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Abstract: This work presents an improved Cuckoo Search Algorithm (CSA) for multiple odor sources localization. The 
idea of forbidden areas is introduced to the CSA as territories of the cuckoo colonies, preventing the cuckoos 
from being trapped into local optimal solutions. A source is declared when a certain number of cuckoos are 
located in close proximity with each other, and a territory is formed around the declared source centered at 
the local best among those cuckoos. When territories overlap, they are merged into one territory to prevent 
the same source from being found multiple times. Simulation results show that the proposed method can 
locate multiple odor sources with high accuracy.

1 INTRODUCTION 

Odor source localization, a problem of retrieving the 
source of an odor based on its traces emitted from the 
source, has various applications in our lives, 
including searching for locations of toxic gas 
leakages, survivors, sources of fires, and explosives. 
Currently, people mainly solve this problem by using 
either static robots or trained animals. However, these 
approaches have certain constraints that limit their 
performances in certain environments. Static robots are 
inflexible and hard to setup in an unknown 
environment. Trained animals can’t get close to places 
with toxic gas and gets tired easily. To overcome these 
constraints, source localization with active robots 
becomes more prevalent (Chen and Huang, 2019). 
Compared to static robots, active robots can 
collaborate with each other flexibly without the 
limitations of their locations. Compared to trained 
animals, active robots are able to work in a variety of 
environments for prolonged periods of time.  

Solving the odor source localization problem with 
multiple active robots can have two different cases: 
single source localization and multiple sources 
localization. When solving single source localization 
problem with multiple active robots, maintaining 
diversity and handling problems with local optimal 
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solutions during the search can be challenging. When 
solving multiple sources localization problem with 
multiple active robots,  researchers tend to divide the 
robots into groups. Group formation, group 
aggregation maintenance, following the same plume 
by more than one group, and avoiding re-finding the 
same odor source are the main challenges of multiple 
odor sources localization problem with multiple 
robots. Therefore, researchers have been exploring 
different algorithms in respond to these challenges. 
These algorithms can be classified into three types: 
collaborating with a team of robots in nature-inspired 
ways (Shida, et al., 2005; Marques, Nunes, Almeida, 
2002) calculating the distribution of the plume (Pang, 
2010), and visualizing the search area (Wang, Meng, 
Zeng, 2011). One subcategory of the nature-inspired 
algorithms is swarm intelligence where robots highly 
collaborate with each other. Swarm intelligence based 
algorithms convert the odor localization problem into 
an optimization problem that doesn’t require precise 
information about the gas distribution to solve the 
problem. However, the algorithms that are used to 
solve for the source localization problems face some 
limitations. For example, the Genetic Algorithm 
(Marques, Nunes, Almeida, 2002) and the Particle 
Swarm Optimization (PSO) (Feng, et al., 2019) can 
easily fall into local optimal solutions when solving 
the single source localization problem, while some 
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multi-modal optimization algorithms such as the 
Glowworm Optimization Algorithm (Thomas and 
Ghose, 2009) and the Ant Colony Optimization (Cao, 
et al., 2013) require large number of robots and might 
not be able to find all the sources accurately when 
solving the multiple source localization problem. 
Attempting to address these issues, we proposed an 
improved Cuckoo Search Algorithm (CSA) for 
multiple odor sources localization problem. 

The CSA is proposed by Yang and Deb (2009, 
2010). Modelled after the cuckoos’ parasitic 
reproduction strategy, the CSA uses the coevolution 
between the parasitic cuckoos and their hosts to 
maintain diversity of the cuckoo population. The 
cuckoo population would migrate toward the best nest 
for a certain distance determined by the Lévy Flight, 
a flying strategy by a lot of birds, in each generation, 
hoping to encounter a better solution around the best 
nest while the best nest stays at the same location in 
case the plume is lost. Solving the odor source 
localization problem with CSA requires high 
collaboration between the robots (represented as 
cuckoos in the algorithm) and captures the global 
scope well. It is simple and efficient, requiring little 
number of inputs to operate. Nevertheless, it can 
easily fall into local optimal solutions and has a slow 
rate of convergence. Some improvements have been 
made to deal with these drawbacks of the CSA. For 
example, Valian, Mohanna, and Tavakoli (2011) 
modified the algorithm such that it can adjust its 
parameters, such as the step size, by itself depending 
on its environment; Ghodrati and Lotfi (2012) 
combined the Cuckoo Search with PSO to improve 
the efficiency of the algorithm; In Srivastava, et al. 
(2012), the CSA was mixed with the Tabu Search to 
prevent the Cuckoos from falling into local optima 
and flying repeated paths.  

