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Abstract: We present a novel region based active learning method for semantic image segmentation, called MetaBox+.
For acquisition, we train a meta regression model to estimate the segment-wise Intersection over Union (IoU)
of each predicted segment of unlabeled images. This can be understood as an estimation of segment-wise
prediction quality. Queried regions are supposed to minimize to competing targets, i.e., low predicted IoU
values / segmentation quality and low estimated annotation costs. For estimating the latter we propose a sim-
ple but practical method for annotation cost estimation. We compare our method to entropy based methods,
where we consider the entropy as uncertainty of the prediction. The comparison and analysis of the results
provide insights into annotation costs as well as robustness and variance of the methods. Numerical exper-
iments conducted with two different networks on the Cityscapes dataset clearly demonstrate a reduction of
annotation effort compared to random acquisition. Noteworthily, we achieve 95% of the mean Intersection
over Union (mIoU), using MetaBox+ compared to when training with the full dataset, with only 10.47% /
32.01% annotation effort for the two networks, respectively.

1 INTRODUCTION

In recent years, semantic segmentation, the pixel-
wise classification of the semantic content of im-
ages, has become a standard method to solve prob-
lems in image and scene understanding. Examples
of applications are autonomous driving and environ-
ment understanding (Zhao et al., 2017), (Chen et al.,
2018), (Wang et al., 2019), biomedical analyses (Ron-
neberger et al., 2015) and further computer visions
tasks. Deep convolutional neural networks (CNN) are
commonly used in semantic segmentation. In order to
maximize the accuracy of a CNN, a large amount of
annotated and varying data is required, since with an
increasing number of samples the accuracy increases
only logarithmically (Sun et al., 2017). For instance
in the field of autonomous driving, fully and precisely
annotated street scenes require an enormous (and tir-
ing) annotation effort. Also biomedical applications,
in general domains that require expert knowledge for
annotation, suffer from high annotation costs. Hence,
from multiple perspectives (annotation) cost reduc-
tion while maintaining model performance is highly
desirable.
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Figure 1: Illustration of the region based AL method. The
red parts highlight the novel meta regression based ingredi-
ents: as query priority maps we use MetaSeg and the esti-
mated number of clicks. Training of MetaSeg requires an
additional small sample of data (fixed for the whole course
of AL), indicated by M ⊂ P (in red color).

One possible approach is active learning (AL),
which basically consists of alternatingly annotating
data and training a model with the currently available
annotations. The key component in this algorithm that
can substantially leverage the learning process is the
so called query or acquisition strategy. The ultimate
goal is to label the data that leverages the model per-
formance most while paying with as small labeling
costs as possible. For an introduction to AL methods,
see e.g. (Settles, 2009).

First AL approaches (before the deep learning
(DL) era) for semantic segmentation, for instance
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Figure 2: Segmentation results with our novel method MetaBox+ for two CNN models. With an annotation effort of only
10.47% for the Deeplab model (top) and 32.01% for the FCN8 model (bottom), we achieve 95% full set mIoU. Additionally,
the segmentation results are shown when training the networks with the full dataset (Full set) and with a random selection
strategy (RandomBox) producing the same annotation effort as MetaBox+. Annotation effort is stated in terms of a click
based metric (costA, Equation (10)).

based on conditional random fields, go back to (Vezh-
nevets et al., 2012), (Konyushkova et al., 2015), (Jain
and Grauman, 2016), (Mosinska et al., 2017). At the
heart of an AL method is the so-called query strat-
egy that decides which data to present to the anno-
tator / oracle next. In general, uncertainty sampling
is one of the most common query strategies (Wang
et al., 2016), (Gal et al., 2017), (Beluch et al., 2018),
(Rottmann et al., 2018), (Hahn et al., 2019), besides
that there also exist approaches on expected model
change (Vezhnevets et al., 2012) and reinforcement
learning based AL (Casanova et al., 2020).

In recent years, approaches to deep AL for seman-
tic segmentation have been introduced, primarily for
two applications, i.e., biomedical image segmenta-
tion and semantic street scene segmentation. The ap-
proaches in (Yang et al., 2017), (Gorriz et al., 2017),
(Özdemir et al., 2018), (Mahapatra et al., 2018)
are specifically designed for medical and biomed-
ical applications, mostly focusing on foreground-
background segmentation. Due to the underlying na-
ture of the data, these approaches refer to annotation
costs in terms of the number of labeled images.

