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The goal of hand gesture recognition based on time-of-flight and radar sensors is to enhance the human-
machine interface, while taking care of privacy issues of camera sensors. Additionally, the system needs to
be deployable on low-power edge devices for applicability in serial-produced vehicles. Recent advances show
the capabilities of deep neural networks for gesture classification but they are still limited to high performance
hardware. Embedded neural network accelerators are constrained in memory and supported operations. These
limitations form an architectural design problem that is addressed in this work. Novel gesture classification
networks are optimized for embedded deployment. The new approaches perform equally compared to high-
performance neural networks with 3D convolutions, but need only 8.9% of the memory. These lightweight
network architectures allow deployment on constrained embedded accelerator devices, thus enhancing human-

machine interfaces.

1 INTRODUCTION

1.1 Background

In the upcoming cockpits of cars, the communication
with the machine will be different than known today.
A trend towards a system without touch sensors is
seen, for example, with the voice activated controls of
the phone or multimedia. Touch-less controls are also
beneficial for safe driving, as the driver does not need
to split his concentration between the road and mul-
timedia controls (Young et al., 2003). The driver can
swiftly adjust any multimedia settings with his voice
or the help of hand gestures without driving blindly.

In accordance with the steadily increasing aware-
ness and need of privacy and personal data protection,
there is an interest in a system for driver monitoring
without camera sensors. Radar and depth sensors pro-
duce data that denies easy identification of individu-
als, thus are a good choice for this task.

The different nature of data coming from time-of-
flight (ToF) and radar sensors leads to different pre-
processing schemata and difficulties in combining the
information with traditional methods. The superior
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classification accuracy and generalization capabilities
of networks come to the cost of immense computa-
tional effort for the processor (Alom et al., 2018).

To meet the requirements of mass-produced vehi-
cles, all computations have to be performed on auto-
motive microcontrollers and embedded convolutional
neural network (CNN) accelerators. This fact limits
the applicability of heavy, deep networks and favors
lightweight models, optimized for embedded infer-
ence. The main aspects of this work can be summa-
rized as follows:

¢ Introduction of a lightweight, yet robust, multi-
modal system for hand gesture recognition. The
system relies on combined radar and ToF sensory
data only. It offers variants that meet the different
model requirements of state-of-the-art embedded
accelerators.

* Ensurance of privacy by not relying on camera
sensors, thus addressing the growing concerns
about internet of things devices spying on the pri-
vate life of customers.

e A system design for edge devices with limited
compute capabilities. Accordingly, we propose
four CNN models with few parameters and stan-
dard neural network operations only.
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Figure 1: System overview: Gesture classification networks
for multi-modal input data coming from radar and ToF sen-
sors. The resulting networks are deployed on various em-
bedded hardware accelerators.
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1.2 Related Work

After the initial success of neural networks for static
image processing (Girshick et al., 2013) (Krizhevsky
et al., 2012), architectures were introduced to also
deal with spatio-temporal data such as video se-
quences. A way of interpreting it is to use the dif-
ferent video frames as feature channels of one input
tensor to 2D CNNs (Feichtenhofer et al., 2016).

The authors of (Donahue et al., 2014) use a com-
bination of convolutional layers and long-short term
memory (LSTM) cells in order to classify spatio-
temporal data. A CNN is applied frame-wise to ex-
tract features, which then are passed to the LSTM
for classification over time. A similar approach used
3D CNNSs to acquire local spatio-temporal features,
which are then fed into an LSTM to calculate global,
long-term features of the video (Molchanov et al.,
2016) (Tran et al., 2014).

These advances opened the door to activity classi-
fication and gesture classification frameworks. Most
hand gesture sensing systems rely on optical sensors,
especially on vision data from camera sensors. A very
powerful approach was presented in (Kopiiklii et al.,
2018). An optical based multi-input system is pro-
posed by (Abavisani et al., 2018), where camera data
is fused with its optical flow for improved classifica-
tion results. Authors of (Concha et al., 2018) make
use of optical flow information, too, but feed it along
with frame-wise features into a three-stream 2D CNN
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for action recognition.