In this paper, an improved CSA is proposed to 
solve the multiple odor sources localization problem, 
where the idea of territories and group based 
strategies are introduced such that once some robots 
are in close proximity, the area is declared as a 
territory containing the source. If the newly declared 
territory overlaps with previously declared territories 
the new territory would merge with the territories it 
overlaps with. Unlike the work of Srivastava, et al. 
(2012), which marks the very place the cuckoos 
landed on as a forbidden area, our algorithm actively 
predicts the forbidden area that might contain a good 
solution. Moreover, Srivastava, et al. (2012) stores 
the flying paths of the past cuckoos to prevent 
repeated flying paths, while we only store the areas 
where cuckoos are concentrated in. Simulation results 
show the effectiveness of the improved CSA in the 

multiple sources localization problem, and its 
superiority over the classical CSA in single source 
localization problem in a particular case.  

For the rest of the article, Section 2 states the 
problem. Section 3 states the details about the 
improved CSA, and Section 4 gives the simulation 
results. At Section 5, the conclusions are discussed. 

2 PROBLEM FORMULATION 

The Gaussian Dispersion Models (GDMs) are used in 
this paper as they are the most commonly used 
models in regulatory air dispersion modelling 
(Visscher, 2013). They are easy to use, able to 
accurately predict the concentrations around a source 
when the surrounding landscape of the source is fairly 
simple. It is valid under the assumptions below:  

- The wind field is stable. 

- The release source is a point source.  

- The release rate is constant. 

- The atmospheric turbulence is constant in space 
and time. 

The three-dimensional GDM can be described as 

ܿሺݔ௥, ,௥ݕ ;௥ݖ θሻ ൌ ܿሺݔ௥, ,௥ݕ ;௥ݖ ,௦ݔ ,௦ݕ ,௦ݖ  ሻݍ
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
where	ܿ represents the concentration of the targeted 
gas at point ሺݔ௥, ,௥ݕ ௥ሻݖ  given the location of the 
source ሺݔ௦, ,௦ݕ ௦ݖ ݑ .(  is the wind speed, ݕ  is the 
dispersion parameter in the horizontal direction andݖ 
is the dispersion parameter in the vertical direction. 
σ୷ and σ௭ are the standard deviation in the horizontal 
and vertical directions, respectively. ݄ is the effective 
source height. 

To further simplify the GDM, formula (1) can be 
converted to a two-dimensional space, resulting in  

ܿ ሺݔ௥, ;௥ݕ θሻ ൌ ܿሺݔ௥, ;௥ݕ ,௦ݔ ,௦ݕ  ሻݍ
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
where ܿ represents the concentration of the targeted 
gas at point (ݔ௥,  ௥) given the location of the sourceݕ
,௦ݔ)   .௦). ݇ is the gas diffusion coefficientݕ

An Improved Cuckoo Search Algorithm for Multiple Odor Sources Localization

709



The dispersion model for multiple point sources 
can be found based on the two-dimensional GDM 
under two assumptions: 

- There is no chemical reaction and interactions 
between the substances released from the point 
sources  

- The distance between the point sources are great 
enough to consider each point source separate 
from another. 

