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Abstract: The existence and stability of quiescent gap solitons are studied in a semilinear dual-core optical system,
in which Bragg gratings (BGs) are written on the both cores with a phase shift and one core has the Kerr
nonlinearity, while other one is linear. When the relative group velocityc in the linear core is zero, three
separate band gaps are observed through the spectrum analysis, including one central band gap surrounded by
upper and lower band gaps. Three band gaps are entirely filledwith the stationary soliton solutions. However,
in case ofc is non-zero, only central band gap contains the stationary solution. Numerical techniques are used
to find the stability of the quiescent gap solitons in terms oftheir frequency detuning.

1 INTRODUCTION

It is widely known that a strong effective dispersion
induced from the cross-coupling between counter
propagating waves on the fiber Bragg grating (FBG)
and this dispersion can be up to six orders more than
the standard fiber induce dispersion in magnitude.
The grating originated dispersion can be compensated
by the Kerr nonlinearity at sufficiently high intensity
and that can generate a vast family of quiescent gap
solitons (de Sterke and Sipe, 1994).

Solitons in FBG have been analyzed exten-
sively by the researchers through theoretical analy-
sis (Aceves and Wabnitz, 1989; Christodoulides and
Joseph, 1989) and experimentally (Eggleton et al.,
1996; Eggleton et al., 1999) in the last few decades
due to their promising applications in novel optical
devices, optical signal processing, filtering, switch-
ing, memory devices, sensing and pulse compression
(Kashyap, 1999; Taverner et al., 1998). In the case
of uniform Bragg grating, a two parameters family
of gap solitons have been found from the theoreti-
cal studies. One of these parameters is the intrin-
sic frequency that determines the solitons’ amplitude
and width and the other parameter represents the soli-
ton’s velocity, which can range from zero to the speed
of light in the medium (Aceves and Wabnitz, 1989;
Christodoulides and Joseph, 1989; Barashenkov et al.,
1998). The observation of quiescent or zero velocity
soliton as well as slow gap soliton has been a sub-
ject of intensive experimental studies. Experimen-

tally, gap solitons with a velocity as low as 23% of
the speed of light in the medium have been reported
(Mok et al., 2006).

Gap solitons have been investigated in different
types of periodic structures and nonlinear systems, in-
cluding grating assisted couplers (Atai and Malomed,
2005; Atai and Malomed, 2001; Mak et al., 1998),
waveguide arrays (Mandelik et al., 2004), photonic
crystals (Biancalana et al., 2008), cubic-quintic non-
linearity (Islam and Atai, 2014), and nonuniform grat-
ings (Baratali and Atai, 2012; Chowdhury and Atai,
2014).

In Ref. (Tsofe and Malomed, 2007), gap soli-
tons in gratings with phase mismatch in the dual-core
system with identical cores were investigated. Since
dual-core systems with non-identical cores (particu-
larly semilinear dual-core fibers) have been shown to
have superior switching characteristics, in this work
we consider the existence and stability of quiescent
gap solitons in a semilinear dual-core fiber where both
cores are equipped with a grating and there is a phase
mismatch between the gratings.

2 THE MODEL

The propagation of light in a linearly coupled Bragg
grating with a phase shift between the gratings where
one core has Kerr nonlinearity and the one is linear is
governed by the following system of equations:
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(1)

where,u(x, t) and v(x, t) are the amplitudes of for-
ward and backward traveling waves in the nonlinear
core,φ(x, t) andψ(x, t) are their counterparts in the

0 1 2 3 4
k

-2

-1

0

1

2

ω

(a)

0 1 2 3
k

-2

-1

0

1

2

ω

(b)

Figure 1: Dispersion relation diagrams obtained from Eq.
(2) for κ = 0.5 and (a)c = 0.0 ; (b) c = 1.0. The solid and
dashed lines correspond toθ = 0 andθ = π, respectively.

linear core, respectively.κ is a real positive param-
eter and accounts for the linear coupling coefficient
between the cores.c defines the relative group ve-
locity in the linear core, while group velocity term in
the nonlinear core is set equal to 1.θ represents the
phase mismatch between the two gratings . The range
of θ is limited to the interval 0≤ θ ≤ 2π (Tsofe and
Malomed, 2007).

