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Many studies have combined Deep Learning and Natural Language Processing (NLP) techniques in security
systems in performing tasks such as bug detection, vulnerability prediction, or classification. Most of these
works relied on NLP embedding methods to generate input vectors for the deep learning models. However,
there are many existing embedding methods to encode software text files into vectors, and the structures of
neural networks are immense and heuristic. This leads to a challenge for the researcher to choose the appro-
priate combination of embedding techniques and the model structure for training the vulnerability detection
classifiers. For this task, we propose a system to investigate the use of four popular word embedding tech-
niques combined with four different recurrent neural networks (RNNs), including both bidirectional RNNs
(BRNNSs) and unidirectional RNNs. We trained and evaluated the models by using two types of vulnerable
function datasets written in C code. Our results showed that the FastText embedding technique combined with
BRNNSs produced the most efficient detection rate, compared to other combinations, on a real-world but not
on an artificially-produced dataset. Further experiments on other datasets are necessary to confirm this result.

1 INTRODUCTION

Software quality is a significant concern within the
cybersecurity field since vulnerabilities in software
code can greatly damage an organization’s day-to-day
operations. As a matter of fact, securing the software
code by both dynamic and static analysis methods has
been studied widely among security experts. In soft-
ware source code, many similar characteristics were
present in natural language texts (Allamanis et al.,
2018). For that reason, the use of NLP applications
in automatically detecting vulnerability in code has
been investigated. With the recent breakthrough of
deep learning in numerous fields including NLP ap-
plications, researches have shown the great potential
of deep learning in source code static analysis (Rus-
sell et al., 2018). In any machine learning or deep
learning system, a specified embedding technique is
required for generating model inputs as vector repre-
sentations. Nevertheless, there are many existing em-
bedding methods in the NLP field such as Word2Vec
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(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014). This makes it difficult to select a suitable
method for the vector encoding tasks.

Among deep learning models, sequence mod-
els like RNNs are famous for dealing with text se-
quences. The simple RNN model faces problems of
gradients vanishing or exploding when the input se-
quences get too long. To deal with long sequence in-
puts, other structures of RNNs, namely Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) and Gated Recurrent Units (GRUs)
(Kostadinov, 2017), were introduced. These sequence
models proved to be the suitable learning models for
encoding code files in Li (2018) and Li (2019). These
studies used Word2Vec to produce code vector repre-
sentations, but other embedding methods like GloVe
or FastText (Bojanowski et al., 2017) have yet to be
evaluated on these models. Different combinations of
the embedding method and deep learning model can
capture different types of knowledge representations
likes linguistic contexts of identifiers and their tem-
poral sequences. Changing the embedding method
for training the deep model could therefore impact
the performance of classifiers. Moreover, the deep
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model also requires distinguished amounts of time
consumed for training and testing on different types
of representations. To select the suitable embedding
method can be a critical task since it can affect the
performance of the models and the time complexity
of training and detection. Thus, we aim to deter-
mine the most viable combination between certain se-
quence models and available embedding methods for
generating semantic vectors.

We present a system to train code vulnerability de-
tectors for evaluating four word embedding methods
combined with four popular RNNs. The system was
built based on the open-source API benchmark (Lin
etal., 2019a). As an extended look to the API, we also
used two types of the dataset which were originally
setup as the baselines for comparisons in the bench-
mark. Both datasets contain files written in C program
language where each file represents either a vulnera-
ble or non-vulnerable function. The first dataset is
the Nine-projects dataset that was constructed from
nine open-source projects with the vulnerability in-
formation extracted from the National Vulnerability
Database (NVD, 2019) and the Common Vulnera-
bilities and Exposures (CVE, 2019) websites. The
second dataset is obtained from the Software Assur-
ance Reference Dataset (SARD, 2019) project, which
consists of the artificially synthesized function files.
Through our experiments, we explored the combina-
tions of the word embeddings techniques and RNNs
for building vulnerability detectors at the function
level. Our system trained and tested the vulnerabil-
ity detectors in a supervised manner of deep learning.
Since the system processes program source code as
text files in file-level classification exercises, source
code analysis is not necessary to analyze the program.

