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Abstract: Depth estimation from scenery line drawings has a number of applications, such as in painting software and
3D modeling. However, it has not received much attention because of the inherent ambiguity of line drawings.
This paper proposes the first CNN-based method for estimating depth from single line drawings of indoor
scenes. First, to combat the ambiguity of line drawings, we enrich the input line drawings by hallucinating
colors, rough depth, and normal maps using a conditional GAN. Next, we obtain the final depth maps from the
hallucinated data and input line drawings using a CNN for depth estimation. Our qualitative and quantitative
evaluations demonstrate that our method works significantly better than conventional photo-aimed methods
trained only with line drawings. Additionally, we confirmed that our results with hand-drawn indoor scenes
are promising for use in practical applications.

1 INTRODUCTION

Depth estimation from a single image has tradition-
ally been one of the major challenges in computer vi-
sion. Properly estimated scene depth has many appli-
cations in various areas such as robotics, augmented
reality, and 3D modeling. Although this task has been
quite difficult with traditional methods, the recent
rise of deep learning (DL) has allowed researchers to
achieve substantial progress in depth estimation (Liu
et al., 2018; Liu et al., 2019). While the main targets
of research have mostly been photos and videos, to the
best of our knowledge, no previous study has investi-
gated for line drawings as inputs, yet it may also have
practical applications in many areas, such as painting
software, 3D modeling, and manga creation.

Depth estimation only from a single line drawing
is quite challenging due to a number of reasons. The
main issue is the underlying ambiguity of line draw-
ings. In contrast to color images, line drawings usu-
ally lack textures and shading, leaving only contours
with white insides to work with. Even for a human ob-
server, it might be complicated to decide whether the
shape is convex, concave, or flat. Another challenge is
the lack of datasets containing both line drawings and
depth maps, which makes the task of training an ef-
fective convolutional neural network (CNN) substan-
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tially difficult.

However, despite the difficulty, line drawings
might have enough cues to estimate depth maps. Al-
though line drawings may lack certain information,
they do show the shape of objects. For example,
object shape can hint at its spatial orientation and
whether the object is planar or non-planar. This obser-
vation holds particularly for indoor scenes, which are
filled with many planar objects such as walls, floors,
and furniture. We thus tackle the following research
question in this study: Can we estimate the depth map
from a single line drawing of an indoor scene?

This paper proposes the first method for estimat-
ing depth from single line drawings of indoor scenes
based on supervised learning using CNNs. First,
to combat the ambiguity of line drawings, we en-
rich the input line drawings by hallucinating colors,
rough depth and normal maps and using them as addi-
tional inputs. For this hallucination, we integrate the
conditional generative adversarial network (GAN),
pix2pix (Isola et al., 2017). Next, we obtain the fi-
nal depth maps from the combined inputs (i.e., line
drawings, hallucinated colors, depth maps, and nor-
mal maps) using PlaneNet (Liu et al., 2018), one of
the recent CNNs for depth estimation, which explic-
itly handles planar regions in the scene. Our qual-
itative and quantitative evaluations demonstrate that
our method works significantly better than conven-
tional methods trained only with line drawings. Also,
we confirmed that our results with hand-drawn indoor
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scenes are promising for use in practical applications.

2 RELATED WORK

Here we explain two major groups of prior studies rel-
evant to ours, i.e., single-photo depth estimation and
3D mesh reconstruction from line drawings.
Single-photo Depth Estimation. Previous depth-
estimation studies have mostly focused on photos,
i.e., RGB images. Because both photos and our tar-
gets, i.e., line drawings, represent a scene rather than
a single object, the research literature in single-photo
depth estimation is essentially valuable for our study.

Most of the modern methods use DL because,
in contrast to traditional methods, they can auto-
matically extract appropriate features and are thus
more robust. Roy and Todorovic (Roy and Todor-
ovic, 2016) introduced the neural regression forest
for single-image depth estimation. Liu et al. pro-
posed using additional modules to classify images
into planar and non-planar regions and regressing
plane equations (Liu et al., 2018; Liu et al., 2019).
Ramamonjisoa and Lepetit (Ramamonjisoa and Lep-
etit, 2019) used a classic network architecture (Ron-
neberger et al., 2015) and improved the depth estima-
tion quality by applying a novel edge-preserving loss
function. However, when naively applied to depth es-
timation for line drawings, these methods suffer from
the severe lack of visual information in line drawings,
as explained in Section 1.
3D Object Reconstruction from Line Drawings.
There exist several methods for reconstructing 3D
meshes from single line drawings. Due to the in-
herent ambiguity of 3D shape in line drawings, some
methods require different types of user annotations to
specify 3D shapes, e.g., (Li et al., 2017). Our method
learns to work with grayscale line drawings without
any additional user input.