Once these assumptions are satisfied, the gas 
dispersion model for multiple sources becomes a 
linear addition of formula (2), as represented below: 

;௥ݕ௥ݔሺܥ θ	ሻ ൌ ,௥ݔ൫	ܥ ;௥ݕ ෩ܰ, ܺ, ܻ, ܳ൯ 

ൌ	෍ܿ

ே෩

௜ୀଵ

ሺݔ௥, ;௥ݕ ,௜ݕ	,௜ݔ  ௜ሻݍ
(3)

 

where C is the gas concentration at ሺݔ௥, ௥ሻݕ , 
contributed by multiple point sources. ෩ܰ  is the 
number of point sources. ܺ ൌ ሺ݅	௜ݔ ൌ 1,2, …	, ෩ܰሻ and 
ܻ ൌ ሺ݅	௜ݕ ൌ 1,2, …	, ෩ܰሻ  contains the ܺ  and ܻ 
coordinates of the ෩ܰ  point sources ܳ ൌ ݅	ሺ	௜ݍ ൌ
1,2, … , ෩ܰሻ where 	ݍ௜ is the emission rate for the point 
source located at (ݔ௜,   .(௜ݕ

Multiple odor sources localization can be 
challenging as the number of sources to be found is 
unknown and it is easy to find the same source 
multiple times. While the classical CSA is only used 
to locate a single source, it searches for sources 
efficiently and requires a small number of parameters 
to function. Therefore, an improved CSA is proposed 
to solve the multiple odor sources localization 
problem, that is, to find all the relative maxima of 
formula (3) within bounds. 

3 THE CSA 

Being the best known brood parasite, cuckoos never 
build their own nests and lay their eggs in other birds’ 
nests, leaving the host birds to take care of their young. 
The cuckoo mother would remove one egg laid by the 
host mother, laying her own egg as a substitute and 
flying away quickly. Cuckoos can mimic the color and 
pattern of their eggs to match the eggs of the hosts, with 
each female specializing in one host species. Many 
host species learn to recognize cuckoo eggs in their 
nest and throw the eggs out of their nest, so the cuckoos 
have to constantly improve their mimicry to avoid 
being detected by the host birds. 

For simplicity, three idealized rules are applied to 
the CSA (Yang and Deb, 2009, 2010): 

- Each cuckoo lays one egg at a time, dumping it in 
a random nest; 

- The best nests with high quality of eggs 
(solutions) carry over to the next generation; 

- The number of available nests is fixed. A host can 
discover a cuckoo egg with a probability ௔ܲ ∈
ሾ0,1ሿ. In this case, the host bird can either throw 
away the egg or abandon the nest and build a 
completely new nest. For simplicity, the 
assumption is that the egg is thrown away and the 
nest stays in the same place.  

As shown in Fig. 1, the CSA starts out with an 
initial population of cuckoos (robots in the context of 
odor source localization), having laid some eggs in the 
host bird’s nest. The eggs that are more similar to the 
host’s eggs have an opportunity to grow up and enter 
the next generation. Other eggs are killed by the hosts. 

 

Figure 1: A flowchart of the classical and improved CSAs. 
The red lines represent the procedures added during the 
improved CSA while the black lines are the steps in the 
classical CSA. 

To maximize the eggs’ survival rates, the cuckoos 
search for the most suitable habitat and immigrate 
toward it using Lévy Flight, a flight style of a lot of 
birds. They will end up inhabiting somewhere near 
the best habitat and lay their egg within a certain 
distance from their position. In the classical CSA, this 
process would continue until most cuckoos gather at 
one position. However, in the proposed improved 
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CSA, this process continues until some cuckoos 
gather around the same position, forming a colony in 
that area and occupying that area as their territory. 
Any cuckoo that lands on a territory is kicked out 
using Lévy Flight with a large step size. After the 
program terminates, each territory would be declared 
as a source.  

3.1 The Improved CSA 

The cuckoos are distributed at random positions on 
the coordinate plane. ܴ௜	ሺ݅ ൌ 1,2,⋯ ,ܰሻ contains the 
positions of the cuckoos on the coordinate plane 
where ܰ is the number of cuckoos and ܴ௜ ൌ ሺݔ௜,  ௜ሻݕ
is the position of the i-th cuckoo with ݔ௜ being the x-
coordinate of the i-th cuckoo and ݕ௜  being the y-
coordinate of the i-th cuckoo.  