The methods presented in (Mackowiak et al.,
2018), (Siddiqui et al., 2019), (Kasarla et al., 2019),
(Casanova et al., 2020) use region based proposals.
All of them evaluate the model accuracy in terms of
mean Intersection over Union (mIoU). The method
in (Siddiqui et al., 2019) is designed for multi-view
semantic segmentation datasets, in which objects are
observed from multiple viewpoints. The authors in-
troduce two new uncertainty based metrics and aggre-
gate them on superpixel (SP) level (SPs can be viewed
as visually uniform clusters of pixels). They measure
the costs by the number of labeled pixels. Further-
more they have shown that labeling on SP level can
reduce the annotation time by 25%. In (Kasarla et al.,
2019) a new uncertainty metric on SP level is defined,

which includes the information of the Shannon En-
tropy (Shannon, 2001), combined with information
about the contours in the original image and a class-
similarity metric to put emphasis on rare classes. In
(Kasarla et al., 2019), the number of pixels labeled
define the costs. The authors of (Casanova et al.,
2020) utilize the same cost metric. The latter work
uses reinforcement learning to find the most infor-
mative regions, which are given in quadratic format
of fixed size. This procedure aims at finding regions
containing instances of rare classes. The method in
(Mackowiak et al., 2018) queries quadratic regions
of fixed-size from images as well. In contrast to the
methods discussed before, the costs are measured by
annotation clicks. They use a combination of un-
certainty measure (Vote (Dagan and Engelson, 1995)
and Shannon Entropy) and a clicks-per-polygon based
cost estimation, which is regressed by a second DL
model. The methods in (Mackowiak et al., 2018),
(Kasarla et al., 2019), (Casanova et al., 2020) are fo-
cusing on multi-class semantic segmentation dataset
like Cityscapes (Cordts et al., 2016).

In this work, we introduce a query strategy, which
is based on an estimation of the segmentation qual-
ity. We use the meta regression method MetaSeg,
introduced in (Rottmann et al., 2020), to predict the
segment-wise IoU and extend this method by aggre-
gating the segment-wise IoU over the quadratic can-
didate regions of images. MetaSeg was further ex-
tended in other directions, i.e., for controlled false-
negative reduction (Chan et al., 2020), for time-
dynamic uncertainty estimates of videos (Maag et al.,
2020) as well as for taking resolution-dependent
uncertainties into account (Rottmann and Schubert,
2019).

In semantic segmentation, the annotation cost de-
pends less on the number of labeled pixels, but rather
on the complexity of labeled contours. The latter are
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typically approximated by polygons where polygon
nodes correspond to clicks. To this end, we intro-
duce a simple and practical method to estimate an-
notation costs in terms of clicks. Through the com-
bination of both, we target informative regions with
low annotation costs. A sketch of our method is
given in Figure 1. Based on the number of clicks re-
quired for annotation, we introduce a new cost met-
ric, since we are also evaluating the costs in terms of
clicks and not in terms of labeled images or pixels.
For numerical experiments we used the Cityscapes
dataset (Cordts et al., 2016) with two models, namely
the FCN8 (Long et al., 2015) and the Deeplabv3+
Xcpetion65 (Chen et al., 2018) (following in short
only Deeplab).

2 RELATED WORK

In this section, we compare our work to the works
closest to ours. Therefore, we focus on the region
based approaches (Mackowiak et al., 2018), (Kasarla
et al., 2019), (Siddiqui et al., 2019), (Casanova et al.,
2020). All of them evaluate the model accuracy in
terms of mIoU. The approaches in (Kasarla et al.,
2019), (Siddiqui et al., 2019) use handcrafted uncer-
tainty metrics aggregated on SP level and also query
regions in form of SP. While (Siddiqui et al., 2019) is
specifically designed for multi-views datasets, our ap-
proach focuses on single-view multi-class segmenta-
tion of street scenes. For the query strategy presented
in (Kasarla et al., 2019), the authors do not only use
uncertainty metrics, but also information about the
contours of the images as well as class similarities
of the SP to identify rare classes. We also use dif-
ferent types of information to generate our proposals.
The AL method in (Casanova et al., 2020) is based
on deep reinforcement learning and queries quadratic
fixed size regions. The only similarity to our approach
is the format of the queried regions. Compared to
the approaches above (Kasarla et al., 2019), (Siddiqui
et al., 2019), (Casanova et al., 2020) we do not focus
on finding a minimal dataset to achieve a satisfying
model accuracy. We consider the costs in terms of
required clicks for annotating a region and aim to re-
duce the human annotation effort (therefore we refer
to those clicks as costs). To this extent, we take an es-
timation of the labeling effort during acquisition into
account. In addition, we estimate the segmentation
quality to identify regions of interest.

As in (Mackowiak et al., 2018), our candidate re-
gions for acquisition are square-shaped and of fixed
size, and we also use a cost metric based on the num-
ber of clicks required to draw a polygon overlay for

an object. Hence, (Mackowiak et al., 2018) is in spirit
closest to our work. However, instead of using an un-
certainty measure to identify high informational re-
gions, we use information about the estimated seg-
mentation quality in terms of the segment-wise Inter-
section over Union (IoU) (see (Rottmann et al., 2020),
(Jaccard, 1912)). Entropy is a common measure to
quantify uncertainty. However, in semantic segmen-
tation we observe increased uncertainty on segment
boundaries, while uncertainty in the interior is often
low. This is in line with the observation that, neu-
ral network in general provide overconfident predic-
tions (Goodfellow et al., 2014), (Hein et al., 2019).
We solve this problem by evaluating the segmentation
quality of whole predicted segments.

Furthermore, also our cost estimation method dif-
fers substantially from the one presented in (Mack-
owiak et al., 2018). While the authors of (Mackowiak
et al., 2018) use another CNN to regress on the num-
ber of clicks per candidate region, we infer an esti-
mate of the number of required clicks directly from
the prediction on the segmentation network and show
in our results, that our measure is indeed strongly cor-
related with the true number of clicks per candidate
region.

