: Visualization results on Cityscapes dataset.
Figure 7: Visualization examples of our results on Night-

Campus.

server and obtained feedback scores In our experi- 6 CONCLUSION
ments, we use fine annotated images only. In Table 5,

Mean ToU and Frames Per Second(fps) are reported. In this paper, we tackled the problem of nighttime se-
HFPNet only slightly superior to other real-time algo- mantic segmentation task, mainly focus on the miss-
rithms in this daytime dataset as the visualization re- ing texture information problem in over- and under-
sults shown in Figure. 8. That is because there are few exposure region. We achieved that by introducing
overexposed and underexposed areas so the weights GLCM in our well-designed exposure-awareness de-

of GLCM features are approaching O.
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coder network to compensate the missing texture in-
formation. To tackled the lack of large trainable
dataset in this field and to evaluate our HFPNet quan-
titatively, we presented a synthetic CSN dataset and
a real-world NightCampus dataset. We demonstrated
that HFPNet, which is trained on synthetic dataset,
yielding top performances on real-world scenes.
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