The cuckoos would be flying and forming 
colonies in ܶ, the entire area, where 

ܶ ൌ 	 ሼሺݔ, ݔ	|	ሻݕ ∈ ሾ0, ܽሿ, ݕ ∈ ሾ0, ܾሿሽ (4)

The Lévy Flight random walk is used to update 

the position of the cuckoos given a step size. While 
the targeted gas still remain undiscovered, the i-th 
cuckoo during the g-th generation would update its 
position based on the following formula: 

ܴ௜,௚ାଵ ൌ ܴ௜,௚ ൅ ௜ (5)ܮ

where ܴ௜,௚ାଵ is the position the i-th cuckoo would fly 
to in the next generation, and ܴ௜,௚ is the i-th cuckoo’s 
current position. ܮ௜ ൌ ܽ ⊕  ሺλሻ for the i-th cuckooܮ
where ܽ  is the step size, ܮሺλሻ  satisfies the Lévy 
distribution, and ⊕ means entry-wise multiplication. 
The Lévy Flight provides a random walk with a 
random step length drawn from a Lévy distribution. 

ߤ~	ݕݒéܮ ൌ ,ఒିݐ ሺ1 ൏ λ ൑ 3ሻ (6)

Because Lévy distribution (6) has an infinite 

variance with infinite mean, the solution generated by 
the Lévy distribution can be too far away from the old 
solution and jump outside of the bounds when ݐ is too 
small. The random step length is generated using 
Mantegna's algorithm which follows the symmetric 
Lévy distribution. A simplified version of Mantegna 
algorithm in Yang and Deb (2010) is used in this 
study as it does not apply nonlinear transformation to 
generate Lévy Flight, making Lévy Flight easier to 
calculate. 

After traces of the targeted gas is discovered, the 
i-th cuckoo during the g-th generation would update 
its position based on the following formula: 

ܴ௜,௚ାଵ ൌ ൜
ܴ௕௘௦௧ ൅ ௜ܮ 	if	݅	 ് ௕ܰ௘௦௧
ܴ௕௘௦௧ if	݅ ൌ ௕ܰ௘௦௧

 (7)

 
where ܴ௕௘௦௧ is the current best solution, being ௕ܰ௘௦௧-
th cuckoo in the population.  

Every time the position of the cuckoo is updated, 
a random number ݎ is generated and compared with a 
discovery rate ௔ܲ, such that if ݎ ൏ ௔ܲ , the current egg 
is discarded. The cuckoos would attempt to declare 
territories after a certain number of generations 
(defined by the user) to determine ଴ܶ , the area the 
cuckoos will be flying in during the next generation, 
which is  

଴ܶ ൌ ܶ/ራ ௜ܶ

௣

௜ୀଵ

 (8)

 

where ݌  is the number of existing groups ܩ௜	ሺ݅ ൌ
1,2, . . . ,  ௜, is a square withܩ ሻ in ܶ. ௜ܶ, the territory of݌
a side length of ܾ such that 

௜ܶ ൌ ሼሺݔ௜, ௜ݔ|௜ሻݕ ∈ ቂܩ௜,௕௘௦௧ െ
௕
ଶ
, ௜,௕௘௦௧ܩ ൅

௕
ଶ
ቃ, 

௜ݕ ∈ ሾܩ௜,௕௘௦௧ െ
௕
ଶ
, ௜,௕௘௦௧ܩ ൅

௕
ଶ
ሿ	ሽ 

(9)


where ܩ௜,௕௘௦௧ is the local best within ܩ௜.  

If ௜ܶ overlaps with ௝ܶ 	, the territory of ܩ௝, ܩ௜ and 
  ௝ would share territories such thatܩ

௜ܶ ൌ ௝ܶ ൌ ௜ܶ ∪ ௝ܶ (10)


The foreign cuckoos in the ௜ܶ 	ሺ݅ ൌ 1,2,⋯ , ݌ ) 
would be chased out with a large step size Lévy 
Flight.  