3 REGION BASED ACTIVE
LEARNING

In this section we first describe a region based AL
method, which queries fixed-size and quadratic im-
age regions. Afterwards, we describe our new AL
method. This method is subdivided into a 2-step pro-
cess: first, we predict the segmentation quality by
using the segment-wise meta regression method pro-
posed in (Rottmann et al., 2020). Second, we incor-
porate a cost estimation of the click number required
to label a region, we term this add on.

3.1 Method Description

For the AL method we assume a CNN as semantic
segmentation model with pixel-wise softmax proba-
bilities as output. The corresponding segmentation
mask, also called segmentation, is the pixel-wise ap-
plication of the argmax function to the softmax prob-
abilities. The dataset is given as data pool P . The
set of all labeled data is denoted by L and set of unla-
beled data by U. At the beginning we have no labeled
data, i.e., L = /0, and we wish to provide labels over a
given number of classes c ∈ N,c≥ 2 for all images.
A generic AL method can be summarized as follows:
Initially, a small set of data from U is labeled and
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added to L . Then, two steps are executed alternat-
ingly in a loop. Firstly, the model (the CNN) is trained
on L . Thereafter, a chosen amount of unlabeled data
from U is queried according to a query strategy, la-
beled and added to L .

In region based AL, we add newly labeled regions
to L instead of whole images. An image x remains in
U as long as it is not entirely labeled. In order to avoid
multiple queries of the same region, a region that is
contained in both U and L is tagged with a query
priority equal to zero. In the remainder of this section,
we describe the query function in detail and introduce
an appropriate concept of priority in the given context.

Region based Queries. The query strategy is a
key ingredient of an AL method. In general, most
query function designs strive for maximally leverag-
ing training progress (i.e., achieving high validation
accuracy after short time) at reduced labeling costs.

Thus, we aim at querying regions of images which
leads to a region-wise concept of query priority.

In what follows, we only compute measures of
priority by means of the softmax output of the neu-
ral network. To this end, let

f : [0,1]w×h×3→ [0,1]w×h×c (1)

be a function given by a segmentation network pro-
viding softmax probabilities for a given input image,
where w denotes the image width, h the height and c
the number of classes.

A priority map can be viewed as another function

g : [0,1]w×h×c→ [0,1]w×h (2)

that outputs one priority score per image pixel. The
output of g can be viewed as a heatmap that indicates
priority. A higher score of priority should presumably
correlate with the attractiveness of the corresponding
ground truth. A typical example for g is the pixel-wise
entropy H which for a chosen pixel (i, j) is given by

H(yi, j,·) =−
c

∑
k=1

yi, j,c log(yi, j,c) (3)

where yi, j,c = f (x)i, j,c ∈ [0,1] for a given input x ∈
[0,1]w×h×3. The priority maps that we use in our
method are introduced in the subsequent section.
Note that, if an image pixel has already been labeled,
we overwrite the corresponding pixel value of the pri-
ority map by zero.

Our AL method queries regions that are square-
shaped (boxes) and of fixed width b ∈ N. A box-wise
overall priority score is obtained via aggregation. To
this end, we simply choose to sum up the scores. That

is, given a box B ⊂ [0,1]w×h, the aggregated score
given by

gagg(y,B) = ∑
(i, j)∈B

gi, j(y) . (4)

Given the set B of all possible boxes of width b in
[0,1]w×h, we can define an aggregated priority map

gB(y) = {gagg(y,B) : B ∈ B} (5)

which can be viewed as another heatmap resulting
from a convolution operation with a constant filter.
Given t aggregated priority scores, for the sake of
brevity named h(1)(y,B), . . . ,h(t)(y,B), we define a
joint priority score by

h(y,B) =
t

∏
s=1

h(s)(y,B) . (6)

Analogously to Equation (5) we introduce a joint pri-
ority map hB(y). However, in what follows we do not
distinguish between joint priority maps and singleton
(aggregated) priority maps as this follows from the
context. Furthermore, we only refer to priority maps
while performing calculations on priority score level.

Algorithm. In summary, our AL method proceeds
as follows. Initially, a randomly chosen set of minit
entire images from U is labeled and then moved to
L . Afterwards, the AL method proceeds as previously
described in the introduction of this section. Defining
the set of all candidate boxes as

C = {(y,B) : y = f (x), x ∈U, B ∈ B}, (7)

we query in each iteration a chosen number mq
of non-overlapping boxes Q = {(yi j ,B j) : j =

1, . . .mq} ⊂C, with the highest scores h(y,B), i.e.,

(y,B) ∈ Q,(y′,B′) /∈ Q (8)

=⇒ h(y,B)≥ h(y,B′) or (B∩B′ 6= /0 and y = y′) .

A sketch of the whole AL loop is depicted by Fig-
ure 1.

