Flexcoder: Practical Program Synthesis with Flexible Input Lengths and Expressive Lambda Functions

Bálint Gyarmathya,b, Bálint Mucsányib, Ádám Czappc, Dávid Szilágyid and Balázs Pintére

ELTE Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary

Keywords: Program Synthesis, Programming by Examples, Beam Search, Recurrent Neural Network, Gated Recurrent Unit.

Abstract: We introduce a flexible program synthesis model to predict function compositions that transform given inputs to given outputs. We process input lists in a sequential manner, allowing our system to generalize to a wide range of input lengths. We separate the operator and the operand in the lambda functions to achieve significantly wider parameter ranges compared to previous works. The evaluations show that this approach is competitive with state-of-the-art systems while it’s much more flexible in terms of the input length, the lambda functions, and the integer range of the inputs and outputs. We believe that this flexibility is an important step towards solving real-world problems with example-based program synthesis.

1 INTRODUCTION

There are two main branches of program synthesis (Gulwani et al., 2017). In the case of deductive program synthesis, we aim to have a demonstrably correct program that conforms to a formal specification. In the case of inductive program synthesis, we demonstrate the expected operation of the program to be synthesized with examples, or a textual representation (Yin et al., 2018).

Programming by Examples (PbE) is a demonstrational approach to program synthesis to specify the desired behavior of a program. These examples consist of an input and the expected output (Gulwani, 2016). The two main targets of such PbE tools are string transformations (Parisotto et al., 2016; Lee et al., 2018; Kalyan et al., 2018) and list manipulations (Balog et al., 2016; Zohar and Wolf, 2018; Feng et al., 2018).

In order to tackle the otherwise combinatorial search in the space of possible programs that satisfy the provided specification, early program synthesis systems used theorem-proving algorithms and care-fully hand-crafted heuristics to prune the search space needed to be considered (Shapiro, 1982; Manna and Waldinger, 1975). With the rising popularity of deep learning, program synthesis experienced great breakthroughs in both accuracy and speed (Balog et al., 2016). One of the most prominent approaches in integrating machine learning algorithms into the synthesis process was to complement popular heuristics used in the search with the predictions of such algorithms (Kalyan et al., 2018; Lee et al., 2018).

The seminal work in the field is DeepCoder (Balog et al., 2016), which serves as a baseline for several more recent papers (Zohar and Wolf, 2018; Kalyan et al., 2018; Feng et al., 2018; Lee et al., 2018). For instance, PCCoder (Zohar and Wolf, 2018) showed great advances in the performance of the synthesis process on the Domain Specific Language (DSL) defined by DeepCoder, reducing the time needed by the search by orders of magnitude while achieving remarkably better results on the same datasets.

In spite of these great advances in program synthesis, there have not yet been many examples of successful application of state-of-the-art program synthesis systems in a real-world environment.

We think the cause of this is mainly (i) the limitation of static or upper-bounded input vector sizes, (ii) the agglutination of grammar tokens, such as treating operators and their integer parameters jointly in lambda functions (e.g. \((+1)\) and \((\times2)\)), (iii) the limi-
ted integer parameter ranges of the lambda operators, and (iv) the limited integer ranges of inputs, intermediate values, and outputs.

As a consequence of (ii), the number of lambda functions required is a product of the number of lambda operators and the number of their possible parameters. For example, there is a separate lambda function required for each \((+1), (+2), \ldots (+n)\). The number of possible function combinations is greatly reduced. The consequence of (i) is that the system does not generalize well to input lengths beyond a constant maximum length \(L\).

In this paper, we would like to resolve these limitations. We implement a DSL with similar functions to the ones used by DeepCoder using a function-composition-based system, in which we treat lambda operators and their parameters separately. This allows us to reduce the number of lambda functions required from the product of the number of lambda operators and their parameters to the sum of them (considering the parameters as nullary functions), and so broaden the range of possible lambda expressions: we extend the allowed numerical values from \([-1, 4]\) to \([-8, 8]\).

We also extend the range of the possible integers in the outputs and intermediate values fourfold from \([-256, 256]\) to \([-1024, 1024]\), so less programs are filtered out because of these constraints. More importantly, we do not embed the integers as that would impose restrictions to the range of inputs and outputs.

