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Abstract: The Internet of Health Things plays a key role in the transformation of health care systems as it enables 
wearable health monitoring systems to ensure continuous and non-invasive tracking of vital body parameters. 
To successfully detect the cardiac problem of Atrial Fibrillation (AF) wearable sensors are required to 
continuously sense and transmit ECG signals. The traditional approach of ECG streaming over energy-
consuming wireless links can overwhelm the limited energy resources of wearable sensors. This paper 
proposes a low-energy features’ extraction method that combines the RR interval and P wave features for 
higher AF detection accuracy. In the proposed scheme, instead of streaming raw ECG signals , local AF 
features extraction is executed on the sensors. Results have shown that combining time-domain features with 
wavelet extracted features, achieved a sensitivity of 98.59% and a specificity of 97.61%. In addition, 
compared to ECG streaming, on-sensor AF detection achieved a 92% gain in energy savings. 

1 INTRODUCTION 

Atrial fibrillation (AF) is a prevalent arrhythmia that 
is associated with an increased mortality, increased 
hospitalization rate, and a higher risk of strokes. 
Moreover, its prevalence is expected to increase 
significantly in the next years due to an ageing 
population (Mairesse et al., 2018). A major challenge 
in AF diagnosis is that its early stages episodes are 
short self-terminating with little or no symptoms 
experienced by the patient. The electrocardiogram 
(ECG) (Petty, 2016), a graphical representation of the 
heart’s electrical activity, is an essential tool in AF 
diagnosis. However, standard ECG recordings that 
are done in hospitals provide only a snapshot of the 
heart’s activity. Therefore, AF can go undiagnosed 
until a patient has a routine checkup or suffer from a 
serious complication such as a stroke. Ambulatory 
ECG monitoring is an alternative tool for AF 
diagnosis where ECG recordings are acquired, 
outside of hospitals, over a pro-longed period of time. 
Thus, it can capture short-lived and silent episodes of 
AF.  

However, traditional ECG recorders cannot 
provide real time ECG monitoring because patients 
are required to bring the recorder back to the doctor 

office for analysis. Recent technology advances 
resulted in the development of wearable ECG 
monitors (Lin et al., 2010) that provide unprecedented 
mobility for patients and provide doctors with real-
time data that increases AF diagnosis accuracy and 
allows instant response to alarming events.  

In a typical set-up, a wearable ECG monitor can 
be programmed to capture and wirelessly transmit 
raw ECG signals. However, transmitting raw data 
over energy-consuming wireless links severely 
reduces the sensor’s battery life time. Currently 
available Wireless Body Sensor Networks (WBSN) 
platforms depend on limited batteries and it is 
essential to reduce as much as possible the 
inconvenience associated with battery replacements 
and recharges.  

A key strategy is to implement ‘energy-ware’ 
signal processing algorithms on the sensor node. This 
way, the sensor node will only be required to transmit 
a minimal number of features instead of a full stream 
of raw data. However, the main challenge is to 
implement on-sensor signal processing within the 
constrained resources of a sensor node. 

This paper, studies the feasibility of on-sensor AF 
features extraction. Instead of streaming ECG signals, 
the sensor locally extracts AF relevant features. When 
an AF episode is detected by the sensor it sends a 
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minimum number of bytes to alert the server. The 
underlying hypothesis evaluated in this paper is that 
low complexity on-sensor ECG signal processing can 
decrease the energy consumption of wireless 
transmission and therefore extend the lifetime of the 
sensor. 

2 RELATED WORK 

The electrical patterns, captured by the ECG (Petty, 
2016), are manifested as a sequence of waveforms 
representing the sequence of contraction and 
relaxation of the heart. A normal cardiac cycle has 
distinct waveforms called the P wave, QRS complex 
and T wave as shown in Figure 1. The QRS complex 
is the most dominant feature of the ECG cycle with a 
sharp peak in the middle, called the R wave. A 
significant ECG feature is the interval between two 
consecutive R peaks, referred to as the RR interval. 

 

Figure 1: ECG Waveforms. 