While vision based approaches show good results,
research also focuses on robust multi-modal systems
and systems not relying on cameras. Authors of
(Molchanov et al., 2015) present a system for driver’s
hand-gesture recognition based on permutations of
camera, radar and depth sensors. An early fusion
is applied within the input layer of the classification
CNN by stacking the different sensor modalities in
the feature dimension. A robust gesture classifica-
tion system is introduced in (Hazra and Santra, 2019),
where the authors use a self-attention neural network
with LSTM cells for range-Doppler map classifica-
tions.

Whereas more and more applications focus on
mobile hardware platforms rather than on cloud so-
lutions, strict embedded requirements like model size
are not investigated by many works . Authors of (Ce-
olini et al., 2019) propose a sensor fusion network
for hand gesture classification using electromyogra-
phy and vision data, specially designed for mobile us-
age. The model uses a combination of CNN and sup-
port vector machine parts, resulting in a model size
of 144 MB. Authors of (Wang et al., 2016) solely
rely on a 60 GHz frequency-modulated continuous-
wave (FMCW) radar for hand gesture recognition on
a wearable. Whereas it is designed for a low-power
device, the proposed architecture has a model size of
689 MB and consumes 265 MB of GPU memory. An
extensive analysis of efficient neural network design
is presented in (Kopiiklii et al., 2020), where a two-
staged network is used for online gesture classifica-
tion. With the NVIDIA Jetson TX2 as the inference
hardware, the network is based on three-dimensional
CNNs, which are supported by this GPU.

Besides the strict memory constraints, not all of
the currently available low-power CNN accelerators
support widely used operations like LSTM. Thus,
many approaches are not feasible for edge deploy-
ment on these constrained devices (Donahue et al.,
2014) (Molchanov et al., 2016) (Tran et al., 2014)
(Hazra and Santra, 2019) (Naguri and Bunescu, 2017)
(Wang et al., 2016)(Chai et al., 2016) (Kopiiklii et al.,
2020). Consequently, the lack of lightweight, privacy-
aware networks based on constrained operations is
addressed in this work. The proposed method is com-
pared to (Molchanov et al., 2015), as their analysis
also includes the fusion of radar and ToF data and fo-
cuses on offline classification.
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Figure 2: Deployment on embedded HW accelerators.
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2 SYSTEM DESIGN

The system is planned to avoid the usage of camera
sensors in order to ensure privacy of the users. With
this goal in mind, radar and time of flight (ToF) sen-
sors are chosen.

Thus, no sensible camera data is available for pos-
sibly malicious use, e.g. technologies based on person
identification. An additional advantage of this sensor
setup is that the system performance is not correlated
to environmental conditions such as poor lighting or
reflections of the bright sun.

The system consists of a data pre-processor that
prepares the input streams, followed by the gesture
classification network GCN. The network has the
structure of a classification CNN with individual input
branches for each sensor modality and a late fusion in
the fully connected layers.

2.1 Dataset Description

In this section, we describe the dataset, its gathering,
and pre-processing steps that are needed for neural
network processing.

Data Gathering. The data was gathered indoors
and inside the car with the desired mounting posi-
tion in vicinity of the gear selection lever. With re-
gards to train an online-classification system, a con-
stant stream of data is recorded as a raw base for fur-
ther processing. Two sensors are fixed to a custom,
3D-printed mount. They monitor the hand gestures in
the proximity of the gear selector lever, pointing up
towards the rear mirror (see Fig. 1).

The gestures are expected to be performed close
to the sensors in a range of r = [0m,0.3m]. A Time-
of-Flight sensor! is configured to scan this distance
and it delivers a three-dimensional point cloud. This
point cloud is projected into a two-dimensional image
plane, where the depth is denoted by the grayscale in-
tensity. This image spans a field of view of 62° in
azimuth and 45° in elevation with a resolution of
224 x 171 pixels.

'pmd CamBoard pico flexx.

The radar sensor’ uses a FMCW radar. One
radar frame is composed of 32 chirps (N, =32, T, =
0.8ms) and each chirp consists of 64 samples. The
radar is configured to measure 10 frames per second
(Tr = 0.1s). The resulting maximum velocity

A Smm

e = 4T, 32ms

allows the system to detect gestures, even when car-

ried out quickly. The frequency bandwidth is 5 GHz

(58 GHz — 63 GHz), resulting in a range resolution of
Ar = 55 = 0.03m. The velocity resolution is

=1.56 m/s (1)

Vmax A
Av = % = INT =9.75cm/s. 2)
Both sensors of the system are synchronized to a rate
of 10 Hz.