We use a deep neural network to assist our search algorithm similarly to DeepCoder and PCCoder. The neural network accepts input-output pairs of any length and predicts the next function to be used in the composition that solves the problem. Thus the network acts as a heuristic for our search algorithm based on beam search, which uses predefined, optimized beam sizes on each level. In these first experiments, we use function compositions where functions take only a single list as an input in addition to their fixed parameters, and the next function is applied to the list output of the previous function. In this sense our DSL is less expressive than DeepCoder: for example, it does not contain \texttt{ZipWith} or \texttt{Scan1l}.

Our contributions are:

- We introduce a recurrent neural network architecture that generalizes well to different input lengths.
- We treat the operators in lambda functions separately from their parameters. This allows us to significantly extend the range of their parameters.
- Our architecture does not pose artificial limits on the range of integers acceptable as inputs, intermediate results, or outputs. We extend the range of intermediate results and outputs fourfold compared to previous works.

These design choices serve to increase the flexibility of the method to take a step towards real-world tasks. We named our method \textit{FlexCoder}.

2 RELATED WORK

As the seminal paper in the field, DeepCoder is a baseline for several systems in neural program synthesis. Its neural network predicts which functions are present in the program, and so helps guide the search algorithm. However, their network is not used step by step throughout the search, only at the beginning.

PCCoder implemented a step-wise search which uses the current state at each step to predict the next statement of the program, including both the function (operator) and parameters (operands). They use Complete Anytime Beam Search (CAB) (Zhang, 2002) and cut the runtime by two orders of magnitude compared to DeepCoder.

As the neural networks used by DeepCoder and PCCoder do not process the input sequentially, they can only handle inputs with a maximum length of \(L\) (or shorter because of the use of padding). The default maximum length is \(L = 20\) for both systems. FlexCoder solves this problem by using GRU (Cho et al., 2014) layers to process the inputs, so it can work with a large range of input sizes.

We separate the lambda function parameters of our higher-order functions into numeric parameters and operators to significantly widen the operand range compared to DeepCoder and PCCoder. This approach resolves the bound nature of their parameter functions, where they only have a few predefined functions with the given operator and operand (eg. \((+1), (+2))\). Similarly to PCCoder, FlexCoder also uses the neural network in each step of the search process.

A good example of the successful use of function compositions to synthesize programs is (Feng et al., 2018). Its conflict-driven learning-based method can learn lemmas to gradually decrease the program space to be searched. They outperform a reimplementation of DeepCoder.

The work of (Kalyan et al., 2018) introduces real-world input-output examples for their neural guided deductive search, combining heuristics with neural networks in the synthesizing process. Their ranking function serves the same role as our network in their approach to synthesize string transformations.
3 METHOD

We introduce our neural-guided approach to program synthesis based on beam search with optimized beam sizes. Every step of the beam search is guided by the neural network. The DSL of function compositions is built of well known (possibly higher-order) functions from functional programming. The two main parts of FlexCoder are the beam search algorithm, and the neural network. Another important part is the grammar which defines the DSL.

Figure 1 shows an overview of the system. In each step, an input-output pair is passed to the neural network, which predicts the next function of the composition. This predicted function is applied to the input producing the new input for the next iteration of the algorithm. This is continued until a solution is found or the iteration limit is reached.

3.1 Example Generation and Grammar

We represent the function compositions using a context-free grammar (CFG) (Chomsky and Schützenberger, 1959). The clear-cut structure makes our grammar easily extensible with new functions and more parameters. We implemented the context-free grammar (CFG) using the Natural Language Toolkit (Bird et al., 2009). The full version with short descriptions of each function can be seen in Figure 2.

The numeric parameters are taken from the [−8, 8] interval. This range is larger than the one used by PCCoder as they use a range of [−1, 4]. The elements in the intermediate values and output lists are taken from the [−1024, 1024] range ([−256, 256] in PCCoder), while the input lists are sampled from the [−256, 256] range (same as PCCoder).

Figure 2: The grammar used to generate the function compositions in CFG notation. The functions don’t modify the input array; they return new arrays. The sort function sorts the elements of ARRAY in ascending order. Take keeps, drop discards the first POS elements of ARRAY. The reverse function reverses the order of the elements of the input ARRAY for which the BOOL filter are the two higher-order functions used in the grammar. Map applies the NUM function constructed from the given operator and numeric parameter (in this example ‘*’ and ‘2’) for every element of its input list. The take function takes some elements (in this case ‘3’) from the front of the list and returns these in a new list. After executing these functions in the right order on the input vector, we can see that the current input vector equals the output vector, which means we found a solution: take(3, map(*2, reverse(input))).
Table 1: The functions with their operators, parameter ranges, and the buckets used for the weighted random selection for building the compositions.