Recent methods adopt CNNs. Lun et al. (Lun
et al., 2017) proposed a method to reconstruct a 3D
model from line drawings in two object views. How-
ever, the network requires an object class as an addi-
tional input, which constrains the number of possible
object classes and drastically limits free-form mod-
eling. To address free-form modeling, Li et al. (Li
et al., 2018) proposed smoothing ground-truth (GT)
3D meshes, thus, making the CNN independent from
shape features specific to exact 3D models. How-
ever, these approaches require contours to be explic-
itly specified. Zheng et al. (Zheng et al., 2020) pro-
posed a shading GAN which implicitly infers 3D in-
formation, but such information cannot be used di-
rectly and requires further processing. Our approach

does not require to specify object contours or classes
and infers final depth maps of whole scenes.

3 OUR METHOD

Our preliminary experiment revealed that our base-
line method (Liu et al., 2018) failed to estimate depths
solely from line drawings. This might be caused by
the lack of information, which leads to our key idea:
data enrichment. To enrich the input line drawings,
our method integrates three streams of networks for
coloring, initial depth, and normal estimation. Next,
our method obtains the final depth map by refining
the intermediate data. Figure 1 shows our depth es-
timation pipeline. Our depth estimation pipeline re-
quires various data for training. Line drawings are re-
quired as an input to all the modules. Data enrichment
modules require original RGB images, depth and nor-
mal maps as the ground truth. The refinement module
requires ground truth depth maps, planar segmenta-
tions, and planar equations.

3.1 Pix2pix Modules for Data
Enrichment

To tackle the detail shortage problem in line draw-
ings, we integrate three branches of conditional GAN
for colorization, initial depth, and normal estima-
tion. Namely, we adopt the pix2pix architecture (Isola
et al., 2017) for all of them. We train the first
branch, edge2pix, to hallucinate original RGB im-
ages. The second and the third branches, edge2depth
and edge2norm, are trained to estimate rough depth
and normal maps, respectively.

After processing the input line drawing with
pix2pix modules, we concatenate initial line draw-
ings, hallucinated RGB images, initially estimated
depth and normal maps. Next, we feed the concate-
nated result to the PlaneNet module.

3.2 PlaneNet Module

To obtain final depth maps from the initial depth maps
and intermediate data, we use the PlaneNet (Liu et al.,
2018) module. This module is based on a dilated
version of the ResNet network (He et al., 2016; Yu
et al., 2017) and has three branches following it. The
first branch regresses plane parameters represented as
three-dimensional vectors dn, where d are offsets and
n are unit normal vectors that define plane equations.
The second branch segments an image into planar re-
gions and a single non-planar mask. The third branch
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Figure 1: Our pipeline for estimating indoor-scene depth from a single line drawing.

Table 1: Depth accuracy comparison using the ScanNet dataset. The best values are emphasized by boldface. The left block
shows error rates. The right block shows percentages of pixels within the given thresholds (in meter scale) compared to GT.

Methods Rel↓ Rel(sqr) ↓ Log10 ↓ RMSE↓ 1.25 m↑ 1.252 m↑ 1.253 m↑
PlaneNet (Liu et al., 2018) 0.386 0.307 0.230 0.764 16.8 47.0 71.7
SARPN (Chen et al., 2019) 0.240 0.134 0.097 0.492 60.85 86.16 96.57
Ours (w/o depth and norm) 0.475 0.445 0.156 0.757 36.2 66.6 87.1
Ours (w/o norm) 0.248 0.153 0.117 0.527 50.9 81.4 94.7
Ours (w/o pix) 0.196 0.098 0.092 0.430 63.8 88.9 97.0
Ours (full) 0.193 0.097 0.088 0.423 65.3 90.3 97.3

estimates the non-planar depth map. Finally, the out-
puts of all three branches are merged into a single
depth map output.

Training each module of the pipeline with the
whole dataset will result in pix2pix modules overfit
to the dataset, making PlaneNet insensitive to the in-
termediate results, which will severely affect the test-
ing results. To avoid this issue, we divide the training
dataset into two subsets. The first subset is used to
train all of the pix2pix modules because they are in-
dependent of each other. The second one is used to
train the PlaneNet module.

4 DATASET

For the dataset, we use the PlaneNet (Liu et al.,
2018) version of the ScanNet (Dai et al., 2017)
dataset. We discard extremely bright and blurry sam-
ples by examining the image edge strength. Next,
we extract line drawings using one of the recent
CNNs for edge extraction (He et al., 2019), preceded
by the contrast limited adaptive histogram equal-
ization (CLAHE) (Zuiderveld and Heckbert, 1994).
Whilst we found such line drawings not plausible,
they worked surprisingly well for the training of our
pipeline.

