
Strategising RoboCup in Real Time with Uppaal Stratego

Philip I. Holler, Magnus K. Jensen, Hannah Marie K. Lockey and Michele Albano a

Department of Computer Science, Aalborg University, Selma Lagerløfs Vej 300, 9220 Aalborg, Denmark

Keywords: Multi-Agent Systems, Multi-Agent Software Platforms, Time Constraints, Agent Models and Architectures.

Abstract: The RoboCup simulator is a playing ground for Agents and Artificial Intelligence research. One of the main
challenges provided by RoboCup is generating winning strategies for a set of agents playing soccer, given a
partial and noisy view of the game state. Additionally, RoboCup is timing sensitive, and all decisions have
to be sent to the server within each tick of 100ms. This paper presents a method for generating strategies
by modelling players and scenarios as timed automata in the Uppaal environment. The newest extension of
Uppaal, called Uppaal Stratego, allows for synthesising strategies optimising a reward function that is used
to guide the decision process. In order to stay within the time frame of 100ms, two approaches were tested,
namely forecasting the game state and generating a strategy asynchronously for a later point in time, and
generating strategies beforehand and saving them in a lookup table. Four timed automata were developed, and
were tested against publicly available methods. We found that strategies could be successfully generated and
used within the time constraints of RoboCup using our proposed method. Especially when combined together,
our strategies are able to outperform most published methods, but lose against the published world champions.

1 INTRODUCTION

Robotics involves many complex decision problems
with tight time constraints that are often difficult to
solve using traditional rule based programming, es-
pecially when the scenario involves multiple robots.
This category of problems extends to higher levels of
abstraction, such as strategising to solve problems in
a dynamic environment.

The RoboCup federation aims to push the limits of
Artificial Intelligence in robotics by providing plat-
forms for soccer competitions between autonomous
robots (Robocup Federation, 2020a). In this paper
we focus on the strategisation part of the problem,
as represented in the RoboCup 2D multi-agent soc-
cer simulation (Robocup Federation, 2020b). This
simulation includes a dynamic environment with a
large amount of possible configurations that makes
linear search for optimal solutions infeasible. The
RoboCup player agents, called players for short, are
autonomous agents reacting to stimuli from the envi-
ronment. In order to make the players perform well
in the game, it is necessary to quickly create effective
strategies for the players.

Uppaal is a modelling and verification tool that al-
lows for modelling the behaviour of timed systems in

a https://orcid.org/0000-0002-3777-9981

terms of states and transitions between states. Addi-
tionally, Uppaal is able to analyse and verify prop-
erties of the models using efficient algorithms (Up-
paal, 2019). The latest extension of Uppaal, called
Uppaal Stratego, enables strategy generations using
different machine learning algorithms such as Q-
learning (David et al., 2015). Uppaal Stratego has
already been applied to solve problems of real time
systems such as floor heating control (Larsen et al.,
2016) and traffic light control (Eriksen et al., 2017).
In both cases, strategies are generated in real time, but
not with the tight time constraints and the large prob-
lem spaces that characterise RoboCup.

The aim of this paper is to introduce methods
for applying Uppaal Stratego to solve problems that
require swift reactions to a dynamic environment.
We created a RoboCup team named RoboPaal to
showcase our approach, and whose code is available
on (RoboPaal team, 2020).

The rest of the paper is structured as follows.
Section 2 provides background information regard-
ing RoboCup and Uppaal. Section 3 introduces our
general approach to strategising RoboCup, and Sec-
tion 4 provides insights regarding the design and im-
plementation of RoboPaal. Section 5 present and dis-
cusses the results of our experimentation, and Sec-
tion 6 wraps up the paper.

Holler, P., Jensen, M., Lockey, H. and Albano, M.
Strategising RoboCup in Real Time with Uppaal Stratego.
DOI: 10.5220/0010239602730280
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 1, pages 273-280
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

273



2 BACKGROUND INFORMATION

Definition 1. An objective is defined as a goal for a
single player. An example of this could be: move to
position x,y on the field. An objective can require sev-
eral player actions, i.e. dash, kick and turn, to com-
plete, or none if the objective is already fulfilled.

Definition 2. A strategy is a set of objectives as-
signed to one or more players.