The main contributions of this paper are con-
cluded as follows:

e We extend a benchmark system by evaluating
three additional word embedding techniques to
encode the C program functions as vector repre-
sentations.

e We implement the LSTM, bidirectional LSTM
(Bi-LSTM), GRU, and bidirectional GRU (Bi-
GRU) models for training the vulnerability de-
tectors at the function file level on two different
datasets.

e We conduct an overall performance evaluation of
all trained classifiers on the two datasets. Partic-
ularly, each classifier is examined on different in-
put representations to discover the compatibility
of the embedding algorithms and the models.

The rest of this paper is arranged as follows: Sec-
tion 2 presents the related studies where the word em-

110

bedding techniques and deep learning models were
applied. Section 3 describes the detailed design of
our system. In section 4, we explain the experiments
and performance metrics. Section 5 provides the re-
sults and its comparative analysis. We conclude our
work and discuss future directions in Section 6.

2 RELATED WORK

Word embedding techniques are widely used in build-
ing NLP applications. Inspired by the success of
NLP and neural language models, the earlier stud-
ies observed the strong resemblances in semantic
and syntactic information between natural language
to the programming language. They had leveraged
the advantages of these methods to detect vulnera-
bilities and predict defects in software code analysis.
One of the earliest applications of this technique was
done by implementing classical NLP algorithms, such
as n-grams, combined with machine learning tech-
niques for non-NLP tasks of detecting and classifying
vulnerable code practices in programming languages
(Mokhov et al., 2014). It was done in an identical
manner as a classic text identification task.

Afterwards, more studies tested increasingly com-
plicated machine learning models while employing
different word embedding techniques for generating
vector representations as inputs for the training pro-
cess. Pradel and Sen used Word2Vec for generating
code vectors derived from the custom Abstract Syntax
Trees (ASTs) - based contexts (Pradel and Sen, 2017).
These vectors were used to train deep learning models
to detect vulnerability in JavaScript code. Likewise,
the Word2Vec model was applied for making vector
representations from C/C++ source code and trained
vulnerability detection models with both Word2Vec
representations and the control flow graphs (CFGs)
data (Harer et al., 2018). Instead of using Word2Vec,
Henkel applied the GloVe model to produce vectors
learned from the Abstracted Symbolic Traces of C
programs (Henkel et al., 2018). Furthermore, Fast-
Text was used in FastEmbed for vulnerability pre-
diction based on ensemble machine learning models
(Fang et al., 2020). Although there are already sev-
eral examples of using word embedding techniques
in vulnerability detection, comparisons between these
techniques were not possible to make due to differ-
ences in baseline dataset types and machine learning
models structures.

Deep learning has recently attracted more inter-
est in code analysis research since it has achieved
great success in numerous fields such as computer
vision, image processing, and natural language pro-
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cessing. By converting the self-constructed dataset
called code gadget into Word2Vec vector represen-
tations, VulDeePecker was developed from the Bi-
LSTM model to detect specific types of C/C++ vul-
nerabilities (Li et al., 2018). The same authors also
provided a comparison for several deep learning mod-
els on the same artificially constructed dataset (Li
et al., 2019). Another study used Word2Vec for
the embedding task, but their model architecture em-
ployed a convolutional layer on top of the standard Bi-
LSTM model (Niu et al., 2020). Although the men-
tioned systems have achieved well vulnerability de-
tection performance, their trained models were tested
on their self-constructed datasets like building ASTs,
CFGs, etc. The success of the methods based on syn-
tactic artifacts dataset raises a question of whether the
customized dataset proved more useful than basic in-
put such as the word vectors. This is challenging for
making an overall comparison between these systems
and requires program analyzing expertise.

There are studies that have started to explore the
effectiveness of using different representations for
deep learning models to deal with program classifica-
tion tasks. A comparative analysis was conducted to
assess how different deep learning models learn over
distinctive input representations of Java code (Ram
et al., 2019). Additionally, Lin (2019) proposed a
benchmark framework and compared three models
which are Text-CNN (Kim, 2014), DNN and LSTM.
However, further evaluations of using different em-
bedding algorithms or different neural networks are
yet to be explored. In this paper, we present an ap-
proach that allows users to observe the performance
of deep learning models on different types of vec-
tor representations. The detection granularity of this
project is at the function level based on the two types
of datasets.