3.2 Joint Priority Maps based on Meta
Regression and Click Estimation

It remains to specify the priority maps h(i)(y,B) de-
fined in the previous section. In our method, we have
t = 2 priority maps. As an estimate of prediction qual-
ity, we use MetaSeg (Rottmann et al., 2020) which
provides a quality estimate in [0,1] for each segment
predicted by f . This aims at querying ground truth for
image regions that presumably have been predicted
badly. Mapping predicted qualities back to each pixel
of a given segment and thereafter aggregating the val-
ues over boxes, we obtain our first priority map h(1).
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On the other hand, we wish to label regions that are
easy (or cheap) to label. Therefore, we estimate the
number of clicks required to annotate a box B. From
this, we define another priority map h(2) which con-
tains high values for regions with low estimated num-
bers of clicks and vice versa (details follow in the up-
coming paragraphs). We query boxes according to the
product of priorities, i.e.,

h(y,B) = h(1)(y,B) ·h(2)(y,B) (9)

as being done in (Mackowiak et al., 2018), but with
both h(1) and h(2) being different. In what follows,
we describe the priority maps g(1)(y) and g(2)(y)
more precisely, where the aggregated priority maps
h(1)(y,B) and h(2)(y,B) are constructed as in Sec-
tion 3.1.

Priority via MetaSeg. As priority map g(1)(y) we
use MetaSeg (Rottmann et al., 2020) which estimates
the segmentation quality by means of predicting the
IoU of each predicted segment with the ground truth.

MetaSeg uses regression models with different
types of hand-crafted input metrics. These include
pixel-wise dispersion measures like (Shannon) en-
tropy and the difference between the two largest soft-
max probabilities. These pixel-wise dispersions are
aggregated on segment level by computing the mean
over each segment. Here, a segment is a connected
component of a predicted segmentation mask of a
given class.

In addition, for each predicted segment we con-
sider shape-related quantities, i.e., the segment size,
the fractality and the surface center of mass coordi-
nates. Furthermore, averaged class probabilities for
each predicted segment are presented to the regres-
sion model.

Training the regression model of MetaSeg re-
quires ground truth to compute the IoU for each pre-
dicted segment and the corresponding ground truth
segment. Since the prediction changes in every itera-
tion of the AL method, we train the regression model
for MetaSeg once in every AL iteration. In order to
have ground truth available for training the regression
model, we randomly select and label a further initial
dataset M of nmeta samples, which will be fixed for
the whole AL process. To predict the quality of net-
work predictions via MetaSeg, we perform the fol-
lowing steps after updating the semantic segmentation
model:

1. Infer the current CNN’s predictions for all images
in M ,

2. Compute the metrics for each predicted segment
(from step 1.),

3. Train MetaSeg to predict the IoU by means of the
metrics from step 2.

4. Infer the current CNN’s predictions for the unla-
beled data U,

5. Compute the metrics for each predicted segment
that belongs to U (as in step 2.),

6. Apply MetaSeg in inference mode to each pre-
dicted segment from U (from step 4.) and its met-
rics (from step 5.) to predict the IoU.

For each unlabeled (i.e., not entirely labeled)
image, MetaSeg provides a segmentation quality
heatmap q(y) by registering the predicted IoU val-
ues of the predicted segments for each of their cor-
responding pixels. An example of the segmentation
quality heatmap is given in Figure 3. The corre-
sponding priority map as defined in Equation (2), is
obtained via g(1)(y) = 1− q(y). Hence, regions of
g(1)(y) containing relatively high values are consid-
ered as being attractive for acquisition. More details
on MetaSeg can be found in (Rottmann et al., 2020).

Figure 3: Prediction of the IoU values. The figure consists
of ground truth (bottom left), predicted segments (bottom
right), true IoU for the predicted segments (top left) and
predicted IoU for the predicted segments (top right). In the
top row, green color corresponds to high IoU values and red
color to low ones, for the white regions there is no ground
truth available.

Priority via Estimated Number of Clicks. As an
additional priority map g(2)(y) we choose an esti-
mate of annotation costs. Multi-class semantic seg-
mentation datasets are generally labeled with a poly-
gon based annotation tool, i.e., the objects are de-
scribed by a finite number of vertices connected by
edges such that the latter form a closed loop. (Cordts
et al., 2016), (Neuhold et al., 2017). If the ground
truth is given only pixel-wise, an estimate of the num-
ber of required clicks can be approximated by ap-
plying the Ramer-Douglas-Peucker (RDP) algorithm
(Ramer, 1972), (Douglas and Peucker, 1973) to the
segmentation contours.

To estimate the true number of clicks required for
annotation in the AL process, we correlate this num-
ber with how many clicks it approximately requires
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to annotate the predicted segmentation (provided by
the current CNN) using the RDP algorithm. The ap-
proximation accuracy of the RDP algorithm is con-
trolled by a parameter ε. We define a cost map κ(y)
via κi, j(y) = 1 if there is a polygon vertex in pixel
(i, j) and κi, j(y) = 0 else. Since we are prioritising
regions with low estimated costs, the priority map is
given by g(2)(y) = 1−κ(y). Following the construc-
tion in Section 3.1 yields the aggregated priority map
h(2)(y,B). A visual example of the cost estimation is
given in Figure 5 (left panel).

