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Abstract: In this work, we present an uncertainty-based method for sensor fusion with camera and radar data. The
outputs of two neural networks, one processing camera and the other one radar data, are combined in an
uncertainty aware manner. To this end, we gather the outputs and corresponding meta information for both
networks. For each predicted object, the gathered information is post-processed by a gradient boosting method
to produce a joint prediction of both networks. In our experiments we combine the YOLOv3 object detection
network with a customized 1D radar segmentation network and evaluate our method on the nuScenes dataset.
In particular we focus on night scenes, where the capability of object detection networks based on camera
data is potentially handicapped. Our experiments show, that this approach of uncertainty aware fusion, which
is also of very modular nature, significantly gains performance compared to single sensor baselines and is in
range of specifically tailored deep learning based fusion approaches.

1 INTRODUCTION

One of the biggest challenges for computer vision
systems in automated driving is to recognize the cars
environment appropriately in any given situation. The
data of different sensors has to be interpreted correctly
while operating with limited amount of computing re-
sources. Besides dense traffic, different weather con-
ditions like sun, heavy rain, fog and snow are chal-
lenging for state-of-the-art computer vision systems.
Previous studies show that the use of more than one
sensor, the so called sensor fusion, leads to an im-
provement in object detection accuracy, e.g. when
combining camera and lidar sensors (Silva et al.,
2018; Wu et al., 2017; Liu et al., 2017; Hansen and
Underwood, 2017; Gu et al., 2019). Up to now,
datasets containing real street scenes using radar data
and another sensor are rather the exception, although
synthetic data with different sensors, such as cam-
era and radar sensors, can be generated using simu-
lators like CARLA (Dosovitskiy et al., 2017) or LS-
GVL (Rong et al., 2020).

With the publication of the nuScenes dataset (Cae-
sar et al., 2020), the scientific community obtained ac-
cess to real street scenes recorded with different sen-
sors including radar. In total there are 5 radar sen-
sors distributed around the car that generate the data.

Ever since, the number of published papers dealing
with sensor fusion combining radar with other sen-
sors with the help of the nuScenes dataset has in-
creased, see e.g. (John and Mita, 2019; Nobis et al.,
2019; Pérez et al., 2019). We now briefly review these
approaches. The authors of (John and Mita, 2019)
propose an object detection convolutional neural net-
work (CNN) named RVNet which is equipped with
two input branches and two output branches. One in-
put branch processes image data, the other one radar
data. Similarly to YOLOv3 (Redmon and Farhadi,
2018), the network utilizes two output branches to
provide bounding box predictions, i.e., one branch is
supposed to detect smaller obstacles, the other one
larger obstacles. The authors conclude that radar fea-
tures are useful for detecting on-road obstacles in a
binary classification framework. On the other hand
the features extracted from radar data seem not to be
useful in a multiclass classification framework due to
the sparsity of the data.

Another deep-learning-based radar and camera
sensor fusion for object detection is the CRF-Net
(CameraRadarFusionNet) (Nobis et al., 2019) , which
automatically learns at which level the fusion of both
sensor data is most beneficial for object detection.
The CRF-Net uses a so-called BlackIn training strat-
egy and combines a RetinaNet (VGG backbone), a
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custom-designed radar network and a Feature Pyra-
mid Network (FPN) for classification and regres-
sion problems. The main branch is composed of
five VGG-Blocks, every block receives pre-processed
radar and image data for further processing which is
forwarded to the FPN-Blocks. The network is tested
on the nuScenes dataset and a self-build one. The au-
thors provide evidence that the BackIn training strat-
egy leverages the detection score of a state-of-the-art
object detection network.

Furthermore, a fusion approach for lidar and radar
is introduced in (Pérez et al., 2019). This approach
is designed for multi-class object detection of pedes-
trian, cyclist, car and noise (empty region of interest)
classes. To this end, lidar and radar data are first pro-
cessed individually. The lidar branch detects objects
and tracks them over time. On the other hand, the
radar branch provides the object classification, where
three independent fast Fourier transforms (FFTs) are
applied on the range-Doppler-angle spectrum. After
time synchronisation the two branches are merged, re-
sulting in regions of interest. These regions are fed to
the CNN, based on the VGGNet architecture, which
computes the classes probabilities. Since this ap-
proach works well for vehicle and noise classification
but has problems with pedestrians and cyclist classes
the network was improved by applying a tracking fil-
ter on top of the classifier. They used a Bayes filter
which improved the classification performance for the
two challenging classes.