Definition 3. In this paper, a model is a timed au-
tomata modelled within Uppaal (David et al., 2015).

2.1 RoboCup

RoboCup is a set of annual competitions where teams
of autonomous robots compete in the game of soc-
cer. RoboCup features tournaments for both physi-
cal robots as well as simulated robots in 2D and 3D
environments (Robocup Federation, 2020a). This pa-
per focuses on the 2D simulator. Agents in the sim-
ulator must tackle problems such as interpretation of
noisy data, strategisation and coordination with other
robots, and finally time sensitivity as the server en-
forces a 100ms tick rate. The simulator is publicly
available through GitHub (Rodrigues et al., 2020).
The Soccer Server is the main component of the sim-
ulator, and is responsible for storing and updating the
game state. All communication between the agents
must be done through the server.

Three different types of agents can connect to the
server. The Trainer and the Online Coach have both
access to a perfect view of the game state. The Trainer
can move objects and change the game state, it can-
not be used in official matches, and it is meant to
test strategies in controlled environments. The Online
Coach can communicate via short messages broadcast
to the players (through the server), and can issue sub-
stitutions of the players during a match.

The Players can communicate with each other
(through the server), they periodically receive sen-
sory data, and they send back actions to be performed.
Sensory data come of three different types. Visual
data consists of distances and relative directions to
flags, other players and the ball, and it is distorted
depending on how far away the objects are located.
Body sensor data include current values of stamina
and head angle; auditory data include messages from
the referee, other players and the coach. Player ac-
tions are executed to influence the game state, and in-
clude dash, kick, turn, turn neck and say. The kick
and dash actions are accompanied by a power parame-
ter between 0 and 100 indicating how hard to kick and
how fast to dash. The player state has a stamina level

that dictates the effectiveness of the dash and kick ac-
tions, which by default starts starts at the upper limit
of 8000 stamina, and dash actions consume stamina
equal to the power of the action. Stamina regenerates
at a rate of at most 30 units per tick throughout the
game (The RoboCup Simulator Committee, 2020).

2.2 Uppaal Toolsuite

Uppaal is a modelling and verification toolsuite. The
latest edition of Uppaal comprises Uppaal Stratego,
which is a tool for generating strategies (Uppaal,
2019). A strategy in Uppaal Stratego consists of a
number of transitions in a timed automata depending
on the values of variables and clocks, the latter repre-
senting the passing of time.

A common issue for model checking of timed
automata is the state space explosion, which hap-
pens when the state space gets too big to analyse.
Within Uppaal Stratego, the strategies are generated
according to a query formulated in a query language
containing variables or clocks that should be opti-
mised (David et al., 2015). Strategies are generated
using different machine learning methods, among
which co-variance, Splitting, Regression, Naive, M-
Learning and Q-learning (the default method). In this
paper, Uppaal Stratego will only be used in its de-
fault setting using Q-learning. Models in Uppaal are
saved as XML files, which allows for easy direct ma-
nipulation of the model. The Uppaal verifier, called
verifyta, is a binary file used to run strategy gener-
ation queries on the models.

Timed automata have been used to strategise real
time systems in the past. The work in (Larsen et al.,
2016) used Uppaal for online synthesis of short-
period strategies on the fly. In fact, the computations
needed to learn an effective strategy in Uppaal grows
exponentially with the number of states, which grows
steepily with the time horizon for the strategy. A heat-
ing control strategy is created for the near future, and
then recalculated periodically. The traffic controller
described in (Eriksen et al., 2017) uses Uppaal to re-
duce waiting times at traffic lights by continuously
creating new strategies for intelligent traffic lights.

3 STRATEGISING RoboCup

Our approach, whose reference architecture is shown
in figure 1, employs Uppaal to create strategies for the
Players and for the Online Coach.

A player can represent its view of the world as a
Uppaal model, which is then used to generate a strat-
egy. The player then translates the strategy into ob-

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

274



Figure 1: Reference architecture.

jectives and acts upon them by sending actions to the
soccer server. This approach allows creating individ-
ual strategies for each player, based on its view of the
world. The approach for the Online Coach is similar,
but it requires the additional step of communicating
the strategy to the players with a Say action.