3 APPROACH

Our goal is to design a system for investigating the
effectiveness of word embedding techniques for train-
ing vulnerability detectors. The system initially loads
the source code files and preprocesses them into se-
quences of word tokens which were identifiers, data
types, variables, etc. Each of these sequences stands
for a semantic function representation. The list of rep-
resentations would have the corresponding list of la-
bels by processing the function names. Subsequently,
the system applies the predefined word embedding al-
gorithm to map the sequences of tokens into vector
representations. The specified neural network used
eighty percent of the vector representations for train-
ing the vulnerability detector, while the rest of the rep-
resentations are tested by the trained detector. After
testing, the vulnerable probabilities of the test sam-
ples were produced correspondingly.

3.1 Overview

In this work, we apply four popular word embedding
techniques to train four different RNNs. Figure 1
presents our workflow. In detail, given a corpus of
function code files, training a deep model classifier in-
cludes several steps. In the first stage, the source code
files are loaded and processed to generate sequence
data and labels. The data is then passed to the next
stage to be transformed into the code embedding vec-
tors. These vectors will then be partitioned and fed
to the constructed neural network for the training pro-
cess. When training is completed, the model is tested,
and the detailed logs are automatically collected in the
last phase.
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Figure 2: Data Loader and Label Generator Module.

3.2 Data Loader and Label Generator

Figure 2 shows the data flow within the Data Loader
and Label Generator module. This module initially
loads the source code files to get a list of identifier
tokens and a list of function names. When prepro-
cessing the raw data, each file in the corpus was split
into a list of words and punctuation characters before
performing tokenization technique by Keras tokenizer
(Chollet et al., 2015). By fitting the whole corpus data
to the tokenizer, it turns each function file into a se-
quence of integers. Finally, the list of these sequences
and the vulnerability labels are produced for the latter
encoding stage.

To generate ground truth labels, we loaded two
datasets into our module and tasked the module to de-
tect certain keywords in the filenames. Files which
contained the designated keywords were then labeled
as either vulnerable (1) or invulnerable (0). These two
datasets are the Nine-projects and the synthetic SARD
datasets. For the Nine-projects dataset, we set the vul-
nerable keywords to match the strings such as “CVE”
or “cve”. Similarly, the SARD’s files contain such
keywords as “BAD”, “bad”, etc. These keywords
were incorporated directly into the module. One of
the module settings is to select the type of dataset be-
fore execution. This guarantees the system adaptabil-
ity to other types of dataset.

Here, the label generator settings can be cus-
tomized to a suitable type of dataset. It is important to
notice that the function body of the files in the SARD
dataset also has such keywords as those we picked
for labeling. These words potentially add bias to the
training process of the deep learning models. Since
word embedding techniques are used for generating
vectors, the model can look at the keyword vectors to
decide the vulnerability results. Therefore, we scan
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the function body to look for those keywords, replac-
ing them with the same length dummy strings. Hence,
those words in the function body can not affect the
model performance.

3.3 Encoder Module

This module converts each code function file into a
vector that could retain both semantic and syntactic
information out of the source code. To allow the mod-
els to learn effectively in the later stage, it is impor-
tant to extract the information from the code tokens.
Particularly, for preserving the semantic knowledge
expressed by the identifier names, we used the em-
bedding layer to map these identifiers in code to the
semantic vector representation. By observing the con-
tent of the two datasets, more than 90% of sequences
were acknowledged to have lengths that are shorter
than 1000. To balance the sequence length and the
sparsity of sequences (Lin et al., 2019b), we select
the maximum length of code sequence to 1000. For
those functions containing the sequence length longer
than 1000, they are truncated to length 1000. Con-
versely, we append zeros at the end for the sequences
having a shorter length than 1000. Next, the mod-
ule will pick one of the embedding methods to start
mapping the file sequences into a meaningful code
vector. Word2Vec, GloVe, FastText and GloVe pre-
trained models (GloVePre) (Pennington et al., 2014)
were implemented in our work. We set the embedding
layer to generate fixed-length vectors at the dimension
(d = 100) as default.

The Word2Vec model was implemented to learn
semantic information from a large amount of raw
data. The model was provided by the GenSim
(Rehtifek and Sojka, 2010) package with the Con-
tinuous Bag of Words (CBOW) and Skip-gram algo-
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Figure 3: The example of the GRU model structure.

rithms. CBOW learns to predict the word by its con-
text, while the Skip-gram is built to predict the con-
text. Therefore, we chose CBOW over the other since
we needed to extract the syntactic code sequence in-
formation but not its context. The other parameters of
the Word2Vec were setup by default.