In summary, the works presented (John and Mita,
2019; Nobis et al., 2019) aim at simultaneously fusing
and interpreting image and radar data within a CNN.
In (Pérez et al., 2019), lidar and radar data are first
fused and afterwards a CNN processes the fused in-
put. While these approaches are beneficial with re-
spect to maximizing performance, they require addi-
tional fallback solutions in case that a sensor drops
out. Also in contrast to other sensor fusion solutions,
our approach preserves the option to use both net-
works redundantly. In this way, indications of only
one of the networks can be used for scenario construc-
tions that are alternative to the main scenario provided
by the fusion approach.

It also seems inevitable that sensor fusion ap-
proaches require additional uncertainty measures to
verify the quality of the developed methods and net-
works. A tool for semantic segmentation called
MetaSeg that estimates prediction quality on segment
level was introduced in (Rottmann et al., 2020) and
extended in (Maag et al., 2020; Rottmann and Schu-
bert, 2019; Schubert et al., 2020). It learns to pre-
dict whether predicted components intersects with the
ground truth or not, which can be viewed as meta clas-

sifying between two classes (IoU = 0 and IoU > 0).
To this end, metrics are derived from the CNN’s
output and pass them on to another meta-classifier.
This work of false positive detection was extended
in (Chan et al., 2020) where the number of over-
looked objects was reduced by only paying with a
few additional false positives. The overproduction of
false positives is suppressed by MetaSeg. Following
these approaches for uncertainty quantification, we
use metrics from the output of two CNNs. We pass
them through to a gradient boosting classifier, which
reduces the number of false positive predictions. In
addition, by reducing the score threshold for object
detection, we are able to improve over the perfor-
mance of the respective single sensor networks.

In our tests, we utilize a YOLOv3 (Redmon and
Farhadi, 2018) as a state-of-the-art object detection
network to process the camera data and complement
this with a custom-designed CNN that performs a
1D binary segmentation which is supposed to detect
obstacles. Further downstream of our computer vi-
sion pipeline we introduce a very general uncertainty-
based fusion algorithm. Based on the predictions of
both CNNs and their uncertainties as well as other
geometrical meta-information, the fusion algorithm
learns to provide a prediction by means of a struc-
tured dataset. In our experiments we demonstrate for
the case of street scenes recorded at night, that this ap-
proach significantly improves the object detection ac-
curacy. Furthermore, both networks only show mod-
erate correlation which further supports our safety ar-
gument.

Outline. The remainder of this work is organized
as follows. In Section 2 we briefly describe the char-
acteristics of different sensors used for perception in
automated driving. In Section 3 we introduce our 1D
segmentation network for the detection of vehicles by
radar data. We describe the preprocessing, the net-
work architecture and the loss function we used for
our method. This is followed by Section 4, where the
sensor fusion approach is presented and in Section 5
our choice of metrics are introduced. In Section 6 we
discuss the numerical results. Finally, we present the
conclusion and outlook in Section 7.

2 SENSOR CHARACTERISTICS

Today’s vehicles are equipped with sensors for
recording driving dynamics, which register move-
ments of the vehicle in three axes, as well as sensors
for detecting the environment. The latter try to map
the vehicle environment as accurately as possible to
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Figure 1: Preprocessing and prediction of the radar network. On the left we see the radar points projected to the front view
camera image. The center image is divided into a certain number of slices Ns from which we generate the input matrix for the
training of the CNN. The right hand image corresponds to the output of the radar network.

promote automated driving. This section briefly de-
scribes the characteristics of the three most used sen-
sors for the perception of the environment for auto-
mated driving, i.e., camera, radar and lidar, includ-
ing their advantages and disadvantages. Camera sen-
sors take two-dimensional images of light by electri-
cal means. They are accurate in measuring edges,
contour, texture and coloring. Furthermore they are
easily integrated into the design of a modern vehicle.
However, 3D localization from images is challeng-
ing and weather-related visual impairment can lead to
higher uncertainties in object detections (Wang et al.,
2020).

Table 1: Overview of the advantages and disadvantages of
the most common sensors for autonomous driving(Phillips,
2020).