In our tests with the RDP algorithm applied to
ground truth segmentations, we observed that on av-
erage the estimated number of click is fairly close to
the true number of clicks provided by the Cityscapes
dataset. Therefore, if we assume that over the course
of AL iterations, the model performance increases,
approaching a level of segmentation quality that is
close to ground truth, then the described cost estima-
tion on average will approach the click numbers in the
ground truth.

In the following, we distinguish between the fol-
lowing methods: MetaBox uses only the priority via
MetaSeg and MetaBox+ uses both the joint priority
of MetaSeg and the estimated number of clicks. An
overview of the different steps of our AL method is
given by Figure 1 and an exemplary visualization of
the different stages of MetaBox+ is shown in Figure 4.
Note that there are different conventions for counting
clicks which we discuss in Section 4.1.

Further Priority Maps and Baseline Methods.
For the sake of comparison, we also define a prior-
ity map based on the pixel-wise entropy as in Equa-
tion (3). Analogously to MetaBox and MetaBox+, we
introduce EntropyBox and EntropyBox+: Entropy-
Box uses only the priority via entropy and Entropy-
Box+ uses the joint priority of the entropy and the
estimated number of clicks. The method Entropy-
Box+ is similar to the method introduced in (Mack-
owiak et al., 2018). The corresponding authors also
use a combination of the entropy and a cost estima-
tion, but the cost estimation is computed by a second
DL model. Furthermore, as a naive baseline we con-
sider a random query function that performs queries
by means of random priority maps. We term this
method RandomBox.

4 EXPERIMENTS

Before presenting results of our experiments, we in-
troduce metrics to measure the annotation effort. To
this end, we discuss different types of clicks required

for labeling and how they can be taken into account
for defining annotation costs. Afterwards we specify
the experiments settings and the implementation de-
tails. Thereafter, we present numerical experiments
where we compare different query strategies with re-
spect to performance and robustness. Furthermore we
study the impact of incorporating annotation cost es-
timations.

4.1 Measuring Annotation Effort

In semantic segmentation, annotation is usually gen-
erated with a polygon based annotation tool. A con-
nected component of a given class is therefore repre-
sented by a polygon, i.e., a closed path of edges. This
path is constructed by a human labeler clicking at the
corresponding vertices. We term these vertices poly-
gon clicks cp ∈N. Since we query quadratic image re-
gions (boxes), we introduce the following additional
types of clicks:
• intersection clicks, ci(B) ∈ N0, occur due to the

intersection between the contours of a segment
and the box boundary,
• box clicks, cb(B) ∈ N0, specify the quadratic box

itself,
• class clicks, cc(B) ∈ N, specify the class of the

annotated segment.
For an annotated image, the class clicks correspond
to the number of segments. Like the polygon clicks,
they can also be considered for the cost evaluation of
fully annotated images.

For the evaluation of a dataset P (with fully la-
beled images), cp(P ) ∈N is the total number of poly-
gon clicks and cc(P ) ∈ N the total number of class
clicks. Let L0 be the the initially annotated dataset
(with fully labeled images) and Q the set of all queried
and annotated boxes, then we define the cost metrics

costA =
cp(L0)+ cc(L0)+ cp(Q)+ ci(Q)+ cc(Q)

cp(P )+ cc(P )

(10)

costB =
cp(L0)+ cp(Q)+ ci(Q)+ cb(Q)

cp(P )
(11)

with c](Q) = ∑
B j∈Q

c](B j), ] ∈ {p, i,b,c}.

In addition to that,

costP (12)

defines the costs as amount of labeled pixels with re-
spect to the whole dataset.
The amount of required clicks depends on the annota-
tion tool. The box clicks cb(B) are not necessarily re-
quired: with a suitable tool, the chosen image regions
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(1) segmentation (2) joined priority map (3) annotation 

(1a) predicted IoU values with MetaSeg (2a) priority via MetaSeg (2b) priority via estimated number of clicks (3a) ground truth

high

low

Figure 4: Visualisation of our AL method MetaBox+ at a specific AL iteration. The top row shows the segmentation (1),
the joined priority map (2) and the acquired annotation (3). The joined priority map (2) is based on the priority via MetaSeg
(2a) and the estimated number of clicks (2b). High values represent prioritized regions for labeling: in (2b) regions with
low predicted IoU values are of interest in (2b) regions with low estimated clicks. (1a) shows the predicted IoU values via
MetaSeg.

(boxes) are suggested and the annotation process re-
stricted accordingly. Required are the polygon clicks
cp(B) and the intersections clicks ci(B) to define the
segment contours as well as the class clicks cc(B) to
define the class of the annotated segment. Cost metric
costA (Equation (10)) is based on this consideration.

Cost metric costB (Equation (11)) is introduced in
(Mackowiak et al., 2018). Due to a personal corre-
spondence with the authors we are able to state details
that go beyond the description provided in (Mack-
owiak et al., 2018): Cost metric costB is mostly in
accordance with costA, except for two changes. The
box clicks cb(B) = 4 are taken into account while
the class clicks cc(B) are omitted. Theoretically both
metrics can become greater than 1. Firstly, fully la-
beled images do not require intersection clicks ci.
Secondly, ground truth segments that are labeled by
more than one box produce multiple class clicks cc
to specify the class. In the following, the cost met-
rics costA, costB, costP are given in percent (of the
costs for labeling the full dataset without considering
regions). An illustration of the click types is shown in
Figure 5 (right panel).