In a similar manner, the FastText model was con-
structed from the GenSim package. Moreover, it is
considered as the main comparison to the Word2Vec
model in training the neural networks, since FastText
can even construct the vector for the word from its
character n grams even when the word is out of its
vocabulary. The number of threads and the window
size were customized to 4 and 5 likes in the Word2Vec
model, while the rest of the parameters were config-
ured by default.

Finally, the GloVe model was also trained from
the given corpus of code. Constructing GloVe was
done by the glove-python package (Kula, 2019). We
tuned the GloVe model with the learning rate at 0.05,
set the window parameter to 10, and trained it with
four threads in 500 Epochs. While this generates em-
beddings, which is an identical task to Word2Vec,
GloVe presented its embeddings by factorizing the
logarithm of the corpus word co-occurrence matrix.
The GloVePre model was additionally implemented
to watch the baseline difference between convert-
ing words to vectors and code identifiers to vectors.
The pre-trained layer was selected with the 100d pre-
trained model GloVe.6B.100d.txt.

Given these points, the sequences collected from
the previous stages can be translated into vector rep-
resentations with the shape of (1000, 100) by one of
the embedding models. Here, the selected model is
responsible for preserving the code semantic informa-
tion into the embeddings.

3.4 Training Module

Taking the meaningful code representation vectors
from the previous stage as inputs, the training mod-
ule is responsible for training the neural networks
to distinguish between vulnerable and non-vulnerable
function samples. Our work focuses on investigat-
ing the effectiveness of RNNs since such models like
Long Short-Term Memory (LSTM) or Gated Recur-
rent Unit (GRU) are well-known for dealing with se-
quential data (Li et al., 2019). More importantly,
their bidirectional forms, having a backward layer and
a forward layer can adapt efficiently with program
code, where the order of statements plays a significant
role in vulnerability detection. The module configura-
tion can be customized to select one of the four RNNs
models. Here, we explored LSTM, Bi-LSTM, GRU,
and Bi-GRU for learning the features extracted from
the embedded code representations.

The LSTM network in this work was designed
with eight layers. The first layer is an LSTM recur-
rent layer with the 128 neurons. This layer takes the
meaningful embedding vectors extracted from code
sequences in the encoder module as input. The second
layer is a dropout regularization layer with dropout
rate at 0.5. It helps the model to prevent over-fitting
issues by randomly removing hidden units and their
connections in the training process. The third layer
is another LSTM recurrent layer with 128 neurons.
After this, the output of the LSTM layer was concate-
nated for downsampling by a pooling layer. Another
dropout layer with the same rate is added after the
pooling layer. The last three layers are dense layers.
The first dense layer has 64 neurons, and this num-
ber of neurons is reduced by half in the second dense
layer. The last layer has only one neuron and uses sig-
moid activation for converging the output into a single
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Table 1: The distribution of the vulnerable functions on two datasets.

Training and validation set (unit: files) Test set (unit: files)
Dataset The vulnerable The vulnerable
Total number Total number
number number
The Nine- projects dataset 1155 48934 318 12234
The SARD dataset 31682 60000 3318 15000

probability between 0 and 1. The GRU network was
constructed in the same way as the LSTM network.
The only difference is that GRU recurrent layers were
implemented instead of using LSTM layers. The ex-
ample of the GRU model structure is described in Fig-
ure 3.

The BRNNs were constructed in a similar struc-
ture for both Bi-LSTM and Bi-GRU. The Bi-LSTM
model consists of eight layers. The first layer is a
bidirectional LSTM recurrent layer with 64 LSTM
cells. The bidirectional layer allows its output to con-
currently acquire the information from both preced-
ing and succeeding scenarios. The second layer is a
dropout regulation layer with the same dropout rate as
in LSTM model. The third layer is designed the same
as the first layer. Henceforth, the output of the Bi-
LSTM layer will be reduced by one dimension with
a pooling layer. After pooling, a dropout layer using
the same rate is used. Ultimately, the last three dense
layers were built in the same way as in the structure
of the unidirectional RNNs. Regarding the network
structures and hyper-parameters, the Bi-LSTM model
was constructed based on the work of the group of
Lin (2019b). Following that reference, we designed
and tuned the other network architectures using simi-
lar methodology.