Specifications Camera Radar Lidar

Distance Range ++ +++ +++
Resolution ++ +++ ++

Angle Range +++ ++ +++
Resolution +++ + ++

Classification Velocity Resolution + +++ ++
Object Categorization +++ + ++

Environment Night Time + +++ +++
Rainy/Cloudy Weather + +++ ++

+ = Good, ++ = Better, +++ = Best

Radar sensors use radio waves to determine the range,
angle and relative velocity of objects. Long-range
radar sensors have a high range capability up to
200− 250m (John and Mita, 2019; Schneider, 2005;
de Ponte Müller, 2017) and are cheaper than Lidar
sensors (Aldrich and Wickramarathne, 2018). Com-
pared to cameras, radar sensors are less affected by
environmental conditions and pollution (Aldrich and
Wickramarathne, 2018; Fritsche et al., 2016; de Ponte
Müller, 2017). On the other hand, radar data is sparse
and does not delineate the shape of the obstacles
(Fritsche et al., 2016; John and Mita, 2019). Lidar
sensors use a light beam, emitted from a laser, to de-
termine the distances and shapes of objects.

Lidar sensors are highly accurate in 3D localiza-
tion and surface measurements as well as a long-

range view up to 300m (Pidurkar et al., 2019). They
are expensive to buy and bad weather conditions like
rain, fog or dust reduce the performance (Aldrich and
Wickramarathne, 2018; de Ponte Müller, 2017).

Each sensor has its advantages and disadvantages
(summarized in Table 1), so that a sensor fusion with
at least two sensors makes sense in order to provide a
better safety standard.

3 OBJECT DETECTION VIA
RADAR

In this section we introduce the 1D segmentation net-
work that we equip for detecting vehicles. First we
explain the pre-processing method, then we describe
the network architecture, the loss function and the net-
work output.

3.1 Preprocessing

In a global 3D coordinate system, the radar data is sit-
uated in a 2D horizontal plane. Hence, before train-
ing a neural network, we pre-process the radar data
for two reasons. First of all, in order to simplify the
fusion after processing each sensor with a neural net-
work separately, we project the given radar data into
the same 2D perspective as given by the front view
camera. Secondly, one can observe that after this
projection, the remaining section of the radar sensor
modality is close to 1D. Figure 1 depicts radar points
projected into the front view camera image. Darker
colors indicate closer objects and brighter colors indi-
cate more distant objects. Consequently, we build and
train a neural network to perform a 1D segmentation.

To be more specific, we pre-process the ground
truth for training the radar network as illustrated in
Figure 2. That is, we divide the given front view im-
age into a chosen number Ns of slices and generate an
occupancy array of length Ns. The ith entry of this ar-
ray is equal to 1 if there is a ground truth object inter-
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Figure 2: Ground truth vector for radar data. Every slice
that overlaps with a bounding box in the front view camera
image obtains the value 1, otherwise 0.

secting with the ith slice of the image and 0 else. This
ground truth construction defines the desired predic-
tion for the radar network.

The radar data is pre-processed similarly to the
ground truth as we aim at providing the neural net-
work with an input tensor of size Ns×Nt ×N f where
Nt denotes the number of considered time steps and
N f denotes the number of features. By assigning radar
points to image slices we can drop the x-coordinate
(which is implied by the array index up to an quanti-
zation error). For each slice i = 1, . . . ,Ns which con-
tains at least one radar point we store the following
N f features in the input matrix: y-coordinates (indi-
cating the distance of the reflection point), the height
coordinate with respect to the front view image that
the radar point obtains by projection into the image
plane as well as the relative lateral and the longitudi-
nal velocity.

3.2 Network Architecture

The network architecture for the radar network is
based on a FCN-8-network (Long et al., 2015) and
is depicted in Figure 3. The hidden layers consist of
three convolution blocks, three deconvolution blocks
followed by a concatenate layer, a fourth convolution
block, a flatten layer and one fully-connected block.
Finally, the network contains a sigmoid layer from
which we get in [0,1]. Each convolution and deconvo-
lution block includes a (de-)convolution layer, a batch
normalization and a leaky ReLU as activation func-
tion, respectively. The convolution blocks capture
context information while losing spatial information
whereas the deconvolution blocks restore these spa-
tial information. Using bypasses, context information
can be linked with spatial information. Furthermore,
each fully connected block consists of a dense layer
followed by a leaky ReLU activation function (except
for the final layer where we use a sigmoid activation
function).

