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Abstract: This paper concerns discounted Markov decision processes with a fuzzy reward function triangular in shape.
Starting with a usual and non-fuzzy Markov control model (Hernández-Lerma, 1989) with compact action
sets and reward R, a control model is induced only substituting R in the usual model for a suitable triangular
fuzzy function R̃ which models, in a fuzzy sense, the fact that the reward R is “approximately” received. This
way, for this induced model a discounted optimal control problem is considered, taking into account both a
finite and an infinite horizons, and fuzzy objective functions. In order to obtain the optimal solution, the partial
order on the α-cuts of fuzzy numbers is used, and the optimal solution for fuzzy Markov decision processes
is found from the optimal solution of the corresponding usual Markov decision processes. In the end of the
paper, several examples are given to illustrate the theory developed: a model of inventory system, and two
others more in an economic and financial context.

1 INTRODUCTION

In various applied areas, such as engineering, opera-
tions research, economics, finance, and artificial in-
telligence, among others, the data required to propose
a mathematical model present ambiguity, vagueness
or approximate characteristics of the problem of in-
terest (see, for instance, (Fakoor et al., 2016), (Efendi
et al., 2018)). Under this context, it is possible to find
in the literature the approach of fuzzy numbers to in-
corporate this kind of characteristics or assertions to
mathematical models. The basic theory on the sub-
ject of fuzzy numbers was proposed by L. Zadeh in
his seminal article written in 1965, which is entitled:
“Fuzzy Sets” (Zadeh, 1965). Subsequently, various
research articles and texts referring to the fuzzy the-
ory can be found in the literature on the subject, more-
over, it is possible to locate extensions of the theory in
other fields of mathematical sciences, such as control
theory, see (Driankov et al., 2013).

In this manuscript, the authors provide a Markov
decision process (MDP, in plural MDPs) with a finite
state space, compact action sets and fuzzy character-
istics in its payoff or reward function. The idea is the
following: a crisp Markov control model (MCM) is
considered, that is, an MCM of the type that has been

analyzed in (Hernández-Lerma, 1989), with reward R
as a basis, and a new MCM is induced changing only
R for a reward function with fuzzy values. Specifi-
cally, the authors assume that the fuzzy reward func-
tion is triangular. This way, the fuzzy control prob-
lem consists of determining a control policy that max-
imizes the expected total discounted fuzzy reward,
where the maximization is made with respect to the
partial order on the α-cuts of fuzzy numbers.

It is important to mention that triangular fuzzy
numbers have been extensively studied and applied in
fuzzy control (Pedrycz, 1994). Furthermore, the tri-
angular fuzzy numbers could be used to approximate
an arbitrary fuzzy number (see (Ban, 2009) and (Zeng
and Li, 2007)).

The methodology that is followed in this article
to guarantee the existence of optimal policies in the
fuzzy problem consists in applying the existence of
optimal policies and the validity of dynamic program-
ming for the crisp control problem, as well as certain
properties of the fuzzy triangular numbers.

To illustrate the theory developed several exam-
ples are given: a model of inventory system, and two
more in an economic and financial context.

In a short summary, the main contribution of the
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article is to present an extension of the standard dis-
counted MDPs to discounted MDPs with fuzzy re-
wards. In a general way, a fuzzy reward considered
models the fact that a non-fuzzy reward is “approxi-
mately” received (in a fuzzy sense), and it is obtained
that the optimal control of the fuzzy MDP coincides
with the optimal control of the non-fuzzy one and the
optimal value function for the fuzzy MDP is “approx-
imately” (in a fuzzy sense) the optimal value function
of the non-fuzzy MDP (see Theorem 4.6 and Remark
4.7, below).

Research works related to the topic developed
here are the following: (Kurano et al., 2003) and
(Semmouri et al., 2020). In (Kurano et al., 2003)
a fuzzy control problem with finite state and action
spaces is examined. Under this same context, (Sem-
mouri et al., 2020) presents the problem of maximiz-
ing the total expected discounted reward through the
use of ranking functions.

The paper is organized as follows. Section 2
presents the basic results about fuzzy numbers (arith-
metic, metric, order, among others) as well as the
notation used in subsequent sections. The following
section presents a sketch of definitions and results re-
garding the control problem under the criterion of ex-
pected total discounted reward for both, finite and in-
finite horizons. Section 4 presents the main results
of the paper. In this section the theory on the fuzzy
control problem is studied under the criterion of a to-
tal expected discounted reward. Finally, in Sections
5 and 6 examples to illustrate the theory developed
are given. One of them refers to an inventory con-
trol system considered in a fuzzy environment; this
example is taken into account with a finite planning
horizon. The other two examples refer to finance and
economics issues addressed in (Webb, 2007) for the
crisp versions, and then the respective fuzzy versions
are given in this document. Both examples contem-
plate an infinite horizon.

2 BASIC THEORY OF FUZZY
NUMBERS

In this section definitions and results about the fuzzy
theory are presented. The fuzzy set theory was pro-
posed by Zadeh in 1965 (Zadeh, 1965), an interesting
feature of using a fuzzy approach is that it allows the
use of linguistic variables such as: low, very, high,
advisable, highly risky, etc. The following definition
describes the concept of a fuzzy number.
Definition 2.1. Let Θ be a non-empty set. Then a
fuzzy set A on Θ is defined in terms of the member-
ship function µ, which assigns to each element of Θ

a real value from the interval [0,1]. Consequently a
fuzzy set A can be expressed as a set of ordered pairs:
{(x,µ(x)) : x ∈Θ}.