An ECG of a healthy heart shows a Normal Sinus 
Rhythm (NSR) where RR intervals are regular and the 
P waves are present. On the other hand, Atrial 
Fibrillation (AF) (January et al., 2014) is an irregular 
heart rhythm that is characterized on ECG signals by 
irregular RR intervals and absent P waves that are 
replaced by low-amplitude fibrillatory f-waves. 

AF detection algorithms involve (Sörnmo, 
Petrenas, & Marozas, 2018): ECG pre-processing, AF 
features extraction, and finally classification. AF 
features are expected to quantify RR interval 
irregularity and/or provide information on the 
absence/presence of P and f waves. However, 
extracting reliable features that detect the 
presence/absence of P waves is challenging at low 
signal-to-noise ratios. Therefore, the majority of AF 
detection algorithms are RR-based and are designed 
to extract features that reflect the degree of 
randomness, variability, and complexity of RR 
interval series.  

Commonly RR-based methods include comparing 
the density histogram of RR series to a standard 
density histogram (Tateno & Glass, 2002) and 
evaluating statistical attributes that reflect the 

randomness and complexity of RR series (Dash, 
Chon, Lu, & Raeder, 2009). On the other hand, few 
contributions proposed P-wave based AF detectors. 
Ladavich et al. (Ladavich & Ghoraani, 2015) 
developed a rate-independent AF classifier that 
utilizes statistical and morphological features from a 
model of normal sinus rhythm P-wave ; whereas 
Ródenas et al. (Ródenas, García, Alcaraz, & Rieta, 
2015) used wavelet entropy to quantify the 
presence/absence of P waves. AF detectors have also 
been designed to combine RR and P-wave features.  

The AF detector proposed by Petrenas et. al 
(Petrėnas, Sörnmo, Lukoševičius, & Marozas, 2015) 
is based on four parameters that characterize RR 
interval irregularity, P wave absence, f wave 
presence, and the noise level in the signal. The 
algorithm presented in (de Carvalho et al., 2012) 
quantifies P wave absence by measuring the 
correlation of the detected P waves to a P wave 
model, assesses heart rate variability using a 
statistical similarity measure, and analyzes atrial 
activity using a wavelet approach. AF detection 
proposed by Babaeizadeh et. al (Babaeizadeh, Gregg, 
Helfenbein, Lindauer, & Zhou, 2009) involves a 
statistical classifier that uses as input a combination 
of P-R interval variability, a P wave morphology 
similarity measure, and an R-R Markov score. 
Regardless of the accuracy in AF detection, the 
previously mentioned contributions may not be 
technically feasible for real-time on-sensor 
processing of ECG signals due to the high 
computation requirements that can overwhelm the 
constrained sensor resources. 

Therefore, we turned our attention to AF detection 
algorithms that have been designed to operate on 
wearable ECG monitors. The study in (Marsili et al., 
2016) implements and tests an AF detection 
framework on a wearable prototype device. The study 
results demonstrate the framework capability to 
provide onboard AF detection with affordable 
computational burden. However, the detection 
approach is based solely on the RR feature and the 
prototype device used in the study is more resourceful 
than a constrained wearable sensor.  

Rincon et al. (Rincon, Grassi, Khaled, Atienza, & 
Sciuto, 2012) implement AF detection on a WBSN 
platform by using fuzzy logic to combine the output 
of RR interval analysis and P-wave detection. The 
proposed approach demonstrated satisfactory 
accuracy but in terms of reducing energy 
consumption and extending the node lifetime, it 
offered a marginal 4% increase in the node’s life time 
that does not play in favour of adopting it as an 
efficient energy solution.  
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3 EMBEDDED AF DETECTION 

This section presents the specification of the proposed 
on-sensor AF detection algorithm. It describes the 
QRS detection algorithm in addition to the features 
extraction methods used to detect RR irregularity and 
absence of the P wave.  