3.3 Loss Function

Let D = {(r(i), t(i)) : i = 1, . . . ,n} denote a dataset
of tuples containing radar data r(i) ∈ RNs×Nt×N f and
ground truth t(i) ∈ {0,1}Ns . The radar network g pro-
vides an array of estimated probabilities indicating
whether a given slice s is occupied or not. We de-
note y(i) = g(r(i)). For training the neural network
we use the binary cross-entropy for each array entry
s = 1, . . . ,Ns, i.e., for a single data sample (r(i), t(i))
we have

`(t(i)s ,y(i)s ) =−αt(i)s log(y(i)s )− (1− t(i)s ) log(1− y(i)s )
(1)

where α is a tunable parameter. We introduced this
parameter in order to account for the imbalance of ze-
ros and ones in the ground truth. When training with
stochastic batch gradient descent, the loss function is
summed over all s = 1, . . . ,Ns and then the mean is
computed over all indices i in the batch.

3.4 Output

The predictions of the radar network result in a vector
consisting of values in [0,1] that estimate the proba-
bility of occupancy. Neighboring slices whose pre-
dicted probabilities are above a certain threshold Tg
are recognized as one coherent object, also called
slice bundle. Figure 4 shows for example an image
with four slice bundles. The more a slice bundle fills
in a bounding box, the higher the 1D IoU gets.

4 OBJECT DETECTION VIA
SENSOR FUSION

After describing the object detection method using
radar sensor data in the previous section, this sec-
tion deals with the image detection method and the
fusion of both methods. Various object detection net-
works have been developed in recent years, whereby
the YOLOv3 network has become a very good choice
when fast and accurate real-time detection is de-
sired (Redmon and Farhadi, 2018; Benjdira et al.,
2019). It has been observed that YOLOv3 works
very well under good weather and visibility condi-
tions but has problems with object recognition in bad
visibility like hazy weather (Tumas et al., 2020; Li
et al., 2020) or darkness, like Xiao et al. have investi-
gated for object detection with RFB-Net (Xiao et al.,
2020). In our experiments, we focus on object detec-
tion by camera and radar at night. To this end, we first
use each method separately in order to connect both
outputs with gradient boosting (Friedman, 2002), see
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Figure 3: CNN architecture of our custom FCN-8 inspired radar network.

Figure 4: Image of a radar detection example with four pre-
dicted slice bundles.

Figure 5. Similarly to (Rottmann et al., 2020) we de-
rive metrics from each CNN output and pass them
through a gradient boosting classifier to increase the
number of detected vehicles. The data and metrics
used for the classifier are explained in Section 5. The
YOLOv3 threshold Tf for vehicle detection is set to a
low value such that we get a higher number of bound-
ing box predictions. From the many predicted bound-
ing boxes, gradient boosting select those boxes that
are likely to contain an object according to the output
of both networks. On the one hand, the radar sensor
should detect vehicles not recognized by the YOLOv3
network. On the other hand, gradient boosting should
support the decision making process by additional in-
formation in case the YOLOv3 network is uncertain.

5 FUSION METRICS AND
METHODS

The fusion method that we introduce in this section is
of generic nature. Therefore, we denote by f the an
arbitrary camera network and by g a 1D segmentation
radar network. Given an input scene (x,r), we obtain
two network outputs, one for the image input x, one
for the radar input r. Each prediction obtained by f
consists of a set B = {b1, . . . ,bk} containing k boxes
where k depends on x. Each box bi is identified with
a tuple βi that contains an objectness score value zi, a
probability f (v|x,bi) that the box bi contains a vehicle

v, a center point with its x-coordinate cx
i ∈ R and y-

coordinate cy
i ∈ R as well as width wi ∈ R and height

hi ∈ R of the box, i.e.,

βi = (zi, f (v|x,bi),cx
i ,c

y
i ,wi,hi) . (2)

For the radar network g we obtain a 1D output of
probabilities, gs(v|r) for each of the slices s= 1, . . . ,n,
that this slice s belongs to a vehicle v, recall Fig-
ure 2. As depicted in Figure 1 we identify slices s
and bounding boxes bi. In order to aggregate slices
s from the radar network over bounding boxes bi ob-
tained by the camera network, let Si denote the set of
all slices s that intersect with the box bi. We denote
by

µi =
1
|Si| ∑s∈Si

gs(v|r) (3)

the average probability of observing a vehicle in the
box bi according to the radar network’s probabilities.
The standard deviation corresponding to Equation (3)
is termed σi. As a set of metrics, by which we com-
pute a fused prediction, we consider

Mi(x,r) = (βi,Ai,µi,σi) (4)

where Ai = wi · hi denotes the size of the box bi. In
summary, we use these nine metrics Mi(x,r) for all
scenes (x,r) and boxes bi that are visible with respect
to the front view camera.