From the constant stream of information, gestures
are extracted for building the training dataset. A
thresholding method is employed to the ToF and radar
streams to detect active gestures and mark the start
and end frames of a gesture. The gesture is saved to a
hard disk in raw format along with the corresponding
label. The classes form a set of intuitive gestures for
multimedia control.

In order to have a dataset with high variance,
multiple subjects were recorded performing the hand
movements above the sensors. Gestures performed
by left and right hands were recorded in order to learn
control inputs of both, the driver and the passenger.
In total the dataset consists of 2,225 gestures with
gesture lengths up to 29 frames, describing 9 gesture
classes (Tab. 1, Fig. 3).

Data Pre-processing. The ToF images are pro-
cessed with a Wiener filter to smooth the noisy depth
values. Furthermore, the depth values beyond the de-
sired ranges are filtered out.

The radar data is processed in multiple steps:
First, the chirps are brought to zero mean by subtract-
ing the mean value of a chirp from each of the sam-
ples. Then, the range is computed with a first stage
fast Fourier transform (FFT) over the range samples
with an FFT size of 128, from which the positive half
is used. The range-Doppler images (RDI) are com-
puted with the second stage FFT with an FFT size of
64, resulting in an RDI dimension of 64 x 64. Before
each of the FFTs, the signal is multiplied with a Hann
window function. Subsequently, the absolute values
of the RDI are thresholded with an ordered statistic
CFAR (OS-CFAR) in order to maximize the signal-
to-noise ratio. OS-CFAR was chosen because of bet-
ter multi-target capabilities in comparison to cell av-
eraging CFAR (CA-CFAR). This is expected to have

2Infineon BGT60TR13C.
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Figure 3: Visualization of the gesture classes in the dataset. Only a few frames per class are taken for clarity, as the classes

vary in length.
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Figure 4: (a) The dataset consists of gestures of various lengths. During training, the gesture lengths are padded to a uniform
length in order to have constant length input tensors. (b) Per-class distribution of gesture lengths. The number in brackets
denotes the amount of gestures in this class. (c) and (d) show the t-SNE representation of the down-scaled ToF and radar
sequences of the dataset. The image dimensions are 32 x 32 and the sequences are padded to a uniform length. Clearly, the
gestures for navigation (left, right, up, down) form distinct clusters, whereas the other gesture classes are more difficult to
distinguish. Both sensor modalities provide cluster information about the classes so that the networks can benefit from both

sensor types.

a positive impact on the classification of the gestures
with individual fingers moving (compare RDIs of pi-
ano gesture in Fig. 3).

Data Format. After data pre-processing, the con-
tents of one training sample are the two input se-
quences and the corresponding label. A raw radar
sequence is a volume Sg € R7**/ where t > 1 de-
notes the timesteps in this sequence. Each timestep
stores a RDI with x X y as the range and Doppler di-
mensions, and f as the number of feature channels.
Here, f = 1, as only the intensity of the RDI is used.
A raw ToF sequence Sy € R™>*V*/ s a similar vol-
ume to Sg, but x X y denote the pixel dimensions of
the ToF sensor output and there might be a different
value of 7. There is only one feature f = 1 for S, too,
as it describes the distance of a target to the sensor.
A transformation T needs to be performed in order to
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feed these tensors into the network model. T depends
on the network type and the embedded hardware to be
deployed on. Further information about 7 is described
along the neural network models in 2.2.

In the following a gesture G denotes spatio-
temporal data in form of a tuple G = (Sg,Sr). The
entries of G are a radar and a ToF sequence belong-
ing to one specific class.

Temporal Adjustments. The gestures vary in
length so that it is not possible to directly feed them
into a network of constant input size (Fig. 4a, b). In
order to adjust Sg and Sr to the same length %), the
sequences are zero-padded, before and after the orig-
inal sequence. The fix length 7y is chosen to be the
maximum gesture length of the dataset. Within these
to frames, the gesture is put into a random position.
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Table 1: Dataset of hand gestures recorded with radar and ToF sensors.