The value µ(x) in the previous definition repre-
sents the degree to which the element x verifies the
characteristic property of a set A ⊂ Θ. Then, using
the membership function, a fuzzy number can be de-
fined as follows.

Definition 2.2. A fuzzy number A is a fuzzy set de-
fined on the real numbers R characterized by means
of a membership function µ, µ : R−→ [0,1],

µ(x) =


0, x≤ a
l(x), a < x≤ b
1, b < x≤ c
r(x), c < x≤ d
0, d < x,

(1)

where a,b,c, and d are real numbers, l is a non-
decreasing function and r is a non-increasing func-
tion. The functions l and r are called the left and right
side of fuzzy number A, respectively.

In the manuscript the following class of fuzzy
numbers are considered.

Definition 2.3. A fuzzy number A is called a triangu-
lar fuzzy number if its membership function has the
following form:

µ(x) =



0, x < a
x−a
β−a

, a≤ x≤ β

γ− x
γ−β

, β≤ x≤ γ

0, x > γ,

(2)

i.e. making l(x) =
x−a
β−a

and r(x) =
γ− x
γ−β

in (1),

where a, γ and β are real numbers such that a< β< γ.
In the subsequent sections, a triangular fuzzy number
is denoted by µ = (a,β,γ).

The next example shows a triangular fuzzy num-
ber.

Example 2.4. Figure 1 illustrates a graphical rep-
resentation of the triangular fuzzy number A =
(1/2,3,7).

Definition 2.5. Let A be a fuzzy number with a mem-
bership function µ and let α be a real number of the
interval [0,1]. Then the α-cut of A, denoted by µα, is
defined to be the set {x ∈Θ : µ(x)≥ α}.
Remark 2.6. a) Equivalently to Definition 2.2, a

fuzzy number is a fuzzy set with a normal mem-
bership function, i.e. there exists x ∈ Θ such that
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Figure 1: A triangular fuzzy number.

µ(x) = 1 (Klir and Yuan, 1996). Let F(R) denote
the set of all fuzzy numbers.

b) According to Definition 2.2 and Definition 2.5,
for a fuzzy number A, its α-cut set, µα =
[A−(α),A+(α)] is a closed interval, where
A−(α) = inf{x : µA(x)≥ α} and A+(α) = sup{x :
µA(x) ≥ α}. Consequently, for each α ∈ [0,1],
(a,β,γ)α = [(β− a)α+ a,γ− (γ−β)α] for trian-
gular fuzzy numbers.

Definition 2.7. Let ? denote any of the four basic
arithmetic operations and let A and B be fuzzy num-
bers. Then, a fuzzy set is defined on R, A ?B, by the
expression

µA?B(u) = supu=x?y min{µA(x),µB(y)}, (3)

for all u ∈ R.

A direct consequence of the previous definition is
the following result.

Lemma 2.8. If A = (al ,am,au) and B = (bl ,bm,bu)
are two triangular fuzzy numbers, then the basic op-
erators for triangular fuzzy numbers are as it follows,

a) A⊕B = (al +bl ,am +bm,au +bu);
b) A	B = (al−bu,am−bm,au−bl);
c) A⊗B = (min{albl ,albu,aubl ,aubu},ambm,

max{albl ,albu,aubl ,aubu});
d) A�B = (min{al/bl ,al/bu,au/bl ,au/bu}),

am/bm,max{al/bl ,al/bu,au/bl ,au/bu}).
e) λA = (λal ,λam,λau), for each λ≥ 0.

Let D denote the set of all closed bounded inter-
vals A = [al ,au] on the real line R. For A,B ∈ D,
A = [al ,au], B = [bl ,bu] define

d(A,B) = max(|al−bl | , |au−bu|). (4)

It is possible to check that d defines a metric on D
and (D,d) is a complete metric space.

Furthermore, for A,B ∈ D define: A . B if and
only if al ≤ bl and au ≤ bu, where A = [al ,au] and

B = [bl ,bu]. Note that “.” is a partial order in D.

Now, define d̂ : F(R)×F(R)−→ R by

ρ(µ,ν) = supα∈[0,1]d(µα,να), (5)

with µ,ν ∈ F(R). It is straightforward to see that ρ is
a metric in F(R) (Kurano et al., 2003).

Furthermore, for µ,ν ∈ F(R) define

µ 4 ν i f and only i f µα . να (6)

with α ∈ [0,1].

Remark 2.9. Observe that “4” corresponds to a
partial order of F(R). A partial order is a reflexive,
transitive and antisymmetric binary relation (Alipran-
tis and Border, 2006). In this case, (F(R),4) is a par-
tially ordered set or poset. Moreover, if x̃ satisfies that
x 4 x̃ for each x ∈ F(R), then x̃ is an upper bound for
F(R). If the set of upper bounds of F(R) has a least
element, then this element is called the supremum of
F(R) (Topkis, 1998).

The proof of the following result can be consulted
in (Puri et al., 1993).

Lemma 2.10. The metric space (F(R),ρ) is com-
plete.