To perform the fusion of the camera based net-
work prediction and the radar based network predic-
tion we proceed in two steps. First we compute the
ground truth which states for each box predicted by
the camera network whether it is a true positive (TP)
or a false positive (FP). Afterwards we train a model
to discriminate by means of Mi whether bi is a TP or
an FP.

More precisely, for the sake of computing ground
truth, we define TP and FP in the given context as
follows: For a predicted box bi and a ground truth
box a, which has the biggest intersection |a∩bi| of all
ground truth boxes of the same class, the intersection
over union is defined as follows:

IoU(bi) = max
a

|a∩bi|
|a∪bi|

. (5)
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CNN-Input CNN-Output Prediction by YOLOv3

Prediction by fusion

Figure 5: Illustration of our YOdar method. In the top branch, the YOLOv3 produces many candidate bounding boxes, but
after score thresholding and non maximum suppression, only one of both cars is detected. By lowering the object detection
threshold and fusing the obtained boxes with the radar prediction, both cars are detected by YOdar as shown in the bottom
right panel.

Oftentimes we omit the argument bi if it is clear from
the context. Given a chosen threshold T ∈ [0,1) we
define that bi is a TP if IoU(bi) > T and an FP if
IoU(bi) ≤ T . For the sake of completeness, we de-
fine that a false negative is a ground truth box a that
fulfills maxbi

|a∩bi|
|a∪bi| ≤ T . Note that in the latter def-

inition, the ground truth element is fixed while the
left hand side of this expression is maximized over all
predicted boxes. After computing the ground truths,
i.e., whether a box bi predicted by the camera net-
work yields a TP or an FP, we train a model. The
gathered metrics Mi yield a structured dataset where
the columns are given by the different metrics and the
rows are given by all predicted boxes bi for each in-
put scene (x,r). By means of this dataset and the cor-
responding TP/FP annotation, we train a classifier to
predict whether a box predicted by the camera net-
work is a TP or an FP.

Figure 6: IoU calculation for 1D and 2D bounding boxes.

The IoU can be calculated in different dimensions
D = 1,2. In this work the 1D IoU is used for the
radar network. As soon as a low threshold Tg has been
reached, a predicted object is considered as TP, other-
wise as FP. The 2D IoU is used for the YOLOv3 net-
work, analogously we speak of TP and FP according
to a threshold Tf . An illustration is given in Figure 6.
The mean average precision (mAP) is a popular metric
used to measure the performance of models. The mAP
is calculated by taking the average precision (area un-
der precision as a function of recall, a.k.a. precision
recall curve) over one class.

6 NUMERICAL EXPERIMENTS

As explained in detail in the previous section, we use
a custom FCN-8-like network for processing the radar
data from the nuScenes dataset (Caesar et al., 2020).
It contains urban driving situations in Boston and Sin-
gapore. The dataset has a high variability of scenes,
i.e., different locations, weather conditions, daytime,
recorded with left- or right-hand traffic. In total, the
dataset contains 1,000 scenes, each of 20 seconds
duration and each frame is fully annotated with 3D
bounding boxes. The vehicle used, a Renault Zoe,
was set up with 6 cameras at 12Hz capture frequency,
5 long-range radar sensors (FMCW) with 13Hz cap-
ture frequency, 1 spinning lidar with 20Hz capture
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frequency, 1 global positioning system module (GPS)
and 1 inertial measurement unit (IMU). Each scene is
divided into several time frames for which each sen-
sor provides a suitable signal.

For our experiments, the YOLOv3 network was
pretrained with day images from the COCO dataset
(Lin et al., 2014) and afterwards with 249 randomly
selected scenes from the nuScenes dataset containing
10,000 images with different weather conditions and
times of day. Furthermore we have trained a CNN
with radar data from the nuScenes dataset to detect
vehicles. 743 of the scenes (29,853 frames) were used
as training data, 82 scenes (3,289 frames) as valida-
tion data and 25 scenes (1,006 frames) as test data, see
Table 2. For the test set, we consider exclusively all
frames recorded at night that are not part of the train-
ing data in order to create a perception-wise challeng-
ing test situation. For the training and validation sets
we used a natural split of day and night scenes pre-
defined by the frequencies in the nuScenes dataset.
Due to the resolution of the radar data, we focus on
the category vehicle in our evaluation. This includes
the semantic categories car, bus, truck, bicycle, mo-
torcycle and construction vehicle.