4.2 Experiment Settings

For our experiments, we used the Cityscapes (Cordts
et al., 2016) dataset. It contains images of urban street
scenes with 19 classes for the task of semantic seg-
mentation. Furthermore, the annotation clicks / poly-
gons are given. We used the training set with 2,975
samples as data pool P . For all model and experiment
evaluations we used the validation set containing 500
samples. We used two CNN models: FCN8 (Long
et al., 2015) (with width multiplier 0.25 introduced in
(Sandler et al., 2018)) and Deeplabv3+ (Chen et al.,
2018) with an Xception65 (Chollet, 2017) backbone,

Figure 5: (left): Visualization of the estimated annotation
clicks obtained by the RDP algorithm applied to the seg-
mentation contours of a predicted segment of class “car”.
The segment contours are highlighted by red color, the
obtained vertices (estimated clicks) are highlighted green.
(right): Example of possible types of clicks we can take into
account for a cost definition. The white (and gray) pixels
depict true annotation clicks obtained from the data of (here
5 polygon clicks within the box). The red ones represent
additional types of clicks: the ones required for annotating
intersection points of segment contour and box edges (here
2 intersection clicks), the ones for defining the box itself (4
box clicks, one for each corner) and one click per segment
to specify the class of the segment (here 2 class clicks: for
car and street).

(short: Deeplab). Using all training data, also referred
to as full set, we achieve a mIoU of 60.50% on the
validation dataset with the FCN8 model and a mIoU
of 76.11% for the Deeplab model. We have not re-
sized the images, i.e., we used the original resolution
of height h = 1,024 and width w = 2,048. In each
AL iteration, we train the model from scratch. The
training is stopped, if no improvement in term of val-
idation mIoU is achieved over 10 consecutive epochs.
Details regarding the training parameters are given in
Section 4.3 below. All experiments started from an
initial dataset of 50 samples. For experiments with
MetaSeg based queries (MetaBox, MetaBox+), we
took 30 additional samples to train MetaSeg. In each
AL iteration we queried 6,400 boxes with a width of
b= 128, which corresponds to 50 full images in terms
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of the number of pixels.
Each experiment was repeated three times. For

each method we present the mean over the mIoU and
the mean over the cost metrics (costA, costB, costP)
of each AL iteration. All CNN trainings were per-
formed on NVIDIA Quadro P6000 GPUs. In total, we
trained the Deeplab model 180 times, which required
approximately 8,000 GPU hours and the FCN8 model
290 times, which required approximately 3,500 GPU
hours. This amounts to 11,500 GPU hours in total.
On top of that, we consumed a few additional GPU
hours for the inference as well as a moderate amount
of CPU hours for the query process.

4.3 Implementation Details

To train the CNN models with only parts of the im-
ages, we set the labels of the unlabeled regions to ig-
nore. Both models (FCN8 and Deeplab) are initial-
ized with pretrained weights of imagenet (Deng et al.,
2009).

FCN8. For training of the FCN8 model (Long et al.,
2015), with the width multiplier 0.25 (Sandler et al.,
2018), we used the Adam optimizer with learning
rate, alpha, and beta set to 0.0001, 0.99, and 0.999,
respectively. We used a batch size of 1 and did not
use any data augmentation.

Deeplab. For the training of the Deeplab model,
with the Xception-backbone (Chollet, 2017) we pro-
ceeded as in (Chen et al., 2018): we set decoder out-
put stride to 4, train crop size to 769× 769, atrous
rate to 6,12,18 and output stride to 16. To consume
less GPU memory resources we used a batch size of
4: We have not fine-tuned the batch norm parameters.
For the training in the AL iterations, we used as poly-
nomial decay learning rate policy:

lr(i) = lrbase ∗
(1− s(i)

stot

)p

where lr(i) is the learning rate in step s(i) = i, lrbase =
0.001 the base learning rate, p = 0.8 the learning
power and stot = 150,000 the total number of steps.
For training with the full set we used the same learn-
ing rate policy with a base learning rate lrbase = 0.003.
With these settings we achieve a mIoU of 76.11%
(mean of 5 runs). The original model achieves a mIoU
of 78.79% (with a batch size of 8).

MetaSeg. We used the implementation of
https://github.com/mrottmann/MetaSeg with
minor modifications in the regression model. Instead

of a linear regression model, we used a gradient
boosting method with 100 estimators, max depth 4
and learning rate 0.1. In our tests, a gradient boosting
method led to better results than a linear regression
model. For the training of MetaSeg we used 30
images. We tested MetaSeg for different numbers of
predictions and of differently performing CNN mod-
els. With the given parameters, we achieve results in
terms of R2 values similar to those presented in the
original paper (Rottmann et al., 2020).