<table>
<thead>
<tr>
<th>operators</th>
<th>parameters</th>
<th>bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map</code></td>
<td>[-8,8]</td>
<td><code>one_param</code></td>
</tr>
<tr>
<td><code>filter</code></td>
<td>[-8,8]</td>
<td></td>
</tr>
<tr>
<td><code>take</code></td>
<td>[1,8]</td>
<td></td>
</tr>
<tr>
<td><code>drop</code></td>
<td>[1,8]</td>
<td></td>
</tr>
<tr>
<td><code>search</code></td>
<td>[-8,8]</td>
<td></td>
</tr>
</tbody>
</table>

The lambda functions are divided into two categories based on their return type: boolean lambda functions used by filter and numeric lambda functions used by map. We defined rules for the lambda functions to avoid errors or identity functions, such as dividing by 0, or the (+0) and the (+1) functions.

The CFG is used to generate the possible functions which are then combined into compositions. As the functions in the grammar have a different number of possible parameterizations, we have to ensure that each type of function occurs approximately the same number of times in the dataset. To tackle this problem, the compositions are generated by weighted random selections from the 151 possible functions.

We divide the functions into five buckets based on how many different parameterizations of the function exist in the grammar. As Tables 1 and 2 show, the functions in different buckets contain different numbers of parameters and the range of the numerical parameters also varies. As we would like to sample functions uniformly at random, we choose one of the five buckets with weights based on the number of functions in the corresponding bucket (Equation 1), then we take a parameterized function from the chosen bucket uniformly at random.

\[
\text{weight(function)} = \begin{cases}
\frac{6}{11}, & \text{if function } \in \text{ one_param} \\
\frac{2}{11}, & \text{if function } \in \text{ takedrop} \\
\frac{1}{11}, & \text{if function } \in \text{ map} \cup \text{ filter} \cup \text{search}
\end{cases}
\]

We use several filters on the generated functions to remove or fix redundant functions and suboptimal parameterizations.

The first filter optimizes the parameters of functions:
- `map(+ 1, map(+ 2, [1, 2])) \rightarrow map(+ 3, [1, 2])`
- `filter(> 2, [1, 6, 7]) \rightarrow filter(> 5, [1, 6, 7])`

The second filter removes the identity functions on the concrete input-output pairs:
- `sum(filter(> 5, [6, 7, 8])) \rightarrow sum([6, 7, 8])`

Identity functions that don’t affect the outcome for any input are prohibited by the grammar. An example is `map(+ 0, [2, 3, 5]).`

The third filter deletes compositions resulting in empty lists:
- `filter(< 1, [2, 3, 4]) \rightarrow []`
- `drop(4, [1, 2, 3]) \rightarrow []`

The fourth filter removes the examples which contain integers outside the allowed range of `[-1024, 1024]:`
- `map(* 8, [1, 2, 255]) \rightarrow [8, 16, 2040]`

3.2 Beam Search

As previously mentioned, we think about the problem of program synthesis as searching for an optimal function composition. We build the composition one function at a time. The beam search is implemented based on Complete Anytime Beam Search (CAB).

The algorithm builds a directed tree of node objects. Each node has 3 fields: a function, the result of that function applied to the output of its parent node, and its rank. On each level of the search algorithm, we sort all possible parameterized functions in descending order based on the rank values of the functions and their parameters predicted by the neural network.

For Each node of the tree, the network uses the current state of the program input and output stored in the parent node to predict the next possible function of the synthesized composition. If there are multiple input-output examples we pass them in a batch to the network, then we take the mean of the predictions.

After generating all the child nodes we keep the first \(v_i \in \mathbb{N} \ (i \in 1..\theta)\) nodes (where \(v_i\) denotes the beam size on the current level and \(\theta\) is the depth limit) from the sorted list of the nodes and fill their result fields by evaluating them. We repeat this step until a solution is found or the algorithm reaches the iteration limit (or optionally the time limit). If a solution is found, we follow the parent pointers until we reach the root of the tree to get the composition. When the depth limit \(\theta\) is reached without finding a solution, each \(v_i\) value is doubled and the search is restarted.

Since the network is called multiple times during the search, we use caching to save the ranks for every unique input-output pair to speed up the process. This is possible because the network is a pure function.