GESTURE | down  up  left  right

forward

rotate  open  piano  rub \TOTAL

AMOUNT | 186 275 256 235

Data Augmentation. In order to increase robust-
ness of the system, following data augmentation tech-
niques are applied. They are utilized randomly to in-
dividual input streams.

Random Shifting of Complete Sequences: ToF
sequences Sr are shifted in both pixel dimensions
(x, ¥) by a random value which can be up to 10%
of the respective pixel dimensions (£0.1x, +0.1y).
Radar sequences Sk are shifted randomly by up
to 5% in Doppler, and 10% in range dimension
(£0.05x, +0.1y). The empty space is filled with ze-
10S.

Zeroing Out Regions: Random selection of ar-
eas in the images, which are then filled with zeros.
The selection can either be the borders of the image
for ToF, or patches within the image for both sensor
modalities. The border padding simulates different
scenarios of gestures that are not completely included
within the field of view of the sensor. Random patch
zeroing reduces overfitting of the network to certain
regions. Patch sizes are from one pixel up to a square
of 5 x 5 pixels.

Adding Constants to the Sequence: To reduce
the impact of numerical values, a random integer with
a value up to 5% of the maximum pixel value is added
to the sequences.

2.2 Gesture Classification Network

The GCN are composed of two parts. First, the spatio-
temporal data coming from the sensors is processed
to an intermediate representation with a transforma-
tion 7, followed by an encoder architecture 4. After
the gestures G are transformed to the network-specific
format by transformation 7, the input tensors are ready
to be fed into the network models. Each network
has repeated individual encoding cells that consist of
a 2D convolution, max-pooling, batch normalization,
dropout, and ReLU activation (Fig. 5). Multiple cells
are stacked after each other until the processed ten-
sors reach a desired final embedding shape. The em-
beddings are used for late fusion and classification.

The fusion is done with a fully connected layer
that uses the concatenated information of both en-
coded inputs. n.,g neurons output the classification
result. As a summary, each network ¥ = (t,.4) maps
the input gesture G to an n.,.-dimensional vector
(_‘]7 : g — R”clu.m‘)'

In the following, four network architectures A
with individual transformations 7 are described:

260

192 286 224 311 | 2,225

Time Distributed, F7° = (2, 477 ). In this
network version, each time step is processed with a
shared CNN backbone with TimeDistributed lay-
ers in Keras to retrieve spatial information, followed
by temporal integration using LSTM cells. Each
input stream has its own nrs7yy LSTM cells. For
this approach, no transformation is done with /P :
Rtxxxyxf N Rtxxxyxf_

The encoding cells use convolutions with
3 x 3 filter size, and are wrapped into Keras’
TimeDistributed layers. Once a spatial dimension
(x, y) is below 8, the embedding of the last cell is
passed to an LSTM cell. Each input modality is
assigned to its individual LSTM unit. Hence, the
temporal integration takes part after spatial feature
extraction and before the fusion.

3D Conv, 7 3D = (13D s 23P). Here, 3D convolu-
tions are used directly on the spatio-temporal data
of each sensor type. No transformation is needed
for this approach, consequently T3P : R/
REXXXYX f .

The encoding cells of the 43P architecture use 3D
convolutions and 3D max pooling. Their filter di-
mensions are chosen in order to filter separately for
spatial and temporal features. For a given spatio-
temporal tensor C € R>*¥*/  three-dimensional
convolutional filter f; € R1*3*3 is applied for spatial,
and f; € R¥>!1*1 for temporal filtering. Accordingly,
the max pooling sizes are chosen to reduce the respec-
tive dimension. Once the spatial dimension (x,y) is
below 8, both tensors are flattened to vectors and con-
catenated for fusion and classification.