Modelling the whole game state within Uppaal is
unfeasible since a game of RoboCup can have up to
11 players for each team and each player is charac-
terized by more than 40 variables, leading to massive
state explosion. For this reason, one primary problem
we studied was the choice of a proper part of the game
state to model. We considered specific scenarios (free
kicks), characteristics of a player (its stamina level),
and choices (passing the ball or trying to keep it).

We created two distinct families of methods for
generating strategies for RoboCup with Uppaal. A
first family called Online Strategy considers to gen-
erate a strategy on the fly when it is needed. The ap-
proach must adhere to tight time constraints (100ms).
The models for generating online strategies are al-
tered using the data received from the server, and the
output strategies focus on objectives of immediate ap-
plicability, such as finding the optimal target for pass-
ing the ball. If strategy generation takes too long, the
strategy might be ready too late to be useful. We
reduce this risk by forecasting the game state, even
though we could generate a strategy for a game state
that never materialises.

A second family called Offline Strategy consid-
ers to generate strategies before a game is run. Rel-
evant offline strategies are stored in a lookup table.
Offline strategies cannot feasibly be generated for all
scenarios of the game, due to the large amount of pos-
sible states. Instead, this kind of strategy can be devel-
oped for scenarios that are predictable and repeated
often. At run time the agent can then search through
the offline strategies, and apply them if they match the
current game state.

4 DESIGN & IMPLEMENTATION

This section describes how the architecture and all of
its modules were realized in the Python programming
language.

4.1 Players

The biggest development effort was devoted to
the Players. Each of them is run on an independent
thread and can communicate with the server only (see
Section 2.1). Each player consists of two sub-threads:
the Communication thread for communicating mes-
sages with the soccer server, and the Thinker thread
that is responsible for parsing the received messages
and generating actions given a game state. The two
threads communicate through a thread-safe queue.

As mentioned in Section 2.1, players receive in-
accurate sensory data from the server, or even not re-
ceive some data at all, which can lead to generating
strategies based on wrong information. An example
of the noisy data is the distance to the ball and to ev-
ery other object, which is judged incorrectly by up to
10 percent (Akiyama, 2010). To mitigate this prob-
lem, the players estimate their own positions and di-
rections by using trilateration on all visible flags on
the field, and then leverage this information to esti-
mate the position of the rest of the objects.

We also mitigate the noise problem by keeping a
history of the perceived game state, to spot and cor-
rect inconsistencies in the data received by the server.
Finally, we associate a time stamp with every sensory
data received from the server, to both estimate the lo-
cation of non perceived objects, and to forecast the
future position of ball and players for online models
such as the possession model (see Section 4.3.2).

Every time a message from the server is parsed
by a Thinker thread, the player assesses if the current
game state matches the requirements for one or more
strategies. If the game state matches the requirements
for an offline strategy, the strategy is retrieved from
the lookup table and objectives are immediately ap-
plied for the player. If the game state matches an on-
line strategy configuration, then the agent constructs
an Uppaal model to generate the strategy (see Sec-
tion 4.3). Since generating an online strategy may
take longer than 100ms, it is done asynchronously us-
ing a separate thread. Upon completion, the Uppaal
module returns a series of objectives to the player.

Players can also receive objectives for a strategy
generated by the online coach, as say messages (see
Section 4.2). In case no suitable strategy is found,
objectives are determined by default hard coded be-
haviours.

Strategising RoboCup in Real Time with Uppaal Stratego

275



4.2 Online Coach and Trainer

Similarly to the player, the Online Coach and the
Trainer are run as two sub-threads (Communication
thread and Thinker thread). Their data on game state
are complete and not distorted, which eliminates the
need for the techniques from Section 4.1. If the data
received in one tick trigger the generation of a strat-
egy, a Uppaal model is generated, run, and the Objec-
tives it produces are communicated to the players (see
for example Section 4.3.1).

4.3 Implemented Strategies

To showcase our approach, we implemented one of-
fline strategy generation module (the Goalie Defence
Model) and three online strategy generation modules
(the Pass-chain Model, the Stamina Model and the
Possession Model).