Table 2: Data used for training, validation and testing.

splitting number of images/frames night images/frames [%]
YOLOv3 Radar YOLOv3 Radar

train 10,000 29,853 7.08 9.04
val 3,289 3,289 8.57 8.57
test 1,006 1,006 100 100

6.1 Training

As input, the radar network obtains a tensor with the
dimensions 160× 3× 4 that contains for each of the
160 considered slices the current frame (i.e., the cur-
rent time step) and two previous frames. Each frame
contains four features, i.e., x-, and y-coordinates, lat-
eral and longitudinal velocity. From the radar data we
removed all ground truth bounding boxes that do not
contain any radar points with valid velocity vectors.

The radar network is implemented in Keras (Chol-
let, 2015) with TensorFlow (Abadi et al., 2016) back-
end. Training on one NVIDIA Quattro GPU P6000
takes 229 seconds training time. The network struc-
ture is shown in Figure 3 and the training parameters
are shown in Table 3. We have trained the neural net-
work three times with three different learning rates,
i.e., the first 20 epochs with a learning rate of 10−3, 10
epochs with 10−4 and 10 epochs with 10−5. The net-
works output vector has the same dimension (160×1)
as the ground truth vector, where each entry contains
a probability value, whether there is a vehicle in the
respective area or not. If the probability value of a sin-

gle slice is equal or higher than the threshold Tg = 0.5,
then the network predicts a vehicle. The higher the
probability value, the brighter the slice is displayed in
Figure 1.

Table 3: Training Parameters.
Parameter Radar YOLOv3
Batchsize 128 6

Learning rate 10−3 10−4 10−5 10−4 - 10−6

Epochs 20 10 10 100
Weight decay 3 ·10−4 variable
Loss function modified binary-crossentropy binary-crossentropy

Optimizer Adam Adam

The YOLOv3 network was trained with 10,000 im-
ages consisting of different scenes. Therefore we con-
verted the 3D bounding boxes in the nuScenes dataset
into 2D bounding ones. To this end, we chose the
smallest 2D bounding box that contains the front and
rear surfaces of the 3D bounding box in the given ego
car view. YOLOv3 is implemented in the Python-
Framework Tensor-Flow (Abadi et al., 2016). Train-
ing with the same GPU as used for the custom radar
network takes 50,32 hours training time. The training
parameters are stated in Table 3.

6.2 Evaluation

All results in this section are averaged over 3 ex-
periments to obtain a better statistical validity. Fig-
ure 7 shows absolute numbers of recognized objects
(IoU ≥ 0.5 with the ground truth) at night for each of
the networks (Radar and YOLOv3) standalone as well
as for our uncertainty-based fusion approach (YO-
dar). The numbers are broken down corresponding
to distance intervals along the horizontal axis. The
lavender bar (in the background) displays the num-
bers of vehicles in the ground truth for the given dis-
tance interval. The blue bar states the numbers of ob-
jects recognized by the radar network. The perfor-
mance of the radar network is low, only a small per-
centage of objects are found. After 20 meters, the per-
formance decreases with growing distance. The poor
recognition of objects from radar can be explained by
the small number of points provided for each frame.
In addition, relative velocities are used for training,
which means that mainly moving objects can be rec-
ognized and stationary or parked vehicles remain un-
detected. The orange bar shows a significant increase
of objects recognized by the YOLOv3 network com-
pared to the radar network. Although mainly closer
objects are recognized, there remain difficulties in ob-
ject recognition with more distant objects. The green
bar shows the objects recognized by YOdar. Com-
pared to the YOLOv3 network, more vehicles are rec-
ognized for each of the given distances. In total, com-
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Figure 7: Vehicles recognized at night with consideration of the respective distance from the ego car. An object is considered
as detected when it has an IoU ≥ 0.5 with the ground truth. These are average values from three test runs.

Table 4: Comparison of the number of false positives for
YOLOv3 and YOdar at a common level of false positives.