4.4 Evaluation

In the following, we compare MetaBox(+) to the en-
tropy based methods EntropyBox(+) as well as to the
baseline method RandomBox. As we already men-
tioned, EntropyBox(+) is very similar to the method
presented in (Mackowiak et al., 2018). Furthermore
the authors in (Mackowiak et al., 2018) are up to now
the only ones evaluating the costs in terms of clicks
and performing cost efficient AL. Since an implemen-
tation is not available, we use our EntropyBox(+) im-
plementation for comparisons.

Comparison of MetaBox and EntropyBox. First
we compare the methods that do not include the cost
estimation. As can be seen in Figure 6, MetaBox out-
performs EntropyBox in terms annotation required to
achieving 95% full set mIoU: for the FCN8 model,
MetaBox produces click costs of costA = 38.63%
while EntropyBox produces costs of costA = 44.60%.
For analogous experiments with the Deeplab model,
MetaBox produces click costs of costA = 14.48%
while EntropyBox produces costs of costA = 19.61%.
Furthermore, for the Deeplab model both methods
perform better compared to RandomBox, which re-
quires costs of costA = 22.04%. However, for the
FCN8 model RandomBox produces the least click
costs of costA = 34.54%. Beyond the 95% (full set
mIoU) frontier, all three methods perform very sim-
ilar on the FCN8 model. For the Deeplab model,
RandomBox does not significantly gain performance
while MetaBox and EntropyBox achieve the full
set mIoU requiring approximately the same costs of
costA ≈ 36.56%.

Figure 7 shows a visualisation of prioritised re-
gions for annotation. In general, high entropy values
are observed on the boundaries of predicted segments.
Therefore EntropyBox queries boxes, which over-
lap with the contours of predicted segments. Since
MetaBox prioritises regions with low predicted IoU
values, queried boxes often lie in the interior of
predicted segments. Furthermore, EntropyBox pro-
duces higher costs in each AL iteration compared to
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Figure 6: Results of the AL experiments for MetaBox,
EntropyBox and RandomBox. Costs are given in terms
of cost metric costA. The vertical lines indicate where a
corresponding method achieves 95% full set mIoU. Each
method’s curve represents the mean over 3 runs.

Figure 7: Comparison of query strategies based on MetaSeg
and entropy. In the MetaSeg priority map (top left), low es-
timated IoU values are colored red and high ones green. Ac-
cordingly, in the entropy priority map (bottom left) low con-
fidence is colored red and high confidence is colored green.
The (line-wise) corresponding aggregations are given in the
right hand column. The higher the priority, the darker the
color.

MetaBox and RandomBox. RandomBox produces
relatively small but very consistent costs per AL it-
eration.

Comparison of MetaBox+ and EntropyBox+. In-
corporating the estimated number of clicks improves
both methods MetaBox and EntropyBox, see Fig-
ure 8. For the FCN8 model, EntropyBox+ still pro-
duces more clicks costA = 40.06% compared to Ran-
domBox. On the other hand, MetaBox+ requires
the lowest costs with costA = 32.01%. For the
Deeplab model, EntropyBox+ and MetaBox+ pro-
duce almost the same click costs (costA = 10.25% and
costA = 10.47%, respectively) for achieving 95% full
set mIoU. By taking the estimated costs into account,
the produced costs per AL iteration are lower for both
methods. Although, in comparison with Entropy-
Box and MetaBox, the methods EntropyBox+ and
MetaBox+ require more AL iterations, both methods
perform better in terms of required clicks to achieve
95% full set mIoU. Due to the incorporation of cost
estimation, both EntropyBox+ and Metabox+ query
regions with lower costs and, as indicated by our re-
sults, with more efficiency.
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Figure 8: Results of the AL experiments for MetaBox+ and
EntropyBox+. Costs are given in terms of cost metric costA.
The vertical lines indicate where a corresponding method
achieves 95% full set mIoU. Each method’s curve repre-
sents the mean over 3 runs.

In general, we observe that the Deeplab model
gains performance quicker than the FCN8 model.
This can be attributed to the fact that the FCN8
framework does not incorporate any data augmenta-
tion while the Deeplab framework uses state-of-the-
art data augmentation and provides a more elaborate
network architecture.

Robustness and Variance. Considering Figure 10,
where the experiments for each CNN model are
shown in one plot, we observe that all methods show
a clear dependence on the CNN model. In our ex-
periments with the FCN8 we also observe that results
show only insignificant standard deviation over the
different trainings. Hence we did not include a fig-
ure for this finding and rather focus on discussing the
robustness of the methods with respect to the Deeplab
model.

For the Deeplab model, the methods show a sig-
nificant standard deviation over trainings, especially
the methods MetaBox, MetaBox+ and RandomBox,
see Figure 9. In the first AL iterations, RandomBox
rapidly gains performance at low costs. However,
in the range of 95% full set mIoU it rather fluctu-
ates and only slightly gains performance. Beyond the
95% full set mIoU frontier, the methods MetaBox(+)
and EntropyBox(+) still improve at a descent pace.
MetaBox+ and EntropyBox+ nearly achieve the full
set mIoU with approximately the same costs.

Furthermore, when investigating the variation of
results with respect to two different CNN models, we
observe that the discrepancy between the FCN8 and
the Deeplab model is roughly 8 percent points smaller
for MetaBox+ than for EntropyBox+. This shows that
MetaBox+ tends to be more robust with respect to the
choice of CNN model.

