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Abstract: In this paper, we study the problem of task reallocation for load-balancing in distributed data processing
models that tackle vast amount of data. In this context, we propose a novel strategy based on cooperative
agents used to optimize the rescheduling of tasks for multiple jobs submitted by users in order to be executed
as soon as possible. It allows an agent to determine locally the next task to process and the next task to delegate
according to its knowledge, its own belief base and its peer modelling. The novelty of our strategy lies in the
ability of agents to identify opportunities and bottleneck agents, and afterwards to reallocate some of the
tasks. Our contribution is that, thanks to concurrent bilateral negotiations, tasks are continuously reallocated
according to the local perception and the peer modelling of agents. In order to evaluate the responsiveness of
our approach, we implement a prototype testbed and our experimentation reveals that our strategy reaches a
flowtime which is close to the one reached by the classical heuristic approach and significantly reduces the
rescheduling time.

1 INTRODUCTION

Data science involves the processing of large volumes
of data which requires distributed file system and par-
allel programming. This emerging distributed com-
puting topic brings new challenges related to task al-
location and load-balancing. This paper is concerned
with a class of practical applications where (a) some
jobs, i.e. sets of tasks, are concurrently submitted by
users in order to be executed as soon as possible, and
(b) some of the resources, e.g. data, required to suc-
cessfully execute a task are distributed at different net-
work nodes.

In this class of applications, we consider here
MapReduce (Dean and Ghemawat, 2004) which is the
most prominent distributed data processing model for
tackling vast amount of data on commodity clusters
as with Hadoop (The Apache Software Foundation,
2020) or Spark (Zaharia et al., 2012). MapReduce
jobs are divided into a set of tasks that are distributed
on nodes ; the division labour should capitalize upon
the way resources are distributed in the system. In-
deed, as several resources are necessary to perform a
task, any initial allocation inevitably requires fetching
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some of these resources from other nodes, thus incur-
ring an extra time cost for task execution.

In order to tackle the problem of load-balancing
and task reallocation in applications such as those that
motivate this work, multi-agent technologies have re-
ceived a lot of attention (Jiang, 2016). Most of
the existing works adopting the market-based ap-
proach (Walsh and Wellman, 1998; Shehory and
Kraus, 1998; An et al., 2010; Turner et al.,
2018) model the load-balancing problem as a non-
cooperative game. By contrast, in line with (Baert
et al., 2019), we assume that agents are cooperative,
viz.: they share the same objective and there is no
shared knowledge, including any knowledge about
the whole task allocation. Beyond (Baert et al., 2019),
we consider here several jobs which are divided into
a set of tasks that can be performed by any multi-task
agent. The agents aim at minimizing the mean flow-
time of several concurrent jobs, i.e. the average com-
pletion time of these jobs. The main difficulty lies in
the fact that task reallocation does not only change the
workload of each agent but also their own scheduling.
For this purpose, we propose a negotiation strategy
which is composed of a consumption strategy and a
delegation strategy. While the consumption strategy
allows agents to decide the next tasks to execute, the
delegation strategy decides which deal is suggested
or accepted. The latter is based on peer modelling
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and determines the agent behaviour at each point of
choice for the negotiation protocol: (a) the offer strat-
egy selects a potential delegation, i.e. a task and a re-
ceiver; (b) the acceptability rule determines whether
the agent accepts or declines a delegation. Inspired
by our practical application, the experiments on our
testbed evaluate the responsiveness of our approach.

Specifically, our contributions are as follows:
• We formalize the multi-agent situated task allo-

cation problem with concurrent jobs where tasks
have different costs for different agents due to the
resource locality.

• We design a multi-agent strategy which allows the
agents to continuously identify opportunities and
bottleneck agents within a current unbalanced al-
location. Afterwards, concurrent and bilateral ne-
gotiations amongst agents are triggered to locally
delegate some of the tasks. Tasks reallocations oc-
cur continuoulsy according to the local perception
and the peer modelling of agents.

• We conduct extensive experiments which show
that our method reaches a flowtime which is close
to the one reached by the classical heuristic ap-
proach and significantly reduces the rescheduling
time.

The paper is structured as follows. After an overview
of the related work in Sec. 2, we formalize the multi-
agent situated task allocation problem with concur-
rent jobs in Sec. 3. Sec. 4 describes the operations of
consumption/delegation and the negotiation process.
Sec. 5 specifies the consumption strategy, i.e. how
agents choose the scheduling order of their own bun-
dle. Sec. 6 details the delegation strategy, i.e. how
agents choose which task to negotiate with whom.
Our empirical evaluation is described in Sec. 7. Fi-
nally, Sec. 8 summarizes our contribution and outlines
our future work.

2 RELATED WORK

Classical scheduling problems are constrained opti-
mization problems that can be approximated by dif-
ferent heuristics such as hill climbing or simulated
annealing (See (Pinedo, 2008) for a survey). The lim-
itations of these approaches for task reallocation in
distributed systems are due to the following aspects:

• Decentralization: global control causes a perfor-
mance bottleneck as it must collect status infor-
mation of the entire system in real time. By
contrast, agents can take local decisions over an
existing allocation in order to improve the load-
balancing.