In the Uppaal models, the possible objectives that
the player can pursue are represented as controllable
transitions. For example a transition might represent
passing the ball to a specific player. The Uppaal veri-
fier verifyta is executed on the model to synthesise
a strategy, which provides an estimated utility that can
be gained by taking each possible transition in the
model. Uncontrollable factors, such as the movement
of opponents, are represented as dotted lines (see fig-
ures 2 – 4). These transitions can influence the state
of the model and the estimated reward of the control-
lable actions, but will not appear in the output strategy
file since they do not correspond to actions that can be
taken.

4.3.1 Pass-chain Model

Similarly to the real world, it is impossible for a
player to kick the ball hard enough for it to cross the
entire field and score a goal. Instead, the players must
either dribble or pass the ball to each other multiple
times, while avoiding interception by the opposing
team, until they are close enough to the goal. The pro-
posed pass-chain model is used by the online coach,
which observes the game state and builds a model.
The model generates a list of players, and the coach
communicates to each player the next player to pass
to via a Say message. The last player in the list is
instructed to dribble the ball forward.

The model consists of a series of team players, in-
stantiated from the template in figure 2, and the one-
state model in figure 3 for measuring rewards. Oppo-
nents are represented as a list of coordinates. A player
may either be in possession of the ball or free. From
the possession state, the player may either choose to
dribble or pass the ball to a teammate. In the latter

Figure 2: Player template of the pass-chain model.

Figure 3: Ball/reward template of the pass-chain model.

case, there is a probability that the ball is lost to the
opponent, which is estimated based on the positions
of the pass target and of the opponents. The reward is
modelled by means of a clock variable having a rate
determined by how far the ball is currently positioned
from the opponents’ goal, and by which team is in
possession of the ball. The query for generating the
strategy tries to optimize the reward value over a pe-
riod of 10 simulated seconds.

4.3.2 Possession Model

When a player is in possession of the ball, it must de-
cide whether to pass the ball to a teammate or to drib-
ble forward using a series of low power kicks. The
possession model estimates the effectiveness of these
choices. The model is highly dependant on a large
number of uncontrollable and unpredictable variables
such as the current positions of the opponents. Thus,
it is infeasible to precompute offline strategies for all
possible scenarios, which makes online strategy gen-
eration the only option for this model. On the other
hand, generating the strategy as it is needed can in-
volve computation time spanning one or more server
ticks, which is sometimes enough for the opponents
to take control of the ball. Thus, in several sce-
narios (e.g.: when chasing the ball, when attempt-
ing an interception, when the ball is moving towards

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

276



Figure 4: Possessor template from the possession model.

the player) players estimate periodically the time that
they will come into contact with the ball, to gener-
ate a strategy a few ticks before the estimated contact
time. The model is built using an extrapolation on the
position of all visible moving objects.

The possessor template of the model is repre-
sented in figure 4. The generated strategy file contains
rewards for performing passes to each of the visible
teammates, and for performing a forward dribble. The
rewards are based on the estimated probability that the
action will succeed, as well as how much the ball will
advance towards the opponent’s goal.

4.3.3 Goalie Defence Model

The goalie is the last defence when the opposing team
is close to scoring a goal. A good strategy for this
situation aims to maximise the chance of a save by
positioning the goalie in the best spot.

When an opposing striker approaches the goal, we
assume that, if the striker shoots, it will be within the
cone to the goal. Figure 5 represents the cone between
B1 and B2, and G1 and G2 are the shortest (perpendic-
ular) segments from the goalie to the edge of the cone.
The objective of the goalie is to keep the longest seg-
ment between G1 and G2 as short as possible, since if
one of these were long, the goalie would take longer
to intercept the ball if kicked along that trajectory.

Two timed automata for the goalie and the striker
respectively are run in parallel. All transitions in the
striker model are uncontrollable, since the striker is
not under RoboPaal’s control. The model for the
striker is represented in figure 6. At each step both
goalie and striker can choose to accelerate or decel-
erate in some direction. After this, the striker non-

Figure 5: Goalie defender idea illustrated.

Figure 6: Striker part of the goalie model.

deterministically decides to either kick the ball or
move further, and the goalie can respond by either
moving or standing still. When the striker eventually
kicks, the goal chance is calculated as a function of
the goalie and the striker positions. The query used
to synthesise the strategy aims to generate a strategy
minimizing the goal chance.