Comparison of Cost Metrics. In the evaluation
above, we only consider the cost metric costA. A com-
parison of cost metrics for both CNN models is given
in Table 1. Note that EntropyBox+* and MetaBox+*
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Table 1: Annotation costs in % (row) produced by each method (column) to achieve 95% full set mIoU. Cost metrics costA
(Equation (10)) and costB (Equation (11)) are based on annotation clicks while cost metric costP (Equation (12)) indicates
the amount of labeled pixels. The costs with respect to the cost metric of the best performing methods are highlighted. The
strategies EntropyBox+* and MetaBox+* represent a hypothetical “optimum” by knowing the true costs. Each value was
obtained as the mean over 3 runs.

CNN Cost RandomBox EntropyBox MetaBox
model metric + +∗ + +∗

costA 34.54 44.60 40.06 19.82 38.63 32.01 26.61
FCN8 costB 35.76 40.74 37.55 18.87 35.58 30.85 25.74

costP 28.57 10.08 13.45 10.08 12.77 17.81 16.13
costA 22.04 19.61 10.25 10.95 14.48 10.47 16.21

Deeplab costB 22.77 17.92 9.85 10.60 13.56 10.43 15.85
costP 18.49 5.04 5.04 6.72 6.05 7.73 11.09
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Figure 9: Results of single AL experiments (consisting of
3 runs each) for each AL method with the Deeplab model.
Costs are given in terms of cost metric costA. In each plot,
the single runs are given as dotted lines, the mean (over
costs and mIoU) as a solid line. The vertical lines show
where each run achieves 95% full set mIoU.

refer to methods that are equipped with the true costs
from the Cityscapes dataset. We elaborate further
on this aspect in next paragraph. Except for Ran-
domBox, the required costs to achieve 95% full set
mIoU is up to 3 percent points lower when consider-
ing costB instead of costA. Considering the proportion
of labeled pixels costP makes the costs seem signifi-
cantly lower. Noteworthily, for the FCN8 model En-
tropyBox requires only costs of costP = 10.08% while
RandomBox does require costs of costP = 28.57%,
which is roughly a factor of 3 higher. Comparing this
with costA = 44.60% it becomes clear, that these 10%
of the pixels in the dataset constitute to almost half
of the actually required click work. This compari-
son highlights the importance of cost measurement
(definition of a cost metric) and that the annotation
of image regions requires different human annotation
effort.

Click Estimation. To evaluate our cost estimation
(Section 3.2), we compare it to the provided clicks
in the Cityscapes dataset by considering the latter as
a “perfect” cost estimation. That is, we supply En-
tropyBox and MetaBox with the true costs and term
these methods EntropyBox+* and MetaBox+*. A
comparison of the different click estimations and the
true clicks is given in Table 1. For the FCN8 model,
the experiments show that knowing the true costs in
most cases improves the results: EntropyBox+* pro-
duces costs of costA = 19.82%. This is the half of the
costs of EntropyBox+. MetaBox+* produces costs of
costA = 26.61, which is 6 percent points less costs
compared to MetaBox+. For the Deeplab model, us-
ing true rather than estimated costs do not lead to bet-
ter results. However, in terms of cost metric costA,
EntropyBox+* produces 1 percent point more costs
then EntropyBox+. MetaBox+* produces even 6 pp.
more costs then MetaBox+. Similarly, we see such
an increase also with respect to the other cost metrics
costB and costP.

5 CONCLUSION

We have introduced a novel AL method MetaBox+,
which is based on the estimated segmentation qual-
ity, combined with a practical cost estimation. We
compared MetaBox(+) to entropy based methods. Us-
ing a combination of entropy and our introduced cost
estimation shows also remarkable results. Our ex-
periments include in-depth studies for two different
CNN models, comparisons of cost metrics, cost / click
estimates, three different query types (Random, En-
tropy, MetaSeg) as well as a study on the robustness.
The new methods MetaBox+ proposed by us lead to
robust reductions in annotation cost, resulting in re-
quiring 10-30% annotation costs for achieving 95%
full set mIoU. All our tests were conducted using a
query function that minimizes the product of two tar-
gets, i.e., minimizing the annotation effort and mini-
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Figure 10: Summary of the results of the AL experiments with the FCN8 model (top) and the Deeplab model (bottom). The
costs are given in cost metric costA. The vertical lines display where the 95% full set mIoU are achieved. MetaSeg based
method’s have more initial costs due to the data M required for training MetaSeg. Each method’s curve represents the mean
over 3 runs.

mizing the estimated segmentation quality for a given
query region. We leave the question open, whether a
weighted sum of priorities instead of a product Equa-
tion (6) would lead to additional improvements of our
methods. Since each method produces different an-
notation costs per AL iteration, it could be of interest
to vary the number of queried boxes (per AL itera-
tion) or to start each experiment with some Random-
Box iterations. Furthermore, it would be interesting
to also incorporate pseudo labels, i.e., to label regions
of high estimated quality with the predictions of the
CNN model. Semi-supervised approaches remain a
promising direction for further improvements and will
be investigated in the future.
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