Definition 2.11. A sequence {ln} of fuzzy numbers is
said to be convergent to the fuzzy number l, written as
limn−→∞ ln = l, if for every ε> 0 there exists a positive
integer N such that ρ(ln, l)< ε for n > N.

The following result is an extension of Lemma 2.8
and its proof is straightforward.

Lemma 2.12. For triangular fuzzy numbers the fol-
lowing statements hold:

a) If {(an
l ,a

n
m,a

n
u) : 1≤ n≤ N} where N is a positive

integer, then

N⊕
n=1

(an
l ,a

n
m,a

n
u) = (

N

∑
n=1

an
l ,

N

∑
n=1

an
m,

N

∑
n=1

an
u).

b) If un = {(an
l ,a

n
m,a

n
u) : 1 ≤ n} and ∑

∞
n=1 an

i <
∞, i ∈ {l,m,u}, then Sn :=

⊕n
m=1 Xm,n ≥

1, converges to the triangular fuzzy number
(∑∞

n=1 an
l ,∑

∞
n=1 an

m,∑
∞
n=1 an

u).

The next remark provides the Zadeh’s extension
principle which provides a general method for fuzzi-
fication of non-fuzzy mathematical concepts.

Remark 2.13 (Zadeh’s Extension Principle). Let L be
a function such that L : X −→ Z and let A be a fuzzy
subset of Θ with a membership function µ. Zadeh’s
extension of L is the function L̂ which, applied to A
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gives the fuzzy subset L̂(A) of Z with the membership
function given by

µ̂(z) =
{

supx∈L−1(z)µ(x), L−1({z}) 6=∅
0, L−1({z}) =∅.

(7)

Observe that, if A is a fuzzy subset of Θ, with the mem-
bership function µ, and if L is bijective, then the mem-
bership function of L̂(A) is given as follows

µ̂(z) = sup{x:L(x)=z}µ(x)

= sup{x∈L−1(z)}µ(x)

= µ(L−1(z)).

Now, a fuzzy random variable will be defined. In this
case, the definition proposed in (Puri et al., 1993) will
be adopted.

Definition 2.14. Let (Ω,F ) be a measurable space
and (R,B(R)) be the measurable space of the real
numbers. A fuzzy random variable is a function X̃ :
Ω −→ F(R) such that for all (α,B) ∈ [0,1]×B(R),
{ω ∈ Ω : X̃α∩B 6= ∅} ∈ F . Equivalently, X̃ must be
viewed as a generalized interval with a membership
function µ and α-cut: X(ω)α = [X−(ω),X+(ω)].

Definition 2.15. Let (Ω,F ,P) be a probability space
and let X̃ be a discrete fuzzy random variable with
the range {s̃1, s̃2, ..., s̃l} ⊆ F(R). The mathematical
expectation of X̃ is a fuzzy number, E(X̃), such that

E(X̃) =
l⊕

i=1

s̃iP(X̃ = s̃i). (8)

A proof of the following result should be consulted in
(Puri et al., 1993).

Lemma 2.16. Let X̃ and Ỹ be discrete fuzzy random
variables with finite range. Then

a) E[X̃ ] ∈ F(R).
b) E[X̃ + Ỹ ] = E[X̃ ]+E[Ỹ ].
c) E[λX̃ ] = λE[X̃ ], λ≥ 0.

3 DISCOUNTED MARKOV
DECISION PROCESSES WITH
FUZZY REWARD FUNCTIONS

In this section the theory on Markov decision pro-
cesses necessary for this article is introduced. This
kind of processes are used to model dynamic systems
in a discrete time. Firstly the optimal control prob-
lem with a crisp reward is presented, later the reward
function is changed by a fuzzy reward function and
the new optimal control problem is given.

3.1 Markov Decision Models

Detailed literature on the theory of Markov deci-
sion processes can be consulted in the references:
(Hernández-Lerma, 1989) and (Puterman, 1994).

A Markov decision model is characterized by the
following five-tuple:

M := (X ,A,{A(x) : x ∈ X},Q,R), (9)

where
a) X is a finite set, which is called the state space.

b) A is a Borel space, A is denominated the control
or action space.

c) {A(x) : x ∈ X} is a family of nonempty subsets
A(x) of A, whose elements are the feasible ac-
tions.

c) Q is the transition law, which is a stochastic ker-
nel on X given K := {(x,a) : x∈X ,a∈A(x)}, K is
denominated the set of feasible state-actions pairs.

d) R : K−→ R is the one-step reward function.
Now, given a Markov control Model M, the concept
of policy will be introduced. A policy is a sequence
π = {πt : t = 0,1, ...} of stochastic kernels πt on the
control set A given the history Ht of the process up to
time t, where Ht := K×Ht−1, t = 1,2, ... and H0 =
X . The set of all policies will be denoted by Π. A
deterministic Markov policy is a sequence π = { ft}
such that ft ∈ F, for t = 0,1, ..., where F denotes the
set of functions f : X −→ A such that f (x) ∈ A(x),
for all x ∈ X . A Markov policy π = { ft} is said to be
stationary if ft is independent of t, i.e., ft = f ∈ F, for
all t = 0,1, .... In this case, π is denoted by f and F is
denominated the set of stationary policies.