Since the goalie needs fast reaction times and the
state space is relatively small, this strategy was made
as an offline strategy. The penalty area was divided
into a grid of 1x1 meter squares, and a strategy was
generated for each combination of goalie and striker
positions within the grid. All the combinations were
then saved in a dictionary, with the key being the po-
sitions of striker and goalie and the value being move-
ment instructions for the goalie.

4.3.4 Stamina Model

If players dash as fast as they can throughout a game,
they will run out of stamina quickly. As mentioned
in Section 2.1, the player’s stamina is a value be-
tween 0 and 8000 and it get lowered when dashing,
and the effect of all player’s actions is reduced when
the stamina drops below 1000. We introduce a model
for online stamina strategy generation. The strategy is
generated every 11 seconds, or 110 ticks. The model
uses stamina intervals 0 to 9 to reduce the number of
possible states, and it searches for the maximal dash
power that keeps the stamina level above 2000.

Strategising RoboCup in Real Time with Uppaal Stratego

277



5 EXPERIMENTAL RESULTS

This section presents the experimental results we col-
lected regarding the performance of RoboPaal. Every
time the soccer server is quit, log files are generated.
The log files can be used for analysing how teams per-
formed in the game.

We performed two sets of experiments. The first
set focused on specific scenarios, with each experi-
ment repeated a number of times with different ran-
dom seeds to reach statistical significance. In the sec-
ond set of experiments, we let RoboPaal play against
teams retrieved from public repositories.

We defined a number of metrics in order to mea-
sure the benefits provided by the strategies. The pos-
session metric measures for how long the ball is kept,
and it is used for the performance of the pass-chain
model (section 4.3.1). The field progress metric mea-
sures the meters progressed toward the center of the
goal of the opposing team without losing possession
of the ball, and it is used to judge the performance
of the pass-chain model. For the stamina model,
we measured the metrics minimum stamina (the
stamina of the team player with the minimum stamina
level) and the average stamina (average stamina of
all players in a team). The goalie intervention met-
ric measures if the goalie is within 1.2 meters of the
ball, i.e close enough to catch the ball, at any point
during the attack, and it is used for to judge the goalie
defender strategy.

5.1 Goalie Defender Strategy

For the goalie defender model (see section 4.3.3), we
generated random striker attacks with the striker at a
random position on the y-axis and at the edge of the
penalty area on the x-axis. The ball is spawned right
in front of the striker. The goalie is given 75 ticks to
position according to the strategy, since in a real game
the goalie would position itself gradually as the striker
approaches the penalty area. Later on, both the goalie
and the striker are allowed to proceed normally. The
strategy is compared with: an idle strategy where
the goalie positions itself in the middle between the
two posts of the goal; a following strategy where the
goalie follows the ball’s y-coordinate.

Table 1 reports the results. We tested the Null Hy-
pothesis 1, considering a significance level of 0.05.
The binomial distribution is run with n = 100, ex-
pected probability 0.48, and actual number of suc-
cesses 58. We got a p-value of 0.029, which allowed
us to reject hypothesis 1 and to conclude that the de-
fender strategy performs statistically better than the
idle strategy.

Table 1: Successful goalie interventions out of 100 attacks.

Successful
interventions

Idle in front of goal 48
Goalie Defender Strategy 58
Manual Y-axis adjustment 60

Null Hypothesis 1. The goalie defender strategy does
not perform better, than the idle strategy.

We then tested Null Hypothesis 2 using a binomial
distribution with a significance level of 0.05. The test
was run with n = 100, expected probability 0.60, and
the actual number of successes set to 58. The results
of the test did not allow us to reject hypothesis 2.
Null Hypothesis 2. The manual y-axis adjustment
and goalie defender strategy perform identically given
the same random attacks.

5.2 Stamina Strategy

The performance of the stamina model (see sec-
tion 4.3.4) was tested by means of a beep test, and
of full games.