3.1 General Approach 

In the proposed approach, the sensor processes a 
periodically acquired ECG segment to detect AF 
episodes. If an AF episode is detected, the sensor 
sends a notification to the server including relevant 
features (Figure 2). Recent medical studies 
(Rabinstein et al., 2013) highlighted the significance 
of detecting AF episodes that are shorter than 30 
seconds. Therefore, the proposed scheme is based on 
the processing of a 10-seconds ECG signal. This 
length is an adequate recording length of the ECG 
signal that can contain a number of QRS complexes 
sufficient for extracting relevant AF features. From 
another side, the reduced set of samples in the 
processed ECG signal saves the memory in the 
wireless sensor. In addition, our approach is aligned 
with typical clinical settings, where a cardiologist 
examines a 10 seconds ECG strip (Meek & Morris, 
2002).  

Figure 2: Proposed approach for embedded AF detection. 

In the proposed approach, the QRS detection 
module detects the location of R peaks that act as 
reference point for further features extraction. On-
sensor features extraction involves estimating the 
irregularity of RR intervals and detecting the 
presence/absence of the P wave. The embedded AF 
decision rules are applied to determine if the 10-
seconds ECG signal is a possible AF episode. Once 
an AF episode is detected the sensor will send, to the 
base station, an alert notification in addition to the 
extracted relevant AF features. The base station will, 
in turn, forward the alert and AF features to a remote 
server for advanced ECG classification.  

The vast majority of AF detection algorithms 
proposed in the literature are designed to classify 
individual heartbeats. However, the proposed scheme 
classifies a 10-seconds ECG segment that is 
composed of a number of heartbeats. This design 
choice is driven by the fact that an AF heartbeat does 

not occur in isolation but only as part of an AF 
episode. 

3.2 QRS Detection 

On-sensor ECG features extraction starts by detecting 
the QRS complex. For that purpose, we have adopted 
the Dual Slope algorithm (Wang, Deepu, & Lian, 
2011) that analyses the signal in the time-domain and 
detects the signal segment that represents the QRS 
Complex. Once detected, we can extract R peaks from 
the QRS complex segment. The RR interval, as a 
relevant temporal feature, is extracted by measuring 
the time between two consecutive R peaks. In 
addition, we can use the R peak location to define a 
search window for the detection of the P wave 
presence/absence. 

The Dual Slope algorithm does not require any 
QRS enhancement and directly starts detecting the 
QRS complex to localize the R peak. It focuses on 
calculating the slope of straight lines connecting two 
samples that are separated by a distance equal to the 
QRS width. The rationale behind slope calculation is 
that the largest value of slopes is expected to be found 
in the QRS complex. 

3.3 AF Detection  

AF episodes are reflected in ECG signals by 
irregularity of RR intervals and absence of valid P 
waves. The irregularity of RR intervals is measured 
using a simple statistic that gives an estimate of the 
standard deviation of RR intervals (eStd). When the 
eStd feature of the processed ECG segment crosses a 
pre-set threshold, the segment is labeled as having 
irregular RR intervals. Otherwise, the segment is 
labeled as having regular RR intervals. 

A valid P wave would typically occur in the 
second half of the RR interval which we refer to as 
the search interval. The number of search intervals in 
a 10-seconds segment varies according to the heart 
rate. Therefore, we consider that there are N search 
intervals where N is equivalent to the number of RR 
intervals in the segment. From every search interval, 
the P wave detection algorithm extracts features that 
indicate if a valid P wave is absent or present. The 
algorithm maintains the number of search intervals 
that did not include a valid P wave (referred to as a 
Miss).  

The number of Misses (M) is evaluated as a 
percentage of the total number of search intervals in 
the 10-seconds segment (N). The percentage can 
range from 0 to 100%. In our approach, the 10-
seconds segment is assigned one of three 
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classification labels according to the percentage of 
Misses in that segment. Each classification label is 
associated with an interval on the real number line as 
depicted in Figure 3. 

 

Figure 3: P-wave Miss Ratios and corresponding 
classification label. 