Algorithm 1 uses previously optimized beam sizes for each depth. The first step is to remove programs that violate the range constraints of the evaluated output list mentioned in 3.1 or a length constraint. The length constraint in the case of list outputs ensures that we only keep nodes where the output list has as
The input of the network is a list of program input-output examples. Inputs and outputs are separately filtered. The output examples are further extended with a new function on the next iteration of the inner loop. If the inner loop exits, the beam sizes are doubled, but the previously computed ranks are not computed again due to the caching method mentioned previously.

We optimized the beam sizes based on experimental runs on the validation set: we approximated the minimum beam size ∈ {ν₁, ν₂, ..., νₙ} on each level that contains the next function in the composition. This gives a higher chance to find the solution in the first or early iterations. We chose the beam size for each level that included the original solution 90% of the time. This seems to be an ideal trade-off between accuracy and speed.

3.3 Neural Network

The input to the network is a list of input and output examples of a single program. The outputs are 6 vectors that contain the ranks for each function, parameter, and lambda function. The rank of a parameterized function is determined by the geometric mean of the ranks of its components.

We define F as the set of functions, where every element is a tuple $(f_{\text{class}}, f_{\text{arg}})$, where f_{class} is the function name and f_{arg} is the list of its arguments. Using this definition the rank of a function is determined using the formula

$$R(f) = \sqrt[n]{R(f_{\text{class}}) \prod_{i=1}^{n} R(f_{\text{arg}}_i)},$$

where $n \in N$ denotes the number of parameters.

3.3.1 Architecture

The input of the network is a list of program input-output examples. Inputs and outputs are separately...
passed to two blocks of recurrent layers, which makes it possible to use variable-size input. These blocks each consist of two layers of GRU cells, each containing 256 neurons.

The GRU representations of the input and the output are concatenated and then given to a dense block consisting of seven layers with SELU (Klambauer et al., 2017) activation function and 128, 256, 512, 1024, 512, 256, 128 neurons in order. With SELU activations we experienced a faster convergence while training the network, due to the internal normalization these functions provide.

$$SELU(x) = \lambda \begin{cases} x, & \text{if } x > 0 \\ \alpha(e^x - 1), & \text{if } x \leq 0 \end{cases}$$ (3)

After this block we have an output layer predicting the probabilities of the possible next functions using sigmoid activation for each function. This layer is also fed into five smaller dense blocks. Each of these contains five layers using the SELU activation function with 128, 256, 512, 256, 128 neurons.

These smaller dense blocks produce the remaining five outputs of the model. They are vectors, each representing the probabilities of parameters associated with the next parameterized function of the composition. These five vectors are corresponding to (1) the bool lambda operator, (2) the numeric lambda operator, (3) the bool lambda numeric argument, (4) the numeric lambda numeric argument, and (5) the parameter for non-higher-order functions with only one numeric argument, e.g. the value used in \textit{take}. We use the sigmoid activation function for each entry of all output vectors. The smallest output vector has 4 elements, whereas the largest one has 17. The network’s loss (L) is the sum of the 6 output components’ loss values marked with L_i, each denoting a cross-entropy loss function.

$$L(Y, \hat{Y}) = \sum_{i=1}^{6} L_i(Y_i, \hat{Y}_i)$$ (4)

3.3.2 Training

Before training, we break down the compositions into functions and turn each parameterized function into six separate one-hot vectors to obtain a single label used for training the network. Out of the generated examples, 98% is used as the training set, and the remaining 2% serves the role of the validation set. The test sets are generated on a per-experiment basis.

We use the Adam optimization algorithm (Kingma and Ba, 2014) with the default hyperparameters: $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\varepsilon = 10^{-8}$. We trained the neural network on a computer with an Intel i5-7600k processor and an NVIDIA GTX 1070 GPU using a standard early stopping method with a patience of five. We trained the network for a maximum of 30 epochs or 6 hours.

4 EXPERIMENTS

All of the experiments below were run on a c2-standard-16 (Intel Cascade Lake) virtual machine on the Google Cloud Platform with 16 vCores, 64 GB RAM, and no GPU. For these experiments, the neural network was trained on compositions of 5 functions, and the length of the input array was between 15 and 20. We provided 1 input-output example for...
each program in the training process. In all of the experiments, we created the test datasets by sampling the original program space uniformly at random, with a sample size of 1000.