The beep test is a real world fitness test for ath-
letes, where the players have to run continuously back
and forth between the two posts with less and less
time to reach the next target (Wood, 2008). We mea-
sure the performance of our strategy against a base-
line where a player simply dashes at full power all the
time. Figure 7 shows that the average stamina at each
tick is kept higher by our strategy, and figure 8 shows
that the running performance of the stamina strategy
overpowers the baseline since tick 2000. The fluc-
tuations around tick 3000 are caused by the server
replenishing the stamina of the players at half time.
The decrease in stamina just before half time and end
game is due to the player being allowed to use the rest
of his stamina when the game is about to end.

We also tested the stamina strategy in 40 full
games between two teams of identical implementa-
tions, except for one team using the stamina strategy.

Figure 7: Stamina comparison of stamina strategy against
dashing at full speed.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

278



Figure 8: Lap comparison of stamina strategy against dash-
ing at full speed.

The results can be seen in Table 2. We proposed the
Null Hypothesis 3, and test it with a significance level
of 0.05 against a binomial distribution, with n = 40,
expected probability of 0.5 wins and actual number
of successes 28. This yields a p-value of 0.008853,
which is enough to confirm that the stamina strategy
increases the chance of winning.

Null Hypothesis 3. The stamina strategy does not in-
crease the chance of winning.

Figure 9 reports on the average stamina of the
most tired player at every tick over the 40 games
(the average stamina metric yields similar results),
and it shows that players can preserve stamina while
still winning more games. Another indicator that the
stamina strategy can indeed make a difference is the
fact that the team using it scores most of the goals
in the latter half of each half time, which is when
some players without the stamina strategy are out of
stamina (see figure 9). An extreme example of this
effect was noticed in one of the 40 games, where the
stamina strategy team won 1-11 and only 1 of the 11
goals scored by the winning team fell within the first
third of the half times.

Table 2: Game results of 40 games with one team using the
stamina strategy.

Team Goals Scored Wins
Stamina Strategy 247 28
Default Dashing 160 11

Figure 9: Average stamina of lowest stamina player in the
40 games.

5.3 Possession Strategy

Table 3 shows the cumulative results of 50 full games,
where the team with the possession model performed
significantly worse than the default implementation.
The poor performance could be a result of consider-
ing backwards passes in the strategy, which in certain
situations appears to be a good idea, but often results
in losing the ball closer to a player’s own goal.

Table 3: Results of 50 games with possession model against
default.

Team Goals Scored Wins
Possession Strategy 167 11

Default 233 28

5.4 Pass-chain Strategy

The strategy was tested by setting up scenarios with
one team using the strategy and one having default
behaviour. 5 players were part of each team, and each
scenario was run for 100 ticks. The metric used is
field progress, calculated as an average on 200 runs
per strategy. As seen in table 4 the pass-chain strategy
has a better average field progress.

Table 4: Results of 200 games in average field progress.

Teams Average Field Progress
Pass-Chain 17.81

Default 16.58

To test the results statistically, a Wilcoxon signed-
rank test was used. We tested the data against the
null hypothesis 4, with significance level 0.05. The
outcome of the test was a p-value of 0.52218, which
is not p < 0.05, thus we could not reject the null hy-
pothesis.

Null Hypothesis 4. The pass-chain performance is
identical to the default behaviour in terms of field
progress.

5.5 Games against Other
Implementations

Finally, we have tested RoboPaal against other imple-
mentations. Since the stamina strategy and goalie de-
fender strategies appear to improve performance (see
sections 5.1 and 5.2) we utilised them for our team,
and we played using all the official rules.

The Keng implementation is available on
GitHub (Keng, 2015), and it was developed as part of
a course in machine learning at the Lafayette College

Strategising RoboCup in Real Time with Uppaal Stratego

279



Table 5: Results of games against other implementations.

RoboPaal vs RoboPaal vs
Keng HfutEngine
19 - 0 0 - 34
21 - 0 0 - 34
21 - 0 0 - 36
16 - 0 0 - 36
15 - 0 0 - 35

in the United States. This implementation won the
class tournament, and it employs a hybrid of reflex,
utility and goal-based agents using swarm intelli-
gence. Keng’s players were developed manually and
in the Python language, just like our ones. The games
were very one sided and all ended with a win for our
implementation, as seen in table 5.