3.5 Test Module and Logs Collector

In the previous stage, the constructed model em-
ployed eighty percent of the dataset for training the
classifier. Here, the test module can select one of the
trained classifiers by specifying its name and use the
rest of the dataset for testing. When the test process
is completed, the raw CSV data will be presented as
a list of function names and its vulnerability proba-
bility. Next, the logs collector processes the CSV file
data and sorts the list of function names to another
table following their vulnerability probability in the
order from the highest to the lowest. Finally, it can
calculate performance metrics and produce results as
a .txt file.
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4 EXPERIMENTS

4.1 Experimental Setup

Our experiments focused on answering the following
research questions:

e Question 1: Can applying different embedding
methods improve the effectiveness of the vulnera-
bility detector?

e Question 2: How are the training speed and per-
formance of each model when using different em-
bedding techniques?

e Question 3: Would change the neural network
model affect detection performance?

To summarize, we used four embedding methods to
train and test four types of RNNs on two types of
datasets respectively. It means that we had trained
and tested 16 classifiers for each dataset. We set the
optimizer for all the networks as Stochastic Gradi-
ent Descent (SGD) followed by the default setting of
Keras. The binary cross-entropy was selected as our
loss function. The deep learning models were imple-
mented in Python (version 3.6.9) using Keras (version
2.2.4) with a TensorFlow backend (version 1.14.0)
(Abadi et al., 2016). Word2Vec and FastText mod-
els were constructed by the GenSim pip library (ver-
sion 3.4.0) while the GloVe model was used from the
glove-python (version 1.0.1) package (Kula, 2019).
Our experiments were designed and carried out on an
Ubuntu server (18.04 LTS) having 64GB RAM with
an NVIDIA GeForce RTX 2080 SUPER 8GB GPU
and an Intel(R) Core (TM) i7-9700K 3.60GHz CPU.

4.2 Datasets

The Nine-projects dataset is the proposed dataset in
the benchmark API (Lin et al., 2019a). The au-
thors had shared their dataset on their GitHub website
(NSCLab, 2020). The second dataset is the synthetic
dataset supplied by the Software Assurance Refer-
ence Dataset project (SARD, 2019). The project is
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Table 2: Performance Metrics.

Metric Name Formula Explanation
. TP@k% The proportion of top-K functions that are actual
Precision at rank K P@K% = oo )
TP@k%+FP@Kk% vulnerable functions.
TP@k% The proportion of the relevant functions that are in
Recall at rank K R@K%=——————
TP@k%+FN@k% the top-K.

known as the Juliet Test Suites (Black, 2018). It in-
cludes test functions for C/C++ and Java. In this
work, we only take the C source code for our ex-
periments. Following the studied cases in the bench-
mark API, we extracted randomly 35000 vulnerable
and 40000 non-vulnerable C function files from the
SARD functions dataset provided by the same GitHub
repository. For both datasets, after being encoded to
the labeled vectors, the dataset is distributed with the
rate of 0.8 for training and validation set, and 0.2 for
the test set. The content of the datasets is described
in Table 1. We keep this data partition setting to train
and test all the deep learning models.

4.3 Performance Metrics

For most of the cases, precision, recall, and F1-score
are used for evaluating deep learning classification
models. However, in many circumstances of vulner-
ability detection, the dataset imbalance between non-
vulnerabilities and vulnerabilities showed that these
metrics would undervalue the model detection per-
formance (Lin et al., 2019a). Therefore, the metrics
applied for evaluating our classifiers are the ranked
retrieval precision and recall (P@K% and R@K %).
Moreover, our approach aims for the retrieval task
of vulnerable function, these metrics are well recom-
mended for this task and would be more suitable for
evaluating the detection results(Manning et al., 2009).

Specifically, when a detector finishes testing, it
will produce a ranked list of functions by sorting the
vulnerability probability. Among the top k percent of
the total retrieved functions, we have TP@k% stands
for the number of the truly vulnerable samples, while
FP@k% denotes the false vulnerable ones. Next,
FN@k% denotes the number of the truly vulnera-
ble functions that could not be discovered when re-
trieving the top k% highest vulnerable probability.
For instance, the total number of test functions was
60000, and the number of vulnerable functions was
1500. With k£ = 10, the top 10% will accordingly re-
trieve 6000 files with the highest vulnerable rate. Fur-
thermore, given the following details: 1400 vulner-
able files were found true positive among the 6000

files, 100 vulnerable files were found to be miss-
ing, and 4500 non-vulnerable files were found to be
false positive; the reported values will be as follows:
TP@k% is 1400, FP@k% is 4500, and FN@k% is
100. Hence, P@K % and R@K % can be calculated as
the formulas in Table 2.