The complete improved CSA can be described as 
the following Algorithm 1. In which, the parameters 
ܾ  and ෡ܰ  need special attention when implementing 
the algorithm. If ܾ is too large, the algorithm runs the 
risk of combining multiple sources into one source, 
while if ܾ  is too small, the algorithm might 
considering different parts of one source as two 
different sources. Theoretically speaking, ܾ should be 
approximately the average length of each plume’s 
shortest secant passing through the plume’s center in 
a two-dimensional plane. However, this can be hard 
to calculate in the real world when the distribution of 
the sources is unknown. If ෡ܰ  is too large, some 
sources might never be found and the algorithm might 
get stuck when multiple groups of robots are each 
located at a different source while none of them is 
greater than	 ෡ܰ, while if ෡ܰ is too small, the algorithm 
might not be able to locate the sources accurately. 
Generally speaking, a large ෡ܰ  means slower 
searching speed and higher searching accuracy. The 
number of sources, ܰ  and  ܾ  should be considered 
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when setting ෡ܰ . A larger ܰ  and ܾ  require a 
larger	 ෡ܰ	to maintain the accuracy of the algorithm. 
However, a ෡ܰ  larger than optimum increases the 
searching time of the algorithm. As the number of 
sources increases in the area, ෡ܰ should decrease so 
there are enough robots to spread between different 
sources at the same time. In order for the algorithm to 
search with great accuracy, the sources should be 
distant enough such that parts from multiple plumes 
can’t be contained by a ܾ ൈ ܾ square.  

When the initial position of the robots are far 
away from the largest source, the improved CSA can 
actually find all the sources more quickly and more 
accurately than the classical CSA can find the largest 
source. This means when the boundaries of the area 
to be searched remains unknown, the improved CSA 
can be more suitable for the task of searching for the 
largest source than the classical CSA.  

Algorithm 1: Improved CSA. 

 
 

4 SIMULATION RESULTS 

In this section, the searching time and accuracy of the 
classical CSA and the improved CSA are compared 
with different initial positions of the nests. We setup 
sources 1-7 in the designated area, located at (10,10), 
(23,45), (45,10), (40,45), (30,30), (13,35), and 
(25,16) respectively, with source 1 being the largest 
source. Figs. 2 and 3 show the concentration of the 
odor around the designated area calculated by the 
GDM. 

 

Figure 2: 3D graph of odor sources. 

 

Figure 3: Countour graph of odor sources. 

In the following simulation, N is set to be 50. The 
max CPU time (max_CPUTime) is set to be 0.15, but 
this can give various results depending on the 
computer’s running speed. 	 ෡ܰ is set to be 5 and b is 
set to be 6. For classical CSA the requirement is to 
find the largest source, while for the improved CSA 
the requirement is to find all sources in the designated 
area. Each case is run 100 times. In order to estimate 
the total searching time, we assume that the searching 
time in the g-th generation is given as 

௚ݐ ൌ max
௜
௜,௚ܦ  ݀݁݁݌ݏ/

where ܦ௜,௚ ൌ ඥሺݔ௜,௚ାଵ െ ௜,௚ሻଶݔ ൅ ሺݕ௜,௚ାଵ െ  ௜,௚ሻଶݕ
denotes the i-th cuckoo’s flying distance in the g-th 

1. Initialization 
Initialize the positions of the cuckoos 
Find current best 

2. Iterative Process 
     while (current_Time൏max_CPUTime) 

for every nest 
Use Lévy Flight to immigrate to new 
 location 
if ݎ ൏ ௔ܲ 

Egg is thrown away. 
              Find new best 
                  end if 

end for 
if cuckoos found within a square of side 

      length ܾ of  a cuckoo ൒ ෡ܰ 
                  Find the local best in these cuckoos. 
                  Create territory centered at ܩ௜,௕௘௦௧. 