Video as Image, 7"/ = (t"/, 4V/). Each RDI and
ToF image can be reshaped to vectors in order to solve
the problem of an additional dimension for the time.
Those vectors are stacked to one single image per ges-
ture, which can be processed with a standard network
with two-dimensional convolutions. The transforma-
tion needed is

’CW . Rtxxxyxf *}Rtxxyxf. (3)
After the transformation t"/, the input tensors do not
have the 4th dimension. Hence, they are processed
with a 2D CNN. As the individual frames in this ten-
sor are vectors, spatial feature extraction is done with
2D convolutions with filter size 1 x 3 along the vec-
tors dimension. Generally, 2 X 2 max pooling layers
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4 MaxPooling3D (1, 2, 2) MaxPooling2D (1, 4) MaxPooling3D (2, 2)
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Figure 5: The general architecture of the proposed gesture classification networks GCN. The gestures G from the dataset
are fed through the transformation T to the architectures 4. Together they form the network ¥ = (t,4). The individual
transformations 7 is depicted in Fig. 6. At the end of each encoding cell, batch normalization (BN) and drop out (DO) are
applied before ReL.U-activation. Green colored nodes denote operations for spatial feature extraction. Blue nodes show the
operations that reduce in the time dimension. Both sensor modalities are processed with the same architectural structure.
Here, the processing of only one modality is shown for visualization reason. The concatenation fuses the information of both

input streams.

reduce the image area by 1/4. Similarly, the max
pooling in this approach reduces by the same amount,
but in the single direction of the image vectors by
using 1 x 4 max pooling. These encoding cells are
stacked after each other until the image vector dimen-
sion z is below 32, resulting in an embedding of shape
R>21 7€ (0,32).

Time as Feature, 777 = (t7F, 27F ). Both inputs
have only one feature (f = 1), namely the reflectivity
in RDI, and distance in ToF images. This allows re-
arranging the input tensor in a way, so that the time
dimension ¢ is placed as the feature channel f of the
input C. The transformation

’CTF . Rtxxxyxl Rxxyxz

4)

produces a three-dimensional input tensor CTF €
R** to the network.

In contrast to T/, where the spatial context of the
frames is lost, the transformation t/% preserves the
images, but still reduces the dimensionality to three.
The input tensors are processed with encoding cells
using 3 x 3 convolutions until the spatial dimension
(x,y) is below 8 for both inputs branches. The embed-
dings of the tensors are flattened, concatenated and
then fed into the fully connected layer for classifica-
tion.

Each above mentioned approaches # can process
various input tensor sizes, such as the raw input for-
mat (RDI: 64 x 64, ToF: 224 x 171) or a reduced input
size S (RDI: 32 x 32, ToF: 32 x 32) and each approach
can be tuned with the number of convolutional filters
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b. The number is

b=by+25, 5)

where parameter by is the offset and & the depth of the
encoding cells.

S € ROXOVXS

t=1 | t=2 || t=3

t=4m

TVI(S) € REVXS

TTD (S) & ]Rtxxxyxf

TBD(S) € REXXYxf TTF(S) € R¥*Yxt

Figure 6: The visualization of the two transformations ©
and ©7F. Both transform 4D data to 3D tensors that can

be fed into CNNs without recurrent units. ©72 and 32 are
identity operations.

A

\74

2.3 Embedded Deployment

With the rising demand for mobile applications,
the market for embedded accelerators is emerging
(Reuther et al., 2019). Mainly research teams and uni-
versities are offering chips in the regime of low-power
devices (MIT Eyeriss chip (Chen et al., 2016b), Intel
MovidiusX processor (Intel, 2020), Google EdgeTPU
(Google, 2020), the DianNao accelerator family
(Chen et al., 2016a), NVIDIA Jetson Nano (NVIDIA,
2020) and Rockchip RK3399Pro (Rockchip, 2020)).
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Table 2: Performances of the different gesture classification
approaches in comparison to ¥ 3DCNN from (Molchanov
et al., 2015) given the reduced input S (32 x 32, 32 x 32).

INPUT S
APPROACH Acc SIZE
FIF 95.1% 598 KB
FP 96.6% 529 KB
73721 96.9% 667 KB
FLF 97.9% 967 KB
3DCNN f | 98.6% 10.86 MB

Table 3: Model requirements for the low-power accelerators
The unsupported operations for our accelerator versions.
3D: Conv3D, BN: BatchNormalization, DO: Dropout. Ba-
sic OPs: Conv2D, ReLU and softmax, pooling and concat.
3DCNN from (Molchanov et al., 2015).

H/W | RNN 3D BN DO BasIC | 3DCNN
TPU - - - - v -
NCS - - vV v .
NANO | v N v v

Out of this portfolio, only the Intel MovidiusX, used
in the Neural Compute Stick 2 (NCS2), the Google
EdgeTPU, and the NVIDIA Jetson Nano are commer-
cially available for a competitive price. These three
embedded CNN inference accelerators are used for
our evaluation.