5 RESULTS

5.1 Model Training Results

The time consumed for the training neural models
usually receives less attention than standard perfor-
mance metrics like precision, recall rate, etc. How-
ever, when the models reach their capacity and show
identical results in performance, understanding time
complexity would be a valuable insight to choose the
appropriate methods for training. Figure 4 summa-
rizes the training time of the four RNNs on the SARD
and the Nine-projects datasets. Training the detec-
tors on the SARD dataset took more time since its
size is much larger than the other. In general, us-
ing FastText achieves the shortest time consumption
for training the classifiers, while training with GloVe
takes the longest time. Training models by Word2Vec
is faster than by GloVePre. Indeed, this was ex-
pected since FastText was proved to accomplish op-
timal speed when compared to other word embed-
ding models (Joulin et al., 2016). Among the neural
networks, the GRU and Bi-GRU models require the
largest amount of time to train. Conversely, Bi-LSTM
and LSTM models take less time for training than the
others.

5.2 Evaluation of Word Embedding
Methods on the Trained Models

In Figure 5.A, the results show the detection per-
formance of the LSTM models trained on four em-
bedding methods. The LSTM models which were
trained on FastText’s vector representations achieved
the highest precision and recall for all categories of
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Comparison of model training time on the Nine-projects dataset
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Figure 4: Time consumption summary for training RNNs on the SARD and the Nine-projects datasets.

top k% retrieved functions. In detail, the precision at
the top 1% reached 83%. The recall rate at the top
20% and top 50% could reach 93% and 99%. The
next best performing detector was the model trained
on GloVe, which got 80% for the precision at the top
1%. The next ranks followed by the models applied
by Word2Vec, and GloVePre.

Figure 5.B presents the detection performance
of the Bi-LSTM models trained on four embedding
methods. The Bi-LSTM models trained on Word2Vec
and FastText showed quite identical rates at Top 1%
retrieved functions. Their precision rates were 87
and 86% respectively. For the rest of the top k%
items, using FastText still achieved the highest recall
rates. The lowest testing performance was the model
that applied GloVe, followed by the one that applied
GloVePre. Noticeably, the performance of the Bi-
LSTM models is much higher than the LSTM mod-
els. For example, at the top 1% retrieved functions,
the precision rate had improved by 11% in the case of
Word2Vec and by 4% in the case of FastText.

When retrieving less than 50% of vulnerability
functions, Figure 5.C shows a similar trend that de-
tectors using FastText achieved the highest precision
and recall rates. On average, the GRU models have
lower performance than the Bi-LSTM models, but
higher than the LSTM models. For instance, in the
top 1% vulnerable samples for the Word2Vec cate-
gory, the LSTM detector reached only 76% in preci-
sion rate while the precision rates of the GRU and Bi-
LSTM models were higher by 8% and 11% respec-
tively. The performance of the GRU models that em-
ployed GloVe and Word2Vec was similar.

In an identical manner, Figure 5.D witnesses the
Bi-GRU model where FastText was implemented,
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achieving the highest performance for the top 1%
most vulnerable files. Compared with other models,
the Bi-GRU detectors have much better performance
than the LSTM and GRU detectors. Likewise, the
Bi-GRU models achieved higher performance rates in
both precision and recall for top k items when com-
paring to the Bi-LSTM models. Hence, there is a clear
performance gap between the bidirectional RNNs and
the unidirectional RNNs.

Figure 5.A and 5.B show, LSTM, and Bi-LSTM
models performed better with FastText and Word2Vec
techniques. For all the models, the precision rates
at Top k become lower, and the recall rates increase
when k is increasing. This is due to the proportion of
the vulnerable data getting smaller when the number
of the retrieved files increases. When retrieving 50%
the total number of the files, all the detectors could
collect more than 97% of the relevant files. Particu-
larly, the Bi-LSTM models applied FastText, and the
Bi-GRU model employed GloVe could retrieve all rel-
evant vulnerable functions back.