Let (Ω,F ) be the measurable space consisting
of the canonical sample space Ω = H∞ := (X ×
A)∞ and F be the corresponding product σ-algebra.
The elements of Ω are sequences of the form ω =
(x0,a0,x1,a1, ...) with xt ∈ X and at ∈ A for all t =
0,1, .... The projections xt and at from Ω to the sets
X and A are called state and action variables, respec-
tively.

Let π = {πt} be an arbitrary policy and µ be an
arbitrary probability measure on X called the initial
distribution. Then, by the theorem of C. Ionescu-
Tulcea (Hernández-Lerma, 1989), there is a unique
probability measure Pπ

µ on (Ω,F ) which is supported
on H∞, i.e., Pπ

µ (H∞) = 1. The stochastic process
(Ω,F ,Pπ

µ ,xt) is called a discrete-time Markov control
process or a Markov decision process.

The expectation operator with respect to Pπ
µ is de-

noted by Eπ
µ . If µ is concentrated at the initial state

x ∈ X , then Pπ
µ and Eπ

µ are written as Pπ
x and Eπ

x , re-
spectively.
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The transition law of a Markov control process
(see 9) is often specified by a difference equation of
the form

xt+1 = F(xt ,at ,ξt), (10)

t = 0,1,2, ..., with x0 = x ∈ X known, where {ξt} is
a sequence of independent and identically distributed
(i.i.d.) random variables with values in a finite space
S and a common distribution ∆, independent of the
initial state x0. In this case, the transition law Q is
given by

Q(B|x,a) = E[IB(F(x,a,ξ))],

B⊆ X , (x,a) ∈ K, E is the expectation with respect to
distribution ∆, ξ is a generic element of the sequence
{ξt} and IB(·) denotes the indicator function of the set
B.

Definition 3.1. Let (X ,A,{A(x) : x ∈ X},Q,R) be a
Markov model, then the expected total discounted re-
ward is defined as follows:

v(π,x) := Eπ
x

[
∞

∑
t=0

β
tR(xt ,at)

]
, (11)

π ∈Π and x ∈ X, where β ∈ (0,1) is a given discount
factor. Furthermore, the T -stage expected total dis-
counted reward, for each x ∈ X and π ∈Π, is defined
as follows:

vT (π,x) := Eπ
x

[
T−1

∑
t=0

β
tR(xt ,at)

]
, (12)

where T is a positive integer.

Definition 3.2. The optimal value function is defined
as

V (x) := supπ∈ΠV (π,x), (13)

x ∈ X. Then the optimal control problem is to find a
policy π∗ ∈Π such that

v(π∗,x) =V (x),

x ∈ X, in which case, π∗ is said to be the optimal pol-
icy. Similar definitions can be stated analogously for
vT . In this case, VT denotes the optimal value func-
tion.

Assumption 3.3. a) For each x ∈ X, A(x) is a com-
pact set on B(A), where B(A) is the Borel σ-
algebra of space A.

b) The reward function R is a non negative and
bounded function.

c) For every x,y ∈ X, the mappings a 7→ R(x,a) and
a 7→ Q(y|x,a) are continuous in a ∈ A(x).

The proof of the following theorem can be con-
sulted in (Hernández-Lerma, 1989).

Theorem 3.4 (Dynamic Programming). Under As-
sumption 3.3 the following statements hold:

a) Define WT (x) = 0 and for each n = T −1, ...,1,0,
consider

Wn(x) = max
a∈A(x)

{R(x,a)+βE[Wn+1(F(x,a,ξ))]}.

(14)
x∈ X. Then for each n= 0,1, ...,T−1 there exists
fn ∈ F such that

Wn(x) = R(x, fn(x))+βE[Wn+1(F(x, fn(x),ξ))],

x∈X. In this case, π∗= { f0, ..., fT−1} is a Marko-
vian optimal policy and vT (π

∗,x) =W0(x), x ∈ X.
b) The optimal value function V , satisfies the follow-

ing dynamic programming equation:

V (x) = max
a∈A(x)

{R(x,a)+βE[V (F(x,a,ξ))]}, (15)

x ∈ X.
c) There exists a policy f ∗ ∈ F such that the control

f ∗(x) ∈ A(x) attains the maximum in (15), i.e. for
all x ∈ X,

V (x) = R(x, f ∗(x))+βE[V (F(x, f ∗(x),ξ))].
(16)

d) Define the value iteration functions as follows:

Vn(x)= min
a∈A(x)

{c(x,a)+βE[Vn−1(F(x, f ∗(x),ξ))]} ,

(17)
for all x∈ X and n = 1,2, . . ., with V0(·) = 0. Then
the value iteration functions converge point-wise
to the optimal value function V , i.e.

lim
n→∞

Vn(x) =V (x),

x ∈ X.

3.2 Objective Functions

Consider a Markov decision model M = (X ,A,{A(x) :
x ∈ X},Q, R̃), where the first four components are the
same as in the model given in (9). The fifth compo-
nent corresponds to a fuzzy reward function on K.

The evolution of a stochastic fuzzy system is as
follows: if the system is in the state xt = x ∈ X at time
t and the control at = a ∈ A(x) is applied, then two
things happen:

a) a fuzzy reward R̃(x,a) is obtained.

b) the system jumps to the next state xt+1 according
to the transition law Q, i.e.