In order to use the accelerators, the network model
constraints of each hardware are to be met. Many
state-of-the-art network topologies that claim to aim
for edge deployment, lack the applicability to various
low-power edge devices. The main disadvantage of
using hardware such as the EdgeTPU is the lack of
support for 3D convolutional layers. Table 3 shows
that not all accelerators support the operations needed
to compute the network models introduced in Sec-
tion 2.2 and models from literature. 4" uses 3D con-
volutions, 47P relies on RNN and TimeDistributed
Keras layers. Thus, for the embedded deployment the
ATF and 4" architectures are used, as they comply
with the model requirements.

3 EXPERIMENTAL EVALUATION

3.1 Training Setup

The networks are trained on an NVIDIA TITAN V
GPU until convergence, which is achieved after 100
epochs of training with a train/test split of 80%. Each
network architecture is evaluated three times and the
mean performance values are reported. Weight train-
ing is done with an ADAM optimizer with B; =

0.5 and By = 0.999. The learning rate is regulated
with a cosine decay with an initial value of le-4, a
warm-up of 10% of the total iterations and holding
the maximum learning rate for 10% of training it-
erations. ADAM optimizer minimizes the softmax
cross-entropy loss of the predicted n4, classes. The
weights of the convolutional filters decay with an L2-
regularizer with a regularization factor of le-4 and a
dropout of 40% is applied to fully connected layers.

After each epoch, the class-wise accuracy o is
evaluated on the test set and used for scaling the
weights of each class wy for the next training epoch.
The optimizer weights the classes according to

W= 0541 %, )
2

Weights range from 0.75 to 1.25, where higher accu-
racy leads to lower weights and vice versa.

100 A
. ¢
95 A
5
3 90
c
* AP
< 85 A AP
8 4
TF
80 + 4
¢ 3DCNN
102 10° 104
Model size [KB]

Figure 7: Classification accuracies over the model sizes of
the network architectures from Section 2.2, compared to
3DCNN (Molchanov et al., 2015). Each of the investi-
gated architectures is evaluated in four different variants of
the parameter b € {0,1,2,3}, describing an ever increasing
amount of convolutional filters (Eq. 5). The colored Pareto-
fronts are described by the best values out of three evalua-
tion runs for each network variant.

3.2 Results and Analysis

All of our approaches are evaluated after the training
on the GPU and saved to frozen network model files.
These representations are then used to be deployed
on the three accelerator devices (Section 2.3) by con-
verting the models to the corresponding intermediate
representations of the hardware.

Authors of (Molchanov et al., 2015) propose a net-
work architecture for fusing multi-modal input data
for gesture classification. We re-implemented their
architecture and evaluated it on our dataset and on the
NVIDIA Jetson Nano accelerator. Their model is de-
noted as 3DCNN in the comparisons. Whereas the
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Table 4: Comparative results of proposed GCN architectures. Inference times ¢ are averaged over 50 forward passes. M
denotes the model sizes. Values are measured for input resolution S (32 x 32,32 x 32). *due to unsupported operations.
*uint8-quantized values. Tfloat]6-quantized values. '3DCNN from (Molchanov et al., 2015).

GPU EDGE
EDGETPU NCS NANO
MODEL | M[MB]  Acc  PREC _ REC FI | t[ms] MIKB] | t[ms] MI[KB] | t[ms] M[MB]
7! 0.67 96.9% 97.1% 96.9% 97.1% | 21.1  169% | 11.4 316" | 203  0.67
FhF 0.97 97.9% 98.0% 97.9% 97.9% | 38.7 250 | 54 459" | 165  0.97
3DCNNT | 10.86 98.6% 98.4% 983% 98.3% | N/A* N/A* | N/JA* N/A* | 274 8.0

proposed network architecture is implemented with-
out quantization of weights, we use a uintS-quantized
form of the graph for comparison on the CNN accel-
erator. The model requires 10.86 MB of space in full
precision.