Overall, the detectors that applied FastText got the
best performance on the Nine-projects dataset. The
models that used GloVe and Word2 Vec did not clearly
show which one is better than the other. GloVePre
generally had the lowest general rates, that was be-
cause its embedding vectors were meant for words in
the predefined dictionary. The better performance of
FastText is likely due to its capability to produce the
vector for a word from its character n-grams even if
the word had no presence in the training corpus (Bo-
janowski et al., 2017). GloVe and Word2Vec does not
have the same capability. Furthermore, as an exten-
sion model of Word2Vec, FastText was able to gen-
erate better embeddings for infrequent words since it
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LSTM model test on the Nine-projects dataset

A 100 { " Precision and Recall calculated for top k% retrieved functions
2 —— WordVec
—— GloVe .
FastText Embedding 1% 10% 20% 50%

GloVePre

P k% | R k% | P_k% | R k% | P k% | R_k% | P_k% | R_k%

Word2Vec | 76% 29% | 22% | 83% 12% | 91% 5% 98%

10 1
GloVe 80% 31% | 21% | 79% 12% | 90% 5% 99%

Precision at top k% (%)

09 FastText 83% 32% 22% 85% 12% 93% 5% 99%

GloVe Pre | 70% | 27% | 20% | 76% | 11% | 88% 5% 99%

30 40 50 60 70 80 90 100
Recall at top k% (%)

BiLSTM model test on the Nine-projects dataset

Precision and Recall calculated for top k% retrieved functions

B 100

%

—— WordVec
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—— FastText

Embedding 1% 10% 20% 50%

9 GloVePre
< P k% | R k% | P_k% | R k% | P k% | R k% | P_.k% | R k%
x
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f Word2Vec 87% 33% 21% 82% 12% 93% 5% 99%
® 104
c
I% % GloVe 82% 31% 21% 79% 11% 88% 5% 99%
<
a
0% FastText 86% 33% 22% 85% 12% 94% 5% 100%
GloVe Pre | 75% | 29% | 20% | 78% 12% | 89% 5% 98%
30 20 50 60 70 80 90 100
Recall at top k% (%)
GRU model test on the Nine-projects dataset
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_ ordVec
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9 GloVePre
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=3
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o

0% FastText 85% | 33% | 22% 84% 12% 90% 5% 99%

GloVe Pre | 82% | 31% | 20% 7% 12% 90% 5% 99%
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Recall at top k% (%)

BiGRU model test on the Nine-projects dataset
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—— GloVe
—— FastText Embedding 1% 10% 20% 50%
GlovePre

P k% | R K% | P k% | R k% | P k% | R k% | P k% | R k%
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o
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Precision at top k% (%)

09 FastText 89% 34% 21% 80% 12% 90% 5% 99%
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Figure 5: Distribution of precision and recall over top k% retrieved functions among the four models tested on the Nine-
projects dataset: (A) LSTM, (B) Bi-LSTM, (C) GRU, (D) Bi-GRU.
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Table 3: Precision and Recall over top k% retrieved functions of the RNNs on the SARD dataset.

Precision and Recall calculated for top k% retrieved functions
Index Model Embedding 1% 10% 20% 50%

P k% R k% P k% R k% P k% R k% P k% R k%
1 LSTM Word2Vec 100.0% 4.5% 100.0% 45.2% 88.9% 80.4% 44.2% 100.0%
2 LSTM GloVe 100.0% 4.5% 100.0% 45.2% 89.2% 80.7% 44.2% 100.0%
3 LSTM FastText 100.0% 4.5% 100.0% 435.2% 89.0% 80.4% 44.2% 100.0%
4 LSTM GloVe_Pre 100.0% 4.5% 100.0% 45.2% 89.2% 80.6% 44.2% 100.0%
5 Bi-LSTM ‘Word2Vec 100.0% 4.5% 100.0% 45.2% 89.1% 80.6% 44.2% 100.0%
6 Bi-LSTM GloVe 100.0% 4.5% 100.0% 45.2% 88.9% 80.4% 44.2% 100.0%
7 Bi-LSTM FastText 100.0% 4.5% 100.0% 45.2% 89.1% 80.5% 44.2% 100.0%
8 Bi-LSTM GloVe Pre 100.0% 4.5% 100.0% 45.2% 89.2% 80.7% 44.2% 100.0%
9 GRU ‘Word2Vec 100.0% 4.5% 100.0% 45.2% 88.9% 80.4% 44.2% 100.0%
10 GRU GloVe 100.0% 4.5% 100.0% 45.2% 88.5% 80.1% 44.2% 100.0%
11 GRU FastText 100.0% 4.5% 100.0% 45.2% 89.2% 80.7% 44.2% 100.0%
12 GRU GloVe Pre 100.0% 4.5% 100.0% 45.2% 88.8% 80.3% 44.2% 100.0%
13 Bi-GRU Word2Vec 100.0% 4.5% 100.0% 45.2% 89.0% 80.5% 44.2% 100.0%
14 Bi-GRU GloVe 100.0% 4.5% 100.0% 45.2% 88.5% 80.0% 44.2% 100.0%
15 Bi-GRU FastText 100.0% 4.5% 100.0% 45.2% 88.6% 80.1% 44.2% 100.0%
16 Bi-GRU GloVe Pre 100.0% 4.5% 100.0% 45.2% 89.3% 80.8% 44.2% 100.0%