Q(B|x,a) = Prob(xt+1 ∈ B|xt = x,at = a),

with B⊆ X .
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For each policy π ∈Π and state x ∈ X , let

ṽT (π,x) :=
T−1⊕
t=0

β
t Ẽπ

x
[
R̃(xt ,at)

]
, (18)

where T is a positive integer and Ẽπ
x is the expectation

with respect to P̃π
x and its expectation of a fuzzy ran-

dom variable is defined by (8). The expression given
in (18) is called the T -stage fuzzy reward. Further-
more, the following objective function will be consid-
ered:

ṽ(π,x) :=
∞⊕

t=0

β
t Ẽπ

x
[
R̃(xt ,at)

]
. (19)

In this way, the control problem of interest is the max-
imization of the finite/infinite horizon expected total
discounted fuzzy reward (see (18) and (19), respec-
tively). In the next section it will be proved that (18)
converges to the objective function (19) with respect
to the metric ρ (see (5)). The following assumption is
considered for the reward function of fuzzy model M.
Assumption 3.5. Let B,C and D be real numbers,
such that 0 < B <C < D. It will be assumed that the
fuzzy reward is a triangular fuzzy number (see Defini-
tion 2.3), specifically

R̃(x,a) = (BR(x,a),CR(x,a),DR(x,a)) (20)

for each (x,a) ∈ K, where R : K −→ R is the reward
function of the model introduced in Section 3.1.
Remark 3.6. Observe that, under Assumption 3.5
and Lemma 2.12, the T -stage fuzzy reward (18) is a
triangular fuzzy number.

4 OPTIMAL CONTROL
PROBLEM WITH FUZZY
REWARDS

In this section results will be presented which refer
to the convergence of the T -stage fuzzy reward (18)
to the infinite horizon expected total discounted fuzzy
reward (19). Later, the existence of optimal policies
and validity of dynamic programming will be verified.
Lemma 4.1. For each π ∈Π and x ∈ X,

lim
T−→∞

ρ(ṽT , ṽ) = 0,

where ρ is the Hausdorff metric (see (5)).

Proof. Let π ∈ Π and x ∈ X fixed. To simplify the
notation in this proof v = v(π,x) and vT = vT (π,x)
will be denoted. Then, according to (18) and (20) the
α-cut of the fuzzy reward function, is given by

∆
T : = (BvT ,CvT ,DvT )α

= [B(1−α)vT +αCvt ,D(1−α)vT +αCvT ].

Analogously, the α-cut of (19) is given by

∆ : = (Bv,Cv,Dv)α

= [B(1−α)v+αCv,D(1−α)v+αCv].

Hence, by (5), it is obtained that

ρ(∆T ,∆) = supα∈[0,1]d(∆
T
α ,∆α).

Now, due to the identity max(c,b) = (c + b +
|b− c|)/2 with b,c ∈ R, it yields that

d(∆T
α ,∆α) = (1−α)D(v− vT )+αC(v− vT ).

Then,

ρ(∆T ,∆) = supα∈[0,1](v− vT )(D−α(D−C))

= (v− vT )D.
(21)

Therefore, when T goes to infinity in (21), it con-
cludes that

lim
T−→∞

ρ(ṽT , ṽ) = lim
T−→∞

(v− vT )D

= 0.

The second equality is a consequence of the domi-
nated convergence theorem (see (11) and (12)).

Definition 4.2. The optimal control fuzzy problem
consists in determining a policy π∗ ∈Π such that

ṽ(π,x)4 ṽ(π∗,x),

for all π ∈Π and x ∈ X. In consequence,

ṽ(π∗,x) = supπ∈Πṽ(π,x),

for all x ∈ X (see Remark 2.9). In this case, the opti-
mal fuzzy value function is defined as follows:

Ṽ (x) = ṽ(π∗,x),

x ∈ X and π∗ is called the optimal policy of the fuzzy
optimal control problem. Similar definitions can be
stated for ṽT , the T -stage fuzzy reward, in this case
the optimal fuzzy value is denoted by ṼT .

A direct consequence of a previous definition and
Theorem 3.4 is the next result.

Theorem 4.3. Under Assumptions 3.3 and 3.5 the fol-
lowing statements hold.

a) The optimal policy π∗ of the crisp finite optimal
control problem (see (12)) is the optimal policy for
ṽT , i.e. ṽT (π

∗,x) = supπ∈ΠṽT (π,x) for all π ∈ Π

and x ∈ X.
b) The optimal fuzzy value function is given by

ṼT (x) = (BVT (x),CVT (x),DVT (x)), (22)

x ∈ X, where ṼT (x) = supπ∈ΠṽT (π,x), x ∈ X.

Theorem 4.4. Under Assumptions 3.3 and 3.5 the fol-
lowing statements hold:
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a) The optimal policy of the fuzzy control problem
is the same as the optimal policy of the optimal
control problem.

b) The optimal fuzzy value function is given by

Ṽ (x) = (BV (x),CV (x),DV (x)),x ∈ X . (23)

Proof. a) Let π ∈ Π and x ∈ X be fixed. First, ob-
serve that (19) is equivalent to

ṽ(π,x) := (Bv(π,x),Cv(π,x),Dv(π,x)),

as a consequence of Assumption 3.5. Then, the
α-cut of ṽ(π,x) is given by

ṽ(π,x)α = [Bv(π,x)+α(C−B)v(π,x),Dv(π,x)+
α(D−C)v(π,x)].