4.1 Filtering the Datasets

Filtering the datasets using the method described in Section 3.1 made the problem more learnable for the neural network, resulting in improvements in the case of each output head of the network. The exact changes can be seen in Figure 5. This filtering is used on all datasets in all experiments.

4.2 Different Recurrent Layers

In this section, we compare the effect of different recurrent layers on accuracy. We ran experiments with LSTM (Hochreiter and Schmidhuber, 1997), bidirectional LSTM (Schuster and Paliwal, 1997), GRU, and bidirectional GRU.

In the first experiment, we looked at the accuracy of the different layers as the composition length increased (Figure 6). The bidirectional layers proved to be suboptimal, as these – somewhat surprisingly – did not make the system more accurate for longer function compositions, but training and testing both took considerably more time.

Despite the fact that bidirectional LSTM achieves better accuracy for shorter compositions, its accuracy falls below regular LSTM and GRU cells as the composition length increases. It is also the slowest of the three in terms of execution time. The bidirectional GRU model is the second slowest, and its accuracy is the worst of the layers tested for longer compositions.

Between the regular LSTM and GRU cells, GRU is preferred as it performs well in terms of both execution time and accuracy.

In the second experiment, we checked how FlexCoder scales based on the length of the input-output examples in terms of accuracy. We generated program input-output vectors with a length of 10 to 50 in increments of five for testing purposes. Figure 7 shows that FlexCoder with GRU was capable of generalizing well to longer inputs.

Similarly to the first experiment, GRU was the most accurate while being the best in terms of execution time. Both bidirectional models performed similarly, but the bidirectional LSTM was markedly slower. The GRU model performed consistently better than the LSTM-based network on longer example lengths.

Based on the results of these two experiments, we elected to use GRU as the recurrent layer of the architecture.

4.3 Accuracy and Execution Time

Tables 3 and 4 show the accuracy and the time needed to find a solution in terms of the number of input-output pairs and the composition length. By increasing the number of input-output pairs the problem becomes more specific: finding a program that fits all the pairs becomes a more complex task because the...
Table 3: Relation between composition length, the number of input-output pairs, and the accuracy. Increasing composition length or the number of pairs almost always decreases the accuracy.

<table>
<thead>
<tr>
<th>comp. length</th>
<th>#I/O pairs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>97%</td>
<td>97%</td>
<td>97%</td>
<td>96%</td>
<td>97%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>99%</td>
<td>94%</td>
<td>92%</td>
<td>95%</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>97%</td>
<td>89%</td>
<td>86%</td>
<td>83%</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>96%</td>
<td>88%</td>
<td>81%</td>
<td>79%</td>
<td>78%</td>
</tr>
</tbody>
</table>

The accuracy achieved by FlexCoder is comparable to PCCoder with the time limit replaced by the same iteration limit as in FlexCoder. In terms of execution time FlexCoder sometimes falls behind, but the performance of the two systems is generally similar.

Table 4: Relation between composition length, the number of input-output pairs, and the execution time in seconds. Increasing either composition length or the number of inputs almost always also increases execution time.

<table>
<thead>
<tr>
<th>comp. length</th>
<th>#I/O pairs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>211s</td>
<td>255s</td>
<td>264s</td>
<td>277s</td>
<td>274s</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>524s</td>
<td>1082s</td>
<td>1239s</td>
<td>1141s</td>
<td>1291s</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1224s</td>
<td>2900s</td>
<td>3250s</td>
<td>3923s</td>
<td>3620s</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1520s</td>
<td>3445s</td>
<td>4986s</td>
<td>5537s</td>
<td>5530s</td>
</tr>
</tbody>
</table>

4.4 Comparison with PCCoder

We compare our system to PCCoder which has outperformed DeepCoder by orders of magnitude (Zohar and Wolf, 2018).

Our approach to program synthesis is quite different from the approach of PCCoder (see Sections 1 and 3.1). We synthesize a function composition, they synthesize a sequence of statements. The expressiveness of the grammars is also different: On the other hand, our grammar is missing some functions like ZipWith or Scan1l. On the other hand, our grammar is much more expressive in terms of parameter values.

Our grammar is capable of expressing 151 different functions, 130 of which can be anywhere in the sequence and 21 can only appear as the outermost function as these return a scalar value. The DSL used by PCCoder can express 105 different functions. The number of possible programs with a length of five is about 43.13 million for FlexCoder and about 12.76 million for PCCoder, resulting in our program space being 3.38 times larger when considering programs with a length of five.