To determine the bandgap structure, Eqs. (1) are

first linearized and upon substitution of plane wave
solutions{u,v,φ,ψ} ∼ exp(ikx− iωt) into the lin-
earized equations followed by some algebraic manip-
ulations we arrive at the following dispersion relation:
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k2+
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2
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)

+ c2k4 = 0 (2)

From the straightforward analysis of Eq.(2), it is
found that in the case ofc = 0 and 0≤ θ ≤ 2π, the
spectrum contains three disjoint band gaps. It should
be noted that the stationary soliton solutions fill with
the entire three gaps. In the case ofc 6= 0, only the
central gap contains soliton solutions.
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Figure 2: Evolution of quiescent gap solitons for (a)ω =
0.10 andθ = 0.0 (Unstable) ; (b)ω = 0.30 andθ = 2π (Sta-
ble). The values of other parameters areκ = 0.2, c = 0.
Only theu−component is shown here.

In the case ofθ = 0, maximum value of frequency de-
tuning in the central band gap is limited to|ωmax| <
(1−κ). However, whenθ 6= 0, the central gap’s edge
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Figure 3: Evolution of quiescent gap solitons in the upper
band gap for (a)θ = 0.0 (Unstable) ; (b)θ = π (Stable). The
values of other parameters areκ = 0.2, c = 0 andω = 1.11.
u components only shown here.

change significantly. In a specific case, when the
group velocity term of both cores is similar, i.e.,c= 1,
two different situations are possible. Ifκ ≤ cos

( θ
4

)

,
the maximum value of frequency detuningωmax in the
central band gap is obtained atk = 0.

3 STABILITY ANALYSIS

Since there are no exact analytical solutions for
Eqs. (1), the soliton solutions have to be ob-
tained numerically. This is done by substi-
tuting {u(x, t) ,v(x, t)} = {U (x) ,V (x)} e−iωt and
{φ(x, t) ,ψ(x, t)} = {Φ(x) ,Ψ(x)} e−iωt into Eqs. (1)
which results in a set of ordinary differential equa-
tions that can be solved by means of a relaxation al-
gorithm. In the case ofc = 0, quiescent solitons exist
in the upper, lower and the central bandgaps. On the

other hand, forc 6= 0, soliton solutions exist only in
the central bandgap.

We have investigated the stability of the numer-
ically obtained gap soliton solutions using the split-
step Fourier method. It is found that there exist stable
and unstable solitons in the system. Figs. 2 and 3
show the examples of stable and unstable quiescent
gap solitons for different values ofc, κ , ω andθ. It is
noteworthy that unstable solitons may either evolve to
another quiescent soliton (see Fig. 2 (a)) or be com-
pletely destroyed.

Fig. 4 summarizes the results of the stability for
c = 0.0 andκ = 0.2 in the (θ,ω) plane. A notable
feature shown in this figure is there exist a vast stable
region in both the central and upper bandgaps. How-
ever, no stable solitons are observed in the lower band
gap.
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Figure 4: Stability diagram of the quiescent gap solitons in
the(θ,ω) plane forκ = 0.2 andc = 0.0.

4 CONCLUSIONS

We have introduced a model of semilinear dual-core
system, where Bragg gratings with a phase shiftθ be-
tween them are written on both cores, and one core
has Kerr nonlinearity, while the other one is linear.
When the group velocity mismatch is zero, three dis-
joint band gaps are found including one central gap
and two lower and upper gaps. In this case, quiescent
solitons exist throughout the three band gaps. How-
ever, in case ofc 6= 0, only the central gap contains the
quiescent soliton solutions and no solitons are found
in the lower and upper gaps. Stability of gap solitons
is investigated numerically. Forc = 0, stable solitons
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are found only in the upper and central bandgaps.
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