treats each word by considering the word’s character
n grams. Finally, the use of the hierarchical softmax
with careful implementation in FastText helps to op-
timize the computation process (Joulin et al., 2016).
For the model test results on the SARD dataset,
we observe the precision and recall rate at top K are
very identical between all the models. On Table 3, the
results showed that changing the embedding meth-
ods did not greatly affect the performance in the case
of the synthetic dataset, since the dataset has a well-
balanced rate between vulnerable and non-vulnerable
files and contains a large enough size to effectively
train the detectors. All the detectors can reach their
highest precision at Top 1% and Top 10%. At Top
50%, all the vulnerable functions were retrieved suc-
cessfully. Our experiments confirm further the con-
clusion in (Lin et al., 2019a) that no statistically sig-
nificant difference in performance was found for all
RNNs on the SARD dataset regardless of combin-
ing different embedding techniques. The vulnerabil-
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ity patterns extracted from the artificially synthesized
samples are much simpler to capture compared to the
real-world samples by the neural networks.

5.3 The Comparisons of the Four Deep
Neural Networks

As Table 3 indicates, the performance of all detectors
which were trained on the SARD dataset are suffi-
cient and identical due to the dataset synthetic char-
acteristic. Therefore, the comparisons between the
four neural networks are made based solely on the
detector trained on the Nine-projects dataset (Figure
5). In general, the BRNNs perform better than the
unidirectional RNNs, likely due to the advantages of
BRNNSs discussed in section 3.4. Among BRNNG,
the Bi-GRU detectors showed higher precision and
recall rates in top k% most vulnerable samples on
average. Likewise, the GRU models achieved better
performance than the LSTM ones in the group of the
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unidirectional RNNs. The GRU and Bi-GRU models
can detect more effectively than the LSTM and Bi-
LSTM models in case of training on the Nine-projects
dataset. This is due to the structure of the GRU
networks being more compatible with the small size
dataset. Since the Nine-projects dataset has smaller
size than the SARD dataset, GRU models had better
advantages for less memory consumption.

6 CONCLUSION AND FUTURE
WORK

Automated detection of software vulnerability is an
important direction in cybersecurity research. How-
ever, conventional techniques such as dynamic anal-
ysis or symbolic-execution showed inefficiency when
dealing with an immense amount of source code (Lin
et al., 2019b). To enhance the vulnerability discov-
ery capability, applying deep learning techniques was
necessary to speed up the code analysis process. Our
work presented an approach to examine the effective-
ness of word embeddings combined with four deep
learning models for the vulnerability detection task.
The system trained the models and tested them on two
genres of the datasets. With the synthetic dataset, all
models could present sufficient but identical vulnera-
bility retrieval results. In contrast, the models showed
differences clearly with the real-world implemented
dataset. This is worth noticing since the real vulnera-
ble dataset in the released software code can be lim-
ited to size and numbers in varied scenarios. Thus, it
is vital to select the right combination of embedding
methods and neural network structures to build an ef-
fective detection system that can accommodate well
to the dataset.

Our approach investigated the use of embedding
algorithms on the supervised learning methods, and
the system can generate the vulnerability detectors
at the function level. It can be used as an assisting
tool for selecting the good combinations of embed-
ding methods and deep learning models for building
effective vulnerability detection systems. There are
several research directions for extending our work and
improving system performance. First, we can collect
and build up the volume of the real vulnerable dataset
to resolve the imbalance issue in the open-source
dataset. Second, we can work on implementing other
embedding solutions such as adapting an ASTs ex-
tractor (Kovalenko et al., 2019). This could extract
different patterns of information in source code for the
center machine learning models to learn in the later
stage. Finally, building better neural network mod-

els should be investigated to reduce the gap between
natural language text and programming. This would
allow the vulnerability detection system to learn bet-
ter and adapt to other programming languages.
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