To define the intervals, we need two values which 
we refer to as {ßAbsent, ßPresent}. If the percentage of 
Misses in the segment is in the interval [ßAbsent,100] 
then the segment is labeled “Absent” to reflect that 
the number of search intervals that did not have a 
valid P wave is high. The interval [0, ßAbsent] covers 
two classification labels “Mostly Absent” and 
“Present”. The label “Present” is assigned to 
segments in which the number of search intervals that 
did not have a valid P wave is low. The label “Mostly 
Absent” is assigned to segments in which the number 
of search intervals that did not have a valid P wave is 
in between the two extremes defined by the labels 
“Present” and the label “Absent”. Therefore, to 
discriminate between the labels “Present” and 
“Mostly Absent” we define ßPresent as the middle point 

of the interval [0, ßAbsent] given by (
ఉಲ್ೞ೐೙೟

ଶ
). The 

values {ßAbsent, ßPresent}are experimentally evaluated 
as later show in section 4. Figure 4 illustrates the 
labeling of the segment according to the values { 
ßAbsent, ßPresent}. 

 

Figure 4: Classification labels based on P wave Detection. 

3.3.1 RR Analysis  

The RR feature is evaluated as the time interval 
between two consecutive R peaks. To capture RR 
irregularity, we used a simple statistical measurement 
(Bluman, 2009) that gives an estimate of the standard 
deviation (Std) of RR intervals ( 1). We refer to this 
measurement as eStd (RRs) where RRs is the set of 
RR intervals extracted from the 10-seconds ECG 
signal. 

eStd (RRs) =
max ሺ  RRs  ሻ - min ሺ  RRs  ሻ

4
 (1)

The process of irregularity detection is based on 
the comparison of eStd (RRs) value of a 10-seconds 
ECG signal with a pre-set threshold ( THStd ). To 
estimate the value of the threshold (THStd) we used 
268 10-seconds segments of  ECG signals that were 
annotated with AF episodes in the MIT/BIH 
Arrhythmia Database (G. Moody & Mark, 2001). 
Figure 5 shows the distribution of eStd values in ECG 
segments that are entirely AF episodes. No Normal 
Sinus Rhythm (NSR) segments were included in the 
analysis. According to the figure the majority of AF 
eStd values measured (82%) were greater than 0.04.  
Therefore, THStd is set to the value of 0.04.  

 

Figure 5: Distribution of eStd values in AF episodes. 

To validate the eStd measurement capability in 
capturing RR irregularity, we used a set of variable 
length ECG segments: 10 seconds, 20 seconds, and 
30 seconds. Experiments have shown that as the 
segments get longer than 10 seconds, the correlation 
between eStd and classical Std starts to decrease. 
Thus, we can conclude that RR irregularity can be 
detected in an ECG segment as short as 10 seconds. 
This signal length implies lower memory 
requirements, less processing time and eventually 
lower energy consumption. 

3.3.2 P wave Detection 

In the proposed AF detection scheme, we are not 
interested in detecting the temporal location of P 
wave fiducial points. Instead, we are investigating: 
“Is there a valid P wave in the current search 
interval?”. To answer this question, a wavelet 
transformation is performed to approximate the 
morphology of the second half of the RR interval 
(search interval). The idea is that if the approximation 
extracted is similar to a pre-defined template of a 
valid P wave then we can say that a P wave is present 
in the search interval. Otherwise, the P wave is 
considered absent. 
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The Haar wavelet (Walker, 2008) is the simplest 
type of wavelet that decomposes a discrete signal into 
two sub-bands where each sub-band is half the length 
of the original signal. The first sub band is a running 
average that approximates the shape of the original 
signal. The second sub band contains the difference 
that generates the detail coefficients. 

Rincon et. al  (Rincon et al., 2012) adopted the 
quadratic spline wavelet (Martínez, Almeida, Olmos, 
Rocha, & Laguna, 2004) to delineate the ECG signal. 
For that purpose the sensor is expected to maintain 5 
levels of wavelet decomposition including both 
approximation and detail coefficients. To keep the 
time-invariance and temporal resolution at different 
scales, the same sampling rate has been used in all 
scales.  

In the proposed scheme we have selected the Haar 
wavelet for its computational effeciency (Mazomenos 
et al., 2013). Moreover, the sensor is designed to 
maintain only the approximation coefficients at level 
2. Experiments have shown that 2 levels provide 
adequate noise reduction. The pseudocode of P wave 
Haar based approximation is illustrated in Figure 6. 

In contrast to the wavelet approach adopted by 
Rincon et. al  (Rincon et al., 2012), Haar based 
approach is lighter in terms of memory requirements 
and computational complexity. This is due to the 
simplicity of the Haar wavelet in addition to the fact 
that the wavelet decomposition is only applied to a 
small portion of the signal. This setup translates to 
lower energy consumption. 