Now, by Theorem 3.4, there exists f ∗ ∈ F such
that

Bv(π,x)+α(C−B)v(π,x)≤ Bv( f ∗(x),x)+
α(C−B)v( f ∗(x),x),

Bv(π,x)+α(D−C)v(π,x)≤ Dv( f ∗(x),x)+
α(D−C)v( f ∗(x),x)

and since x ∈ X and π ∈Π are arbitrary, the result
follows, due to Definition 4.2.

b) By Theorem 4.4 a), it follows that

Ṽ (x) = (Bv( f ∗(x),x),Cv( f ∗(x),x),Dv( f ∗(x),x)),

for each x ∈ X , thus applying Theorem 3.4, it is
concluded that

Ṽ (x) = (BV (x),CV (x),DV (x)),x ∈ X .

It is important to observe that Assumption 3.5 could
be changed for the following one:

Assumption 4.5. Let B and D be real numbers, such
that 0 < B < R(x,a)< D for all x∈ X and a∈ A(x). It
will be assumed that the fuzzy reward is a triangular
fuzzy number of the type:

R̃(x,a) = (B,R(x,a),D) (24)

for each (x,a) ∈ K, where R : K −→ R is the reward
function of the model introduced in Section 3.1.

Note that it is possible to prove with similar ideas to
the ones given in the proof of Theorem 3.5 the follow-
ing result:

Theorem 4.6. Under Assumptions 3.3 and 4.5 the fol-
lowing statements hold:

a) The optimal policy of the fuzzy control problem
is the same as the optimal policy of the non-fuzzy
optimal control problem.

b) The optimal fuzzy value function is given by

Ṽ (x) = (
B

1−β
,V (x),

D
1−β

), (25)

x ∈ X.

Remark 4.7. Using Theorem 4.6, the main interpre-
tation of the fuzzy extension presented here is ob-
tained: the original non- fuzzy reward R is substi-
tuted by the fuzzy reward R̃(·, ·) = (B,R(·, ·),D) which
modelled the fact that “approximately” R, measured
in a fuzzy sense is gotten, and it is deduced that the
optimal control of the fuzzy MDP coincides with the
optimal control of the non-fuzzy one and the optimal
value function for the fuzzy MDP is “approximately”
(in a fuzzy sense) the optimal value function of the
non-fuzzy MDP.

5 A FUZZY INVENTORY
CONTROL SYSTEM

In this section, first a classical example of inventory
control system (Puterman, 1994) will be presented,
later a triangular fuzzy inventory control system will
be introduced. The optimal solution of the fuzzy
inventory is obtained by an application of Theorem
4.3 and the solution of the crisp inventory system.

The following example is addressed in (Puterman,
1994), below there is a summary of the points of
interest to introduce its fuzzy version. Consider
the following situation, in a warehouse where every
certain period of time the manager carries out an
inventory to determine the quantity of product stored.
Based on such information, a decision is made
whether or not to order a certain amount of additional
product from a supplier. The manager’s goal is
to maximize the profit obtained. The demand for
the product is assumed to be random with known
probability distribution. The following assumptions
will be treated to propose the mathematical model.

Inventory Assumptions.
a) The decision to additional order is made at the

beginning of the period and is delivered immedi-
ately.

b) Product demands are received throughout the pe-
riod of time but are fulfilled in the last instant of
the time of the period.

c) There are no unfilled orders.

c) Revenues and the distribution of demand do not
vary with the period.
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d) The product is only sold in whole units.

e) The warehouse has a capacity for M units, where
M is a positive integer.

Then, under previous assumption, the state space is
given by X := {0,1,2, ...,M}, the action space and ad-
missible action set are given by A := {0,1,2, ...} and
A(x) := {0,1,2, ...,M− x}),x ∈ X , respectively.

Now, consider the following variables: let xt de-
note the inventory at time t = 0,1, ..., the evolution
of the system is modeled by the following dynamic
system Lindley kind:

xt+1 = (xt +at −Dt+1)
+, (26)

with x0 = x ∈ X known, where

a) at denotes the control or decision applied in the
instant t and it represents the quantity ordered by
the inventory manager (or decision maker).

b) The sequence {Dt} is conformed by indepen-
dent and identically distributed non-negative ran-
dom variables with common distribution p j :=
P(D = j), j = 0,1, ..., where Dt denotes the de-
mand within the period of time t.

Observe that the difference equation given in (26) in-
duces a stochastic kernel defined on X given K :=
{(x,a) : x ∈ X ,a ∈ A(x)}, as follows

Q(Xt+1 ∈ (−∞,y])|Xt = x,at = a) = 1−∆(x+a−y),

where ∆ is the distribution of D with x ∈ X , y,a ∈
{0,1, ...} and Q(Xt+1 ∈ (−∞,y])|Xt = x,at = a) = 0,
if x ∈ X ,a ∈ {0,1, ...} and y < 0. Then it follows that

Q(Xt+1 = y|x,a)=


0 i f M ≥ y > x+a

px+a−y i f M ≥ x+a≥ y > 0

qx+a i f M ≥ x+a,y = 0

The step reward function is given by R(x,a) =
E[H(x + a− (x + a−D)+)], (x,a) ∈ K, where H :
{0,1, ...} → {0,1, ...} is the revenue function, which
is a known function and D is a generic element of
the sequence {Dt}. Equivalently, R(x,a) = F(x+a),
(x,a) ∈K, where

F(u) :=
u−1

∑
k=0

H(k)pk +H(u)qu, (27)

with qu := ∑
∞
k=u pk. The objective in this section is

to maximize the total discounted reward with a finite
horizon, see (18).