• Adaptation: classical scheduling problems are
static. The inaccurate estimation of tasks exe-
cution time and the disruptive phenomena (task
consumption, job release, etc.), may require ma-
jor modifications in the existing allocation to stay
optimal. Agents can act in dynamic environments
that evolve over time.

These are the reasons why multi-agent scheduling has
received significant attention for load-balancing prob-
lems in distributed systems (See (Jiang, 2016) for a re-
cent survey). Banerjee and Hecker propose in (Baner-
jee and Hecker, 2017) a general distributed resource
allocation protocol for load-balancing coarse-grained
jobs on a massively distributed system. They empha-
size that the local interactions between agents lead
to some complex high-level emergent properties. By
contrast, Selvitopi et al. investigate in (Selvitopi et al.,
2019) the simultaneous scheduling of fine-grained
tasks in order to improve the data locality and balance
the workloads. Their approach is based on graph and
hypergraph models which make use of application-
specific knowledge. Our study aims at bridging this
granularity gap by the reassignment of independent
tasks within multiple jobs in an application-agnostic
way.

Schaerf et al. investigate in (Schaerf et al., 1995)
the adaptive behaviour of agents for efficient load-
balancing using multi-agent reinforcement learning.
Turner et al. combine in (Turner et al., 2018)
supervised classification learning with an internal
decision-making process for task assignments. Con-
versely, we do not assume any prior model of the
data/environment since it is not relevant considering
the class of practical applications we are concerned
with.

In (Jiang and Li, 2011), the authors distinguish
two kinds of vicinity: the locality of the resources
which are needed to perform the tasks, and the neigh-
bourhood of the agents. On this latter point, we as-
sume a fully connected social network with uniform
communication costs. In (Zaharia et al., 2010), the
authors are concerned with data locality. In the con-
text of the scheduling problem of MapReduce jobs
composed of multiple tasks, they try to place com-
putations near their input data in order to maximize
the system throughput. In this paper, we abstract
away from the practical applications, but we address a
similar challenging problem by considering task con-
sumption, job release and slowing down nodes as un-
expected events in a dynamic environment.

On one hand, most of the existing works adopting
the market-based approach model the load-balancing
problem as a non-cooperative game. For instance, An
et al. propose in (An et al., 2010) a distributed ne-
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gotiation mechanism where selfish agents negotiate
over resources both a contract price and a decommit-
ment penalty. On the other hand, most of the solving
algorithms for the distributed constraint optimization
problems (See (Fioretto et al., 2018) for a recent sur-
vey) try to optimize a single-objective function which
is assumed to be utilitarian (a sum of costs to be min-
imized). More recently, (Baert et al., 2019) targets
an egalitarian objective which is the minimization of
the maximum completion time of the tasks to per-
form (i.e. the makespan). In this paper, we consider
the problem of coordinating agent decisions to find
a globally optimal solution for multi-objective func-
tions. The agents try to minimize the mean flowtime
of several concurrent jobs, i.e. the mean of the maxi-
mum completion times of the tasks in these jobs.

3 SITUATED TASKS

We formalize here the multi-agent situated task allo-
cation problem with concurrent jobs.

A job is a set of independent, non divisible and
non preemptive tasks without precedence order. The
execution of each task requires resources which are
distributed at different nodes. We consider that the
resources are transferable and non consumable.

Definition 1 (Distributed system). A system is a triple
D= 〈N,E,R〉 where:

• N = {ν1, . . . ,νm} is a set of m nodes;
• E is an acquaintance relation, i.e. a binary and

symmetric relation over N;
• R = {ρ1, . . . ,ρk} is a set of k resources having a

size (e.g. |ρi|). The locations of the resources,
which are possibly replicated, are determined by
the function:

l : R→ 2N (1)

For simplicity, we assume that there is exactly one
agent per node (the set of agents is N) and all the re-
sources are accessible by any agent.

The execution of a job (without deadline) con-
sists of the performance of a set of independent tasks
which require resources to produce an outcome.

Definition 2 (Job/Task). Let D be a distributed sys-
tem and Outcome be the space of outcomes. We con-
sider the set of ` jobs J = {J1, . . . ,J`}. Each job
Ji is a set of ki tasks Ji = {τ1, . . . ,τki} associated
to the release date t0

Ji
where each task τ is a func-

tion which links a set of resources to an outcome:
τ : 2R 7→ Outcome.

T =
⋃

1≤i≤` Ji denotes the set of the n tasks of J
and Rτ ⊆R is the set of the resources required for the

task τ. For the sake of brevity, we denote job(τ) the
job containing the task τ. We assume that the num-
ber of jobs is negligible with respect to the number of
tasks, |J|<< |T|.

The task cost estimates its runtime on a node.

Definition 3 (Task cost). Let D be a distributed sys-
tem and T be a set of tasks. the cost function is s.t.:

c : T×N 7→R∗+ (2)

The cost of the task τi for the node ν j is a strict posi-
tive real number denoted c(τi,ν j).