5 EXPERIMENTAL RESULTS

We trained each of the pix2pix modules up to 200
epochs and the PlaneNet module up to 50 epochs. For
comparison, we chose the PlaneNet (Liu et al., 2018)
network as the baseline method and trained it with
the same dataset up to 50 epochs. Our dataset has
approximately 45,000 training and 1,000 testing sam-
ples. We use 15,000 samples to train the pix2pix mod-
ules and 30,000 samples to train the PlaneNet mod-
ule. In total, the training took 34 hours using NVIDIA
GeForce RTX 2080 Ti GPU.

Figure 2 shows some of the depth reconstruction
results produced by our method and some of the re-
cent approaches. As can be seen, PlaneNet (Liu et al.,
2018) produces globally plausible but locally incon-
sistent outputs. In contrast, SARPN (Chen et al.,
2019) produces locally consistent results, but glob-
ally they are significantly different from the ground
truth. Our method is mostly consistent both locally
and globally. It indicates that our method has suc-
cessfully learned how to deal with the ambiguity in
indoor-scene line drawings and to estimate their depth
maps. This hypothesis is also supported by the 3D
representations shown in Figure 3.

Table 1 provides a quantitative evaluation of the
recent methods (Liu et al., 2018; Chen et al., 2019)
and our pipeline on various metrics used in a prior
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work (Eigen et al., 2014). The four metrics on the left
represent various error statistics such as rooted-mean-
square-error (RMSE) and relative difference (Rel).
The three metrics on the right show the percentage of
pixels, for which the relative difference between the
GT and the predicted depths is within a certain thresh-
old. As can be observed, our method works better not
only visually but also quantitatively. Also, as an abla-
tion study, we trained our pipeline alternately without
the edge2pix, edge2norm, and both edge2depth and
edge2norm modules. While some of the omitted ver-
sions are statistically better than the baseline methods,
we found them to perform qualitatively worse than the
full version. It is also clear that the edge2depth mod-
ule plays the key role in the pipeline.

Figure 2 additionally shows some of the plane
segmentation results. Note that the random col-
ors in segmentations are used just for distinguishing
planes and do not correspond among different meth-
ods. For some images plane segmentations are esti-
mated wrongly, merging perpendicular planes (e.g.,
“Ours” for Scene 2, where the green segment in-
cludes three different planes). However, for others,
the segmentation seems to work properly, and even
in the cases where a single plane is separated into
various planar instances (e.g., “Ours” for Scene 1,
where the red and green segments are mixed), these
instances appear to have nearly identical plane param-
eters, which means that even improper plane segmen-
tation usually does not strongly affect the final accu-
racy of depth maps.

5.1 Evaluation with Hand-drawn Line
Drawings

Toward practical applications, we also evaluated our
method using hand-drawn line drawings of three
scenes. As can be seen from Figure 4, the resulting
depth maps are of slightly worse quality than the re-
sults using the evaluation dataset (Figure 2). How-
ever, the results are still visually plausible and account
for the overall object layout in the scenes.

6 CONCLUSION AND FUTURE
WORK

This paper has proposed the first pipeline to estimate
depth of indoor-scene line drawings. To combat the
problem of ambiguity, our method integrates three
streams of conditional GAN. Next, to obtain the final
depth, our pipeline integrates the PlaneNet module, a
recent depth estimation method. Our method handles

Figure 2: Comparisons of depth maps and plane segmen-
tation with the baseline (Liu et al., 2018) and our method.
The first two rows: original images (after grayscale conver-
sion and CLAHE), and input line drawings. The remain-
ing rows: plane segmentations of GT, baseline results (Liu
et al., 2018), and ours, depth maps of GT, baseline re-
sults (Liu et al., 2018), SARPN (Chen et al., 2019), and
ours. In the depth maps, the color indicates distance from
the camera, from closest to furthest: red, yellow, green,
blue.

indoor scenes including the hand-drawn line drawings
effectively.

Future work includes training and testing with a
high-resolution dataset. It might also include intro-
ducing a neural module to classify lines to texture-
based and geometry-based ones, thus solving this
complicated task for the main pipeline. Another
promising yet challenging direction might be to inte-
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Figure 3: 3D representations of inferred depth maps obtained after converting the depth maps to meshes.

grate vanishing points detection into the loss function
or as an additional input to the network. Line draw-
ings in our dataset might be further improved by em-
ploying apparent ridges for line extraction (Judd et al.,
2007).
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Figure 4: Our results from hand-drawn line drawings. From left to right: line drawings, estimated segmentations, estimated
depth, and ground truth depths of the corresponding images.
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