Network unchanged output TP level adjustment
TP FP TP FP

YOLOv3 1,154 98 1,478 1,024
YOdar 1,467 449 1,467 449

pared to the YOLOv3 network, the sensor fusion ap-
proach recognizes 313 vehicles more (which amounts
to an increase of 9.20 percent points).

So far, we have seen that we recognize more ob-
jects with the YOdar approach than with YOLOv3 or
our radar network separately. However, the increased
sensitivity also yields some additional FPs. In order
to compare the number of FPs for YOLOv3 and YO-
dar, we adjust the sensitivity of the YOLOv3 network
by lowering the threshold Tf such that the TP level for
YOLOv3 is roughly equal to the TP level of YOdar.
The resulting number of FPs is given in Table 4. In-
deed, YOdar generates 575 less FP predictions than
YOLOv3 for a common TP level, on which we let
YOdar operate in our tests.

Digging deeper into the discussed results, we
now break down the distance intervals along the dis-
tance radii. Figure 8 states the absolute numbers of
objects broken down by distance (vertical axis) and
the pixel intervals of width 100 of the input image
with a total width of 1600 pixels (horizontal axis).
More precisely, each interval denoted by i on the hor-
izontal axis represents the pixels (row,column) with
column ∈ [i−99, i]. A ground truth object is a mem-
ber of such an interval, if the center of the box is con-
tained in the respective interval and has the respective
distance from the ego car. Thus, this can be viewed
as a spatial distribution of the ground truth where the
center of the bottom row is the area closest to the ego
car. The majority of the objects is located in the inter-
vals given by i = 500, . . . ,1,200.

Figure 9 shows the relative amount of objects
recognized by the YOLOv3 network. It shows that
mainly objects closer to the ego car and straight ahead
are recognized, while objects farther away or located

on the very left or very right end of the image re-
main often unrecognized. Figure 10 states in abso-
lute numbers how many additional objects are recog-
nized in each particular area when using YOdar in-
stead of YOLO. The increase is clear and also mostly
in the relevant areas close to the ego car and straight
ahead. This is in line with the idea of focusing with
the radar on objects in motion (by considering ob-
jects that carry velocities). These results show that
an uncertainty-based fusion approach like YOdar is
indeed able to increase the performance significantly.
This finding is also confirmed by the mAP and ac-
curacy values stated in Table 5. While YOLOv3
achieves 31.36% mAP, Yodar achieves 39.40% which
is also close to state of the art deep learning based fu-
sion results for the nuScenes dataset with the natural
split of day and night scenes as reported in (Nobis
et al., 2019).

Figure 8: Ground truth heat map displaying the spatial dis-
tribution of the test data, broken down by distance (verti-
cal axis) and the pixel intervals of width 100 of the front
view input image with a total width of 1600 pixels (hori-
zontal axis). More precisely, each intervals denoted by i on
the horizontal axis represents the pixels (row,column) with
column ∈ [i−99, i].

Table 5: Accuracies and mAP scores of all three networks.
Radar YOLOv3 YOdar

Accuracy [%] 14.42 33.90 43.10
mAP [%] 7.93 31.36 39.40
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Figure 9: Relative amount of objects recognized by the
YOLOv3 network evaluated on the test data. The under-
lying geometry is the same as in Figure 8.

Figure 10: Number of objects recognized by YOdar minus
the number of objects recognized YOLOv3. The underlying
geometry is the same as in Figure 8.

7 CONCLUSION AND OUTLOOK

In this paper we have introduced the method YOdar
which detects vehicles with camera and radar sen-
sors. With this uncertainty-based sensor fusion ap-
proach the camera and radar data are first processed
individually. Each branch detects objects, the cam-
era branch uses a YOLOv3 network trained with day
and night scenes and the radar branch uses a custom-
based radar network. The outputs of every branch are
aggregated and then passed through a post process-
ing classifier that again learns the same vehicle de-
tection task. Compared to the YOLOv3 network, the
YOdar fusion method detects at night a significant ad-
ditional amount of vehicles in total. While YOLOv3
achieves 31.36% mAP, YOdar achieves 39.40% mAP
which is also close to state of the art deep learning
based fusion results for the nuScenes dataset with the
natural split of day and night scenes. In future work,
additional sensors will be added for training and eval-
uation, since this approach uses only the front cam-
era and the front radar sensor. Furthermore, we plan
to optimize the radar network such that more objects
can be detected by YOdar. Moreover, we plan to ex-

tend this approach also the detection of pedestrians as
more dense radar data becomes available.
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