 
Figure 6: A single level Haar approximation. 

To create a template of the P wave, we have used 
the set of NSR signals (Table 1) in the QT database 
(Laguna, Mark, Goldberger, & Moody, 1997). From 
each signal, we have used 1 minute of ECG recording 
with an average number of 50 P waves per signal. P 
waves were extracted as the second half of the RR 
intervals marked by the Dual Slope algorithm. Then a 
2-level Haar transform was applied to each P wave to 
obtain an approximation of the P wave. The template 
P wave was chosen as the average of the 400+ 
approximated P waves extracted from the signals.  

 
 

Table 1: NSR signals used in P wave template. 

sel16265 sel16272 sel16273 

sel16420 sel16773 sel16539 

sel16786 sel17152 sel17453 

To ensure the scalability of the template, we have 
normalized the sample amplitudes. This is a necessary 
step since the amplitude values will vary among 
signals according to the technology used in recording 
the ECG signal. We have used min-max scaling to 
rescale amplitudes to the unified scale          [-1,1].   

The extracted P waves and the template P wave 
are different in length. In addition, the length of 
extracted P waves varies according to the heart rate 
that defines the duration of an RR interval. Therefore, 
we have selected Dynamic Time Warping (DTW) (Li, 
2014) which is able to measure the distance between 
time series of unequal length and that are not aligned 
in time. With Dynamic Time Warping we are able to 
compare any P wave to the template P wave 
regardless of the heart rate and the sampling 
frequency of the input signal. If the distance is within 
a pre-set threshold (THDTW), then approximated P 
wave (𝑃෠) is accepted as a valid P wave. Otherwise, 
the P wave is considered absent.  

To evaluate threshold (THDTW), we used two sets 
of signals (Table 2): AF signals obtained from the 
MIT Atrial Fibrillation Database (G. B. Moody & 
Mark, 1983)(Goldberger et al., 2000) and non-AF 
signals obtained from MIT-BIH Normal Sinus 
Rhythm database (Goldberger et al., 2000). AF 
signals were extracted as entirely AF episodes that 
ranged in duration from 25 seconds to 100 seconds. 
The total duration of AF episodes was around 8 
minutes. NSR signals were in total 10 minutes long 
with 200 seconds per database record. In total there 
were 690 AF distances and 830 NSR distances. 

Table 2: Signals used for THDTW evaluation. 

AF Signals 
04048, 05121, 08215, 

04043, 04746, 06453 

NSR Signals 19830, 16483, 16795 

 

 

 

 

 

P: P wave , 𝑃෠ : approximated P wave  
    N = length(P) 
    i = 1 
    j = 1 
    while(i < N)  
       𝑃෠ (j) = (P(i) + P(i + 1) ) / √2 
       i = i + 2 
       j = j + 1 
    end   
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Figure 7: Distribution of DTW distances in AF signals. 

Figure 8: Distribution of DTW distances in NSR signals. 

Figure 7. reflects the frequency of distances 
obtained from AF signals. Only (8%) of the distances 
were less than or equal to 3.2. The majority of the 
distances (92%) were greater than 3.2. 

On the other hand, Figure 8 plots the distribution 
of distances obtained from NSR signals. Only (14%) 
of the distances were greater than 3.2. The majority 
of the distances (86%) were less than equal to 3.2. 
Therefore, we can conclude that the value 3.2 is 
reasonable threshold since the majority of AF 
distances were greater than 3.2 while the majority of 
NSR distances were less than or equal to 3.2.  

3.3.3 AF Decision Rules  

The features extraction module of the proposed 
scheme will produce two classification labels for each 
10-seconds segment. These output labels will be used 
to classify the segment as AF or non-AF (Table 3).  

Table 3: AF rule- based classifier using RR and P wave 
features. 