In particular, suppose that the horizon is T = 50,
the state space X = {0,1, ...,10}, the revenue function
H(u) = 10u and the transition law is given in Figure
2. Then, in accordance with Theorem 4.3, which was

programmed in the statistical software R using the
next algorithm:

Algorithm: To calculate the optimal value and opti-
mal policy.

Input: MDP
Output: The optimal value vector.

An optimal policy
Initialize WN(x,A) = 0, W ∗N(x) = 0,

KN(x) =W ∗N(x).
t = N−1

repeat

for x ∈ S do
fx = 0
a(x) = fx
W (x,a(x)) = R(x,a(x))+

β∑
Z
i=0 Q(y|x+a(x))Wt+1(y,0)

A(x) = 1, ...,M− x
for a ∈ A(x) do

Wt(x,a) = R(x,a)+
β∑

Z
y=0 Q(y|x+a)Wt+1(y,0)

if Wt(x,a)≥W (x,a(x)) do
W (x,a(x)) =Wt(x,a)

fx = a

end for

Wt(x) =Wt(x, fx)

Wt(x,0) =Wt(x)

if Wt(x)≥ Kt+1(x) do
Kt(x) =Wt(x)

W ∗(x) = Kt(x)
end for

t = n−1
until t = 0

In consequence, the output of the program is obtained
as illustrated in Figure 3. In this matrix the last col-
umn represents the optimal policy and the penulti-
mate column the value function, for each state x ∈
{0,1, ...,10}. The other input of the matrix represents
the following:

G(x,a) := R(x,a)+αE[W1(F(x,a,D))],
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Figure 2: Transition law.

(x,a) ∈K.
In conclusion, the optimal value function is

VT (x) = 693.39 for each x ∈ X and the optimal pol-
icy is given by f (x) = M− x, x ∈ X with M = 10.

Now, considering that in operations research it is
often difficult for a manager to control inventory sys-
tems, due to the fact that data in each stage of ob-
servation is not always is certain, then a fuzziness
approach should be applied. In this way, take into
account the previous inventory system in a fuzzy en-
vironment, that is, the reward function given in As-
sumption 3.5 will be considered:

R̃(x,a) = (BR(x,a),CR(x,a),DR(x,a)),

with 0<B<C <D. Then, by Theorem 4.3, it follows
that the optimal policy of the fuzzy optimal control
problem is given by

π̃
∗ = { f0, ..., fT−1},

where ft(x) = M − x, x ∈ X and the op-
timal value function is given by ṼT (x) =
(BVT (x),CVT (x),DVT (x)), x ∈ X .

6 ECONOMIC/FINANCIAL
APPLICATIONS

In this section, two examples on applications in Eco-
nomics and Finance are presented. Firstly the crisp
model of both examples and the respective solution is
proposed. Later a fuzzy version of these problems is
introduced.

6.1 Example 1

Let X = {χ0,χ1}, 0 < χ0 < χ1, A(χ) = [0,1], χ ∈ X .
The transition law is given by

Q({χ0}|χ0,a) = p, (28a)
Q({χ1}|χ0,a) = 1− p, (28b)

Q({χ1}|χ1,a) = q, (28c)
Q({χ0}|χ1,a) = 1−q, (28d)

for all a ∈ [0,1], where 0≤ p≤ 1 and 0≤ q≤ 1. The
reward is given by a function R(χ,a), (χ,a) ∈ K that
met:
Assumption 6.1. (a) R depends only of a, that is

R(χ,a) =U(a), for all (χ,a)∈K, where U is non-
negative and continuous.

(b) There is a∗ ∈ [0,1] such that

maxa∈[0,1]U(a) =U(a∗), (29)

for all χ ∈ X.
An interpretation of this example is given in the fol-
lowing remark.
Remark 6.2. The states χ0 and χ1 could represent
the behavior of a certain stock market, which is bad
(≡ χ0) and good (≡ χ1). It is assumed that , for each
a and t = 0,1, · · · , the probability of going from χ0 to
χ0 is p (resp. the probability of going from χ0 to χ1 is
1− p); moreover, for each a and t = 0,1, · · · , the prob-
ability of going from χ1 to χ1 is q (resp. the probabil-
ity of going from χ1 to χ0 is 1−q). Now, specifically,
suppose that in a dynamic portfolio choice problem,
two assets are available to an investor. One is risky-
free, and the risk-rate r > 0 is assumed known and
constant over time. The other asset is risky with
a stochastic return having mean µ and a variance
σ2. Following Example 1.24 in (Webb, 2007), the ex-
pected utility of the investor could be given for the
expression:

U(a) = aµ+(1−a)r− k
2

a2
σ

2, (30)

where a ∈ [0,1] is the fraction of its money that the
investor invests in the risky asset and the remainder
1− a, he/she invests in the riskless asset. In (30),
k represents the value that the investor places on
the variance relative to the expectation. Observe

that if µ >
kσ2

2
, then U defined in (30) is positive

in [0,1] (in fact, in this case U(0) = r > 0 and

U(1) = µ− kσ2

2
> 0 ); moreover, it is possible to

prove (see (Webb, 2007)) that if 0 < µ− r < kσ2, then
maxa∈[0,1]U(a) is attained for a∗ ∈ (0,1) given by
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Figure 3: V0 state-action matrix.

a∗ =
µ− r
kσ2 . (31)

Hence, taking R(χ,a) = U(a), χ ∈ X, and a ∈ [0,1],
where U is given by (30), and considering the last two
inequalities given in the previous paragraph, Assump-
tion 6.1 holds.
Lemma 6.3. Suppose that Assumption 6.1 holds.

Then, for Example 2, V (χ) =
U(a∗)
1−α

and f ∗(χ) = a∗,

for all χ ∈ X.

Proof. Firstly, the value iteration functions will be
found: Vn, for n = 1,2, . . ..
By definition,

V1(χ0) = max
a∈[0,1]

U(a), (32)

this implies that V1(χ0) =U(a∗). In a similar way, it
is possible to obtain that V1(χ1) =U(a∗).
Now, for n = 2,

V2(χ0) = max
a∈[0,1]

{U(a)+β[V1(χ1)(1− p)+V1(χ0)p]}

= U(a∗)+β[V1(χ1)(1− p)+V1(χ0)p]

= U(a∗)+β[U(a∗)(1− p)+U(a∗)p]

= U(a∗)+βU(a∗).

Analogously, V2(χ1) = U(a∗)+βU(a∗). Continuing
this way, it is obtained that

Vn(χ0)=Vn(χ0)=U(a∗)+βU(a∗)+. . .+β
n−1U(a∗),

(33)
for all n = 1,2, . . ..
By Theorem 3.4 d), Vn(χ)→ V (χ), n→ ∞, χ ∈ X ,

which implies that V (χ) =
U(a∗)
1−β

, χ ∈ X . And, from

the Dynamic Programming Equation (see (15)), it fol-
lows that f ∗(χ) = a∗, for all χ ∈ X .

Lemma 6.4. For the fuzzy version of Example 2, fol-
lowing Theorem 4.6, it results that

Ṽ (χ) =

(
0,

U(a∗)
1−β

,
D

1−β

)
,

χ ∈ X, with R̃(x,a) = (0,U(a),D), χ ∈ X, a ∈ A(χ),
where D >U(a∗) and f ∗(χ) = a∗, for all χ ∈ X.

6.2 Example 2

Let X = {χ0,χ1}, 0 < χ0 < χ1, A(χ) = [0,χ], χ ∈ X .
The transition law is given by

Q({χ1}|χ0,a) = 1, (34a)
Q({χ0}|χ1,a) = 1, (34b)

for all χ ∈ X and a ∈ [0,χ].
For this example, consider a person who will have
some kind of resource available to him/her at each pe-
riod of time; he/she will receive a profit depending on
the amount of resource consumed. Then, χ0 and χ1
are the amounts available to the person at each time
t. The reward R will be specified in Assumption 6.5
below.
Assumption 6.5. R is given by

R(χ,a) =U(a) = aγ, (35)

a ∈ [0,χ], χ ∈ X and 0 < γ < 1. Observe that U is
non-negative, concave and continuous (taking, as it is
common U(0) = 0), and that

maxa∈[0,χ]U(a) =U(χ) = χ
γ, (36)

for all χ ∈ X.

Lemma 6.6. Suppose that Assumption 6.5 holds.
Then, for Example 3,

V (χ0) =
χ

γ

0
1−β2 +

βχ
γ

1
1−β2 , (37a)

V (χ1) =
χ

γ

1
1−β2 +

βχ
γ

0
1−β2 , (37b)

and f ∗(χ) = χ, for all χ ∈ X.

Proof. Similar to the proof of Lemma 6.3.

Lemma 6.7. For the fuzzy version of Ex-
ample 3, following Theorem 4.6, it results
that Ṽ (χ) = (0,V (χ), D

1−β
), χ ∈ X, with

R̃(χ,a) = (0,U(a),D), χ ∈ X, a ∈ A(χ), where
D > max{χγ

1,χ
γ

2} and f ∗(χ) = χ, for all χ ∈ X.
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7 CONCLUSION

In this article, Markov decision processes were stud-
ied under the total expected discounted reward crite-
rion and considering for each of them a fuzzy reward
function, specifically of the triangular type. These
processes were induced from crisp processes taking
into account some of their properties to cause certain
properties in the fuzzy case, and the main interpreta-
tion of them is given in Theorem 4.6 and Remark 4.7.
The theory was illustrated by three interesting exam-
ples from applied areas, as operations research, eco-
nomics, and finance. Future work in the direction of
this paper consists in applying the methodology used
to other criteria of optimality such as the average case
or the risk-sensitive criterion. Moreover, it is possi-
ble to contemplate the extension to another class of
fuzzy payment function, for example, to trapezoidal
numbers.
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