        if new territory overlaps with pre- 
existing territories 

            Combine territory based on (10) 
end if 

              end if 
              while ܴ௜,௚ାଵis in ௜ܶ 	ሺ݅ ൌ 1,2,⋯ ,  ሻ݌
                        Use Levy Flight with a larger step 
                        to relocate. 
              end while 
        end while 

return current best 
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generation and speed is set to be 3600 meters/hour in 
this simulation. Then the total searching time can be 
estimated as 

୲୭୲ୟ୪ݐ ൌ ∑ ௚ݐ
୫ୟ୶	_୥ୣ୬ୣ୰ୟ୲୧୭୬
௚ୀଵ . 

 
(a) 

 
(b) 

 
(c) 

Figure 4: Searching procedure of improved CSA. 

Fig. 4 shows the searching procedure of the 
improved CSA. In Fig. 4(a), the initial cuckoo 
population is uniformly distributed. In Fig. 4(b), two 
sources are found by the cuckoos in twenty 
generations. In Fig. 4(c), all four sources are found by 
the cuckoos in forty generations, with the location of 

the source located within the squares, and for most of 
the time relatively near the center of the square. 

4.1 The Initial Cuckoo Distribution 

Two different initial distributions, one is uniform and 
the other is far from largest source, are experimented 
to compare the efficiency of the conventional Cuckoo 
Search and the Improved Cuckoo Search. 

When the cuckoos are distributed uniformly 
across the area (shown in Fig. 4(a)), the classical CSA 
achieves its requirement only slightly faster than the 
improved CSA most of the time. This is because the 
improved CSA would have to cover extra distance to 
find all the sources while the classical CSA only 
needs to find the main source. However, the time it 
takes for the improved CSA to find all four sources is 
generally within the range of time the classical CSA 
takes to find the largest source. From Fig. 5, we can 
see that the accuracies of the CSAs are similar, with 
the classical CSA having 98% accuracy and the 
improved CSA having 95% accuracy.  

 

Figure 5: Accuracy and searching time of classical and 
improved CSA when cuckoos are uniformly distributed. 

When the initial distribution of the cuckoos are far 
from the main source (shown in Fig. 6), the improved 
CSA can outperform the classical CSA. This is 
because the cuckoos can get trapped in local sources 
that are not the largest source in the classical CSA 
while the idea of territories in the improved CSA 
eliminates that problem. 

It can be seen from Fig. 7 that, the accuracy of the 
classical CSA is 16% when the cuckoos’ initial 
positions are far from the largest source while the 
accuracy of the improved CSA is 85%. Even though 
both algorithms have increased searching time and 
decreased searching accuracies, the change in initial 
positions has a minor impact on the improved CSA 
when compared to its impact on the classical CSA. 
This shows that the improved CSA is not as restricted 
to its initial positions as the classical CSA and 
therefore when the area of search remains unknown 
and the robots cannot be uniformly distributed, using 
the improved CSA to find the absolute maximum can 
be faster than using the classical CSA. 
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Figure 6: Initial distribution far from the largest source. 

 

Figure 7: Accuracy and searching time of classical and 
improved CSAs when cuckoos population is distributed far 
from the largest source. 

4.2 The Number of Sources 

In this subsection, the performances of the classical 
CSA and the Improved CSA are compared with 
different number of sources set up in the designated 
area. Table 1 records the median of the searching time 
of the algorithms in 100 trials while Table 2 records 
the accuracy of the algorithms in those trials. 

Table 1: Searching time of the algorithms with different 
number of sources. 

Sources in the 
area 

Classical CSA 
Time 

Improved CSA 
Time 

1-2 0.4508 0.4467 
1-4 0.8376 0.8294 
1-6 0.9926 1.3213 
1-7 1.1013 2.6410 

Table 2: Accuracy of the algorithms with different number 
of sources. 