AF Classifier P wave Labels 

Present 
Mostly 
Absent 

Absent 

RR  
Labels 

Regular non-AF 
(Rule1) 

non-AF 
(Rule3) 

noisy 
(Rule4)

Irregular non-AF 
(Rule5) 

AF 
(Rule6) 

AF 
(Rule2)

 

Rule (1) will capture definite cases of Normal 
Sinus rhythm that is characterized by regular RR 
intervals and a valid P waves preceding each QRS 
complex. Rule (2) will capture definite cases of Atrial 
Fibrillation rhythm that is characterized by irregular 
RR intervals and QRS complexes that are not 
preceded by valid P waves. 

In Rules (3) and (4), more weight is given to the 
RR feature. Therefore, the segment is classified as 
non-AF in Rule (3) and the absence of P waves is 
attributed to noise. Rule (4) classifies the segment as 
noisy since the P waves are said to be entirely absent.  

Rules (5) and (6) apply for segments in which RR 
intervals are irregular. In Rule (5), more weight is 
given to the P wave feature. Therefore, the segment is 
classified as non-AF. However, Rule (6) classifies the 
segment as AF since most of the time the P wave is 
absent.  

4 PERFORMANCE ANALYSIS 

The objective of our algorithm to efficiently 
discriminate between Normal Sinus Rhythm (NSR) 
and Atrial Fibrillation (AF) rhythm. Therefore, the 
test signals (Table 4)  do not include any other 
arrhythmia such as Atrial Flutter. In addition, each 
segment is either entirely NSR or AF. There is no 
overlapping between segments. 

Table 4: Test signals (AF Detection).  

AF 04015,  07910,  04126,  04908 

NSR 
18177, 18184, 19088, 19090, 19093, 
19140

We calculated two performance metrics of 
detection accuracy: Sensitivity (Se) and Specifity 
(Sp). Sensitivity defines the percentage of AF 
segments that were correctly classified (2) whereas 
the specificity defines the percentage of non-AF 
segments that were correctly classified (3). 

Se =
TP

TP+FN
 (2)

Sp =
TN

TN+FP
 (3)

As previously explained in section 3.2, the 
detection of the P wave is based on the design 
parameter  that represents the percentage of Misses 
in a 10-seconds segment. For the purpose of this 
evaluation, we run the P wave based AF detection 
algorithm at different values of . Table 5 
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summarizes the AF detection results at  = 0.3, 0.4, 
0.5, 0.6, and 0.7 respectively. 

Table 5: AF Detection accuracy based only on P wave. 

  
0.3 0.4 0.5 0.6 0.7 

Se % 99.8 99.2 98.5 96.4 92.9 

Sp% 71.6 80.9 88.5 93.9 97.2 

We can conclude from Table 5 that the best 
performance was at  = 0.6 and  = 0.7 where both 
Sensitivity and Specifity values are above 90% 
However, the performance metrics at  = 0.6 are 
considered better since they give a higher Se 96 %, 
even though it is less specific (93 %). A lower Se 
might allow some AF cases to pass with no alarm. 
However, lower Sp means that non-AF cases might 
create some false-alarms. A false harm-less alarm is 
more desirable than a harmful no-alarm. 

The combination of features is performed 
according to the classification rules summarized in 
Table 3. The highest pair of Se and Sp achieved by 
the wavelet based P wave detector was at  = 0.6 ( Se 
= 96.4% and Sp = 93.89%). Therefore, we can set  

Absent to 0.6 and Present = (
ఉಲ್ೞ೐೙೟

ଶ
) = 0.3.  

In comparison to related work in the area of 
embedded AF detection, we can observe from Table 
6 that the proposed approach for on-sensor AF 
detection using the combination of eStd and P-wave 
features is comparable to related work.  

 
 

Table 6: Comparison of proposed approach to related work 
in embedded AF detection. 

AF Detection 
Approaches 

Se % Sp % 

using eStd only 80.68 94.81 

using P-wave only 96.4 93.89 

using eStd and P-wave  98.59 97.61 

AF detection on  
Teleholter device  
(Marsili et al., 2016)  

97.33 98.67 

AF detection on  
Shimmer platform  
(Rincon et al., 2012) 

96 93 

5 ENERGY EVALUATION 

The underlying hypothesis evaluated in this paper is 
that an efficient on-sensor processing of the ECG 
signal increases the battery life time and ensures the 
longevity of the application. Therefore it is important 
to evaluate the energy consumption of (a) the classical 
approach of full ECG transmission in contrast to (b) 
the proposed approach of on-sensor AF detection. 
The sensing energy is constant in both scenarios. 
Therefore, we focus on evaluating the energy 
consumed by local processing and wireless 
transmission. For the purpose of evaluation, we 
assume a 12-bit ADC with sampling frequency 
(SF=250 Hz).  