To make fair comparisons despite these differences, we run experiments where both systems run on their own dataset, and we also compare them by running them on the dataset of the other system.

In the first experiment, we examine what we consider a crucial aspect of any program synthesis tool: how well it generalizes with respect to the length of the input-output lists. We trained both PCCoder and FlexCoder on input-output vectors of length 15 to 20 with composition length 5. For PCCoder we set the maximum vector length to 50. We tested the systems on input-output vectors with a length of 10 to 50 in increments of five, having 5 input-output examples per program, each on their own dataset. The results can be seen in Figure 8.

In the second experiment, we compare the accuracy of FlexCoder and PCCoder in a less realistic scenario when PCCoder performs best: on the same input lengths the systems have been trained on. In this experiment, PCCoder does not have to generalize to different input lengths. We compare the systems both on their own dataset and on the datasets of each other in Figure 9.

Our approach defines a depth limit for the search algorithm, while the search used by PCCoder has a time limit. To make the experiment fair, we changed our algorithm’s depth limit to a time limit, and chose a timeout of 60 seconds like PCCoder. The introduction of a time limit in our search algorithm makes our system’s accuracy go down by a couple of percent com-
Figure 8: The accuracy of FlexCoder and PCCoder in relation to the length of the input. Both systems were trained on input-output vectors of length 15 to 20 with composition length 5. For PCCoder we set the maximum vector length to 50. We tested the systems on input-output vectors with a length of 10 to 50 in increments of five, having 5 input-output examples per program, each on their own dataset.

Figure 9: The accuracy of FlexCoder and PCCoder on their own and the other’s dataset. The parameters are the same as in the first experiment, except that no generalization over the input length is needed: the length of the input lists is the same as for training. The number of input-output pairs range from 1 to 5.

5 DISCUSSION

FlexCoder generalized well with respect to the input length in contrast to PCCoder. PCCoder only excelled on vector lengths it was trained on. PCCoder has an upper limit on the length of the input-output vectors; we set the maximum vector length of PCCoder to 50 to accommodate this experiment. Applying PCCoder to longer inputs would require retraining with a larger maximum vector length.

We also compared the two systems when the inputs are the same length for testing as for training, so PCCoder does not need to generalize to different input lengths. In this easier and less realistic scenario, both systems beat the other on their own dataset. Also, both systems perform notably worse on the DSL of the other system.

We suspect that the reason behind the worse performance of FlexCoder in this scenario is that in these first experiments, we used function compositions where – apart from the fixed parameters – each function had only a single list as input and output. Relaxing this constraint would raise the expressiveness of FlexCoder to a much higher level, and could allow FlexCoder to outperform PCCoder in most experiments.

One strength of FlexCoder in contrast to PCCoder is the separation of operators and operands in the lambda functions. Currently only two higher-order functions (map and filter) are using these lambda functions. We expect that FlexCoder would perform better relatively to PCCoder if we extended the grammar with more higher-order functions.

6 CONCLUSION

The DSL of DeepCoder is limited in terms of expressivity as stated by the authors themselves in their seminal DeepCoder paper. The main motivation of our paper is to extend it and move towards real-world applications.

We presented FlexCoder, a program synthesis system that generalizes well to different input lengths, separates lambda operators from their parameters, and increases the range of integers in the input-output pairs.
The main limitation and the most promising future work seems to be allowing function compositions where each function can take more than one non-fixed parameter. This would allow our grammar to express \texttt{ZipWith}, \texttt{Scanl}, and other interesting compositions, like the composition that takes the first n elements of a list where n is the maximum element of the list. This could be expressed as $\text{take}(\max(arr), arr)$, if we allowed expressions as parameters.

Further experimenting with our neural network might include using NTM cells (Graves et al., 2014) instead of GRU cells, as NTM cells are shown to work exceptionally well when learning simple algorithms, such as sorting which is also present in our set of used functions.

FlexCoder proved to be accurate and efficient even when generalizing to input vectors with a length of 50, with much wider parameter ranges than current systems. We hope that it represents a step towards the wide application of program synthesis in real-world scenarios.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to Zsolt Borsi, Tibor Gregorics and Teréz A. Várkonyi for their valuable guidance. The materials were produced as part of EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies. The Project is supported by the Hungarian Government and co-financed by the European Social Fund.

REFERENCES