Classification Performance. Our four
approaches—F P, 3P FVI and FTF show a
good classification performance that is strongly
dependent on the architectural parameter . With
the largest number of convolutional filters in our
tests (b = 32), the best accuracy is achieved by
the time-as-a-feature approach 97.9% with a full-
precision model size of M3TzF = 967 KB. Compared
to 3DCNN (Molchanov et al., 2015), our proposed
model F5F shows similar classification performance:
The accuracy is —0.7%, the precision —0.4%, the
recall —0.4%, and the F1-score —0.4%.

Decreasing the number of filters » in the models
leads to lower classification performance. As seen in
Fig. 7, the accuracy is directly correlated to b. The
largest drop of accuracy (77.9%-95.1%) is with the
model 7,/P, b € {4,8,16,32}.

Another impressive architecture is ﬂTF , where
92.3% accuracy is achieved with only 149 KB of full
precision network parameters. Compared to 3DCNN
, this is an improvement of 69 times in the relation
between accuracy and model size 4

Size®

Edge Device Deployment. The main advantage of
our approach is the application-oriented design, that
allows the network to be deployed on multiple em-
bedded accelerators. This is due to the simple model
architecture that only relies on supported operations
such as 3D-convolutions (Tab. 3). As a consequence
of the slim model, fewer weights have to be learned
during training, stored and convolved during infer-
ence. The full precision model size of our largest pro-
posed approach is only M3T F = 967 KB. The quanti-
zation further improves the applicability, because the
model size is now compressed to only 250 KB.
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Table 5: Comparison of results based on the classification
of multi-modal inputs and singular modality, all evaluated
for network model ,‘ZBQF .

RADAR ToF RADAR+TOF
Acc 68.8% 87.7% 97.9%
PREC 66.9% 96.3% 98.0%
RECALL 64.9% 90.4% 97.9%
F1-SCORE | 54.4% 53.4% 97.9%

Ablation Study—Sensor Modalities. In order to
underline the importance of a multi-modal system, the
classification performance is evaluated with two sin-
gle modality inputs and compared to the result of the
multi-modal input. (Tab. 5). Results show that the
classification performance is significantly improved,
when using the fused information of both sensors.

Discussion. The benefit of the sensor fusion of ToF
and radar can be seen especially for the gesture
classes piano and rub. For small input sizes, the ToF
does not deliver much information, as the reduction
to 32 x 32 pixels blurs the depth image quality. In
contrast to that, the networks can rely on the micro
Doppler signature of the individual fingers moving up
and down.

Counter-intuitively, the inference of the larger
model FTF on NCS and Jetson Nano is faster than
the execution of the small model "/ (Tab. 4). The
reason is assumed to be the faster execution of stan-
dard 3 x 3 convolutions, instead of the 1 x 3 filters in
the FV7.

4 CONCLUSION

In this work, a privacy-aware gesture recognition sys-
tem based on a radar and a ToF sensor is proposed.
Current gesture sensing solutions typically rely
on camera sensors that may violate privacy standards
(Wang et al., 2016) (Ceolini et al., 2019). Moreover,
many solutions tend to large model sizes that are in-
feasible to deploy on resource-constrained embedded
accelerators. A further restriction of the embedded
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hardware is the high number of unsupported opera-
tions that limit the applicability of many state-of-the-
art networks (Tab. 3).

Our solution employs a lightweight, two-stage al-
gorithm that first transforms the spatio-temporal 4D
data of each sensor modality to a 3D tensor with fixed
shape. The gesture, now in the form of 3D data, is
then classified by a GCN with one input branch for
each sensor modality. The gesture recognition net-
works are designed for the deployment on EdgeTPU,
NCS2, and Jetson Nano, avoiding unsupported oper-
ations, such as recurrent layers or 3D convolutions.

Our largest proposed network achieves equal clas-
sification performance as 3DCNN (Molchanov et al.,
2015) with only 8.9% of the model size. On the low-
end of the model sizes, we propose a gesture clas-
sification network that only uses 149 KB of mem-
ory while still performing robustly (92.3% accu-
racy). Thus, our network models can be deployed
on resource-constrained embedded accelerators in the
performance range of the Google EdgeTPU, Intel
NCS2 and NVIDIA Jetson Nano.

In the future, the system is planned to be further
optimized in order to be deployed on automotive mi-
crocontrollers such as Infineon’s AURIX.
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