Table 7: Energy consumption of AF detection scheme. 

Module Energy Label Energy units (mJ) per unit 

R peak 
detection 

Esample 0.03 energy per sample 

ER 75 energy per segment 

RR interval 
extraction

ERR 0.01 energy per RR 

P wave 
detection

EP 1.2 energy per RR 

AF features 
Extraction

EFX 19 energy per segment 

AF detection EAF 0.87 energy per segment 

Server 
Notificaiton 

Eradio 0.3 energy per byte 

EradioSample  
( 2 bytes)

0.6 energy per sample 

EradioRR  
( 4 bytes)

1.2 energy per RR 
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Table 7. lists the estimated energy cost of each 
module in the proposed AF detection scheme using 
the Avrora tool (Avrora, 2008) that provides a cycle-
accurate simulation of the AVR microcontroller. 
Note that this evaluation considers the worst 
algorithmic case of each module. 

Local ECG processing is composed of R peak 
detection ሺ𝐸ோሻ , AF features extraction ሺ𝐸ி௑ሻ , and 
AF decision ሺ𝐸஺ிሻ . 𝐸ோ  is the amount of energy 
consumed to detect R peaks in a 10-seconds segment 
= 75 mJ. 𝐸஺ி is the amount of energy consumed by 
the rule-based classifier = 0.87 mJ. 𝐸ி௑ is the amount 
of energy consumed to extract RR and P wave 
features equal to 19 mJ.  

The total energy consumed for processing of a 10 
seconds ECG segment given by (4): 

EAF10s = ER+ EFX+ EAF =94.87  mJ (4)

In the classical approach of full ECG 
transmission, the energy is consumed by radio 
transmission as there is no local ECG processing. 
Therefore, the total energy consumed in this scenario 
(EECG_transmission(a)) is around 45 J.  

On the other hand, if we consider that the sensor 
performs periodic on-node AF detection every 10 
seconds for 5 minutes ECG signal then the total 
energy for the processing of the proposed AF 
detection scheme 𝐸஺ி்௢௧௔௟ሺ௕ሻ= 3.4 J       

The gain in energy saving measured by : 

G= ൭1-
EAFTotalሺbሻ

EECG_transmissionሺaሻ

൱ *100=92.5 % (5)

This gain in energy saving (5) shows that our 
proposed scheme for embedded Atrial Fibrillation 
detection achieves a considerable gain in the energy 
consumed for AF detection when compared to the 
classical approach based on the full transmission of 
the ECG signal to a remote server for analysis.  In 
fact, the energy gain achieved is higher than the 
marginal 4% increase in the battery life time reported 
by Rincon et. al (Rincon et al., 2012).  

We note that the gain in energy consumption 

increases as the ratio  
்ಶ಴ಸ

்ಲಷ
  decreases. Which means 

as we increase the periodicity of AF detection we 
increase the gain in energy. However, we have to 
keep in mind the trade-off between AF detection 
efficiency and energy saving to extend the network 
life time. In practice, this periodicity should be based 
on clinical requirements. 

6 CONCLUSIONS 

This paper presents a new approach of on-sensor AF 
detection as a data reduction strategy. In this approach, 
the body sensor node is designed to efficiently extract 
and analyze relevant ECG features in order to classify 
the ECG signal as a possible AF episode. This decision 
will be submitted to the remote server with the 
minimum representation of data to perform further 
classification. Performance results have shown that the 
proposed scheme achieved high sensitivity (98.59%) 
and specificity (97.61%) demonstrating high accuracy 
in the detection of the AF episodes. In comparison 
with the transmission of full ECG signals, the 
proposed approach can save around 92% of energy. 
For future work, we are considering hardware 
implementation of the proposed system in FPGA 
platform. 
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