Sources in the 
area 

Classical CSA 
accuracy 

Improved CSA 
accuracy 

1-2 100% 98% 
1-4 100% 97% 
1-6 98% 98% 
1-7 97% 96% 

 
From Table 1 we can conclude even though both 

algorithms search at increased time as the number of 
sources increases, the improved CSA’s searching 

time increases at a faster rate compared to that of the 
classical CSA. This is because the improved CSA has 
to search for all the sources and therefore the more 
sources there are the more time it needs to find all of 
them while for the classical CSA the sources only add 
distractions to finding the largest source. From Table 
2 we can conclude that the accuracy of both 
algorithms are mostly maintained. Because of the 
uniform distribution of the initial nest positions in this 
simulation, the increase in the sources did not affect 
the accuracy of the CSAs by much since they can 
easily spot the different sources.  

4.3 The Number of Cuckoos 

In this subsection, the classical CSA and the 
Improved CSA are simulated with different number 
of cuckoos. Because ܰ  is significantly changed, ෡ܰ  
needs to change accordingly to maintain the accuracy 
and speed of the improved CSA. We set ෡ܰ  to be 
12%ܰ  in this experiment because it gives us a 
relatively good ෡ܰ  to work with most of the time. 
However, there can be a ෡ܰ that gives better results in 
the different cases. In the case of 50 cuckoos, a better 
෡ܰ  to use is 5 instead of the output of the formula 
which is 6, and that’s why we set ෡ܰ	5 in the previous 
simulations with 50 nests. Nonetheless, in this 
subsection we would use the number calculated by 
the formula as our ෡ܰ such that there’s less confusion. 

Table 3 records the median of the searching time 
of the algorithms in 100 trials while Table 4 records 
the accuracy of the algorithms in those trials. Table 3 
shows the number of cuckoos has a large effect on the 
speed of the improved CSA. While the speed of the 
improved CSA slightly increases with an increase in 
number of cuckoos, the number of cuckoos during the 
search has a larger impact on the classical CSA than 
the improved CSA. From Table 4 we can see that 
while the number of cuckoos generally don’t have a 
big effect on the accuracy of both algorithms, the 
accuracy and speed for the improved CSA decreased 
sharply with the case of 10 cuckoos. This is because 
there is no good  ෡ܰ  for the case with 10 cuckoos. 
While according to our calculation ෡ܰ should be 2 in 
the case of 10 cuckoos, it is really not a good ෡ܰ 
because this means once two cuckoos meet they 
would declare that area as a source, leading to 
declaration of incorrect areas as sources. However, a  
෡ܰ larger than 2 would mean that the cuckoos have to 
be less dispersed which means when the cuckoos 
encounter a source, they might have to move away 
from it to meet other cuckoos at another source 
located further away from them, which greatly 
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increases the searching time. Nonetheless, if 
improvements in accuracy is needed, a ෡ܰ of 4 is able 
to increase the accuracy to around 85%, but with a 
tradeoff in time for as long as 4.4918.  

Table 3: Searching time of the algorithms with different 
number of cuckoos. 

Number of 
Cukoos 

Classical CSA 
Time 

Improved CSA 
Time 

10 1.9161 1.7611 
30 1.1818 1.2394 
50  0.7873 1.1571 
70 0.3717 1.0639 

Table 4: Accuracy of the algorithms with different number 
of cuckoos. 

Nummber of 
Cuckoos 

Classical CSA 
accuracy 

Improved CSA 
accuracy 

10 89% 72% 
30 99% 95% 
50 100% 93% 
70 100% 93% 

5 CONCLUSIONS 

In this paper, an algorithm for the multiple odor 
sources localization problem based on an improved 
CSA has been proposed. The improved CSA uses the 
ideas of territories and colonies to solve multiple odor 
sources localization problem and is able to accurately 
find all the sources in a relatively short period of time 
with great accuracy. Simulation results show that the 
improved CSA can successfully search for all the 
odor sources in the area for mostly above 90% of the 
times. In future work, we will try to shorten the 
searching time this algorithm takes and possibly 
derive a formal formula to use for ෡ܰ.  
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