We tested our implementation against the team
that won the 2019 World Championship, namely the
HfutEngine team (Lu et al., 2019). The players were
developed using neural networks combined with the
Helios Base player code (Zhiwei-Le et al., 2015),
which is a heavily optimised C++ code library that
takes care of most agent mechanisms and allows
teams to focus on the AI part of the players. As seen
in table 5 HfutEngine wins with a big lead against our
RoboPaal implementation.

Both the comparisons have, however, limited va-
lidity since there are large differences in the ability
of the players to analyse sensory input and perform
maneuvers such as dribbles, intercepts and passes.
The Keng implementation is created from scratch and
the players turn and move significantly slower than
the RoboPaal agents. Inversely, the HfutEngine play-
ers are much more adept than the RoboPaal agents.
A more interesting comparison would involve future
work aimed at developing players using our strategies
over the Helios Base.

6 CONCLUSION

Generating strategies in real time for RoboCup
players using timed automata modelled in Uppaal
was proved to be possible. Challenges like time-
sensitivity can be mitigated using game state forecast-
ing combined with asynchronous computing, or of-
fline strategy generation. In this work, we were able
to implement both kinds of strategies and compared
them in real games against existing RoboCup teams.

Future work considers to port our team to a better
codebase to be able to compete with world champi-
ons. In a wider sense, we also plan to apply the two
methods (state forecasting, and offline computation)

to other problems.

ACKNOWLEDGEMENTS

This work was partly founded by the TECH faculty
project “Digital Technologies for Industry 4.0”, Aal-
borg University.

REFERENCES

Akiyama, H. (2010). Robo cup soccer simulation 2d league
winning guide. ftp://ftp.iij.ad.jp/pub/sourceforge.jp/
rctools/46021/RoboCup2DGuideBook-1.0.pdf.

David, A., Jensen, P. G., Larsen, K. G., Mikučionis, M., and
Taankvist, J. H. (2015). Uppaal stratego. In Baier, C.
and Tinelli, C., editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 9035
of LNCS, pages 206–211. Springer Berlin Heidelberg.

Eriksen, A. B., Huang, C., Kildebogaard, J., Lahrmann,
H., Larsen, K. G., Muñiz, M., and Taankvist, J. H.
(2017). Uppaal stratego for intelligent traffic lights.
http://people.cs.aau.dk/∼muniz/strategoTraffic.pdf.

Keng, W. L. (2015). Cs 420, artificial intelligence,
robot soccer project, lafayette college department
of computer science. https://github.com/kengz/
robocup-soccer/blob/master/report/paper.pdf.

Larsen, K. G., Mikučionis, M., Muñiz, M., Srba, J.,
and Taankvist, J. H. (2016). Online and com-
positional learning of controllers with application
to floor heating. http://people.cs.aau.dk/∼muniz/
LMMST-TACAS-16.pdf.

Lu, K., Ma, J., Cai, Z., Wang, H., and Fang,
B. (2019). Hfutengine simulation 2d team.
http://archive.robocup.info/Soccer/Simulation/
2D/binaries/RoboCup/2019/PreliminaryRound/
HfutEngine SS2D RC2019 R1 BIN.tar.gz.

Robocup Federation (2020a). A brief history of robocup.
https://www.robocup.org/a brief history of robocup.

Robocup Federation (2020b). Robocup 2d simulation
league. https://www.robocup.org/leagues/24.

RoboPaal team (2020). Repository for robopaal codebase.
https://github.com/philipholler/RocoCup Soccer P6.

Rodrigues, H., Akiyama, H., Zare, N., and Obst, O. (2020).
The robocup soccer simulator. https://github.com/
rcsoccersim.

The RoboCup Simulator Committee (2020). The robocup
soccer simulator documentation. https://rcsoccersim.
github.io/manual/.

Uppaal (2019). About uppaal. http://www.uppaal.org/
about.

Wood, R. (2008). Beep test variations and mod-
ifications. https://www.topendsports.com/testing/
beep-variations.htm.

Zhiwei-Le, Keting-LU, Wang, G., Hao-Wang, and Baofu-
Fang (2015). Hfutengine2015 simulation 2d team de-
scription paper. https://www.robocup2015.org/show/
article/95.html.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

280