The difficulty lies in the specification of this func-
tion in order to have a good estimation of the runtime.
As the fetching time of resources is supposed to be
significant, the cost function must verify that the task
τ is cheaper for νi than for ν j (c(τ,νi) ≤ c(τ,ν j)) if
the required resources are ”more local” to νi than to
ν j. We postpone the full specification of the task cost
function to the experimental setup (Sec. 7).

A multi-agent situated task allocation problem
with concurrent jobs consists of assigning several jobs
to some nodes according to the underlying task costs.

Definition 4 (MASTA+). A multi-agent situated
task allocation problem is a quadruple MASTA+ =
〈D,T,J,c〉 where:

• D = 〈N,E,R〉 is a distributed system with m
nodes;

• T = {τ1, . . . ,τn} is a set of n tasks;
• J = {J1, . . . ,J`} is a set of ` jobs, i.e. a partition

of tasks s.t.

(T =
⋃

1≤i≤`
Ji)∧ (Ji∩ Ji = /0 with 1≤ i 6= j ≤ `)

(3)
• c : T×N 7→R∗+ is the task cost function.

A task allocation is a distribution of sorted bundles at
different nodes.

Definition 5 (Allocation). Let MASTA+ be a task
allocation problem. An allocation is a vector of
m sorted task bundles. ~A = ((B1,≺1), . . . ,(Bm,≺m))
where each bundle (Bi,≺i) is the set of tasks (Bi ⊆ T)
assigned to the node νi associated with a scheduling
order, i.e. a strict and total order (≺i⊆ T× T) s.t.
τ j ≺i τk means that if τ j,τk ∈ Bi then τ j is performed
before τk by νi. The allocation~A is s.t.:

∀τ ∈ T, ∃νi ∈N, τ ∈ Bi (4)
∀νi ∈N,∀ν j ∈N \{νi}, Bi∩B j = /0 (5)

All the tasks are assigned (Eq. 4) and each task is as-
signed to a single node (Eq. 5). For brevity, we de-
note:

• ~Bi = (Bi,≺i), the sorted bundle of νi;
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• min≺i Bi, the next task to perform by νi:

• jobs(Bi), the set of jobs assigned to νi, i.e. the
jobs having at least one task in Bi;

• ν(τ,~A), the node responsible for τ in ~A.

The sum of the task costs in a bundle estimates its
runtime. Formally, The workload of νi for ~A is:

wi(~A) = ∑
τ∈Bi

c(τ,νi) (6)

In order to evaluate a task allocation, we consider the
flowtime, which measures the time between the re-
lease date of the jobs and their completion dates, and
the makespan which is the completion time of all the
jobs.

Definition 6 (Flowtime/Makespan). Let MASTA+ be
a task allocation problem and~A be an allocation. We
define:

• the delay of τ for νi,

t(τ,νi) = ∑
τ′∈Bi|τ′≺iτ

c(τ′,νi) (7)

• the completion time of τ ∈ T for~A,

Cτ(~A) = t(τ,ν(τ,~A))+ c(τ,ν(τ,~A)) (8)

• the completion time of J ∈ J for~A,

CJ(~A) = max
τ∈J
{Cτ(~A)} (9)

• the completion date of J ∈ J for~A,

tE
J (~A) = t0

J +CJ(~A) (10)

• the mean flowtime of J for~A,

C(~A) =
1
` ∑

J∈J
CJ(~A) (11)

• the makespan of J for~A,

Cmax(~A) = max
J∈J

tE
J (~A) (12)

• the local availability ratio of~A,

L(~A) = ∑
τ∈T

∑
ρ∈Rτ , ν(τ,~A)∈l(ρ) |ρ|

∑ρ∈Rτ
|ρ|

(13)

The delay of a task for a node estimates the
runtimes (costs) of the previous tasks in the bundle
(Eq. 7) since we assume the nodes are never inactive.
The completion time of a task is the sum of the de-
lay before the task is started plus its runtime (Eq. 8).
Contrary to the cost of the task, its delay and its com-
pletion time depend on the scheduling order over the
bundle. According to Eq. 9, a job is finished for all

the agents when they have performed all the tasks in
this job. The completion date of a job is the finishing
date (Eq. 10). The mean flowtime is the mean com-
pletion time of the jobs (Eq. 11). Since the makespan
measures the maximum completion time of the jobs
(Eq. 12), it is the maximum workload of the nodes:

Cmax(~A) = max
νi∈N
{wi(~A)} (14)

Contrary to the makespan, the flowtime depends on
the scheduling order. The local availability ratio mea-
sures the proportion of locally processed resources
(Eq. 13).
Example 1 (MASTA+). We consider D = 〈N,E,R〉
where:

• 3 nodes N = {ν1,ν2,ν3} are fully connected E =
{(ν1,ν2),(ν1,ν3),(ν2,ν3)};

• 9 resources R = {ρ1,ρ2,ρ3,ρ4,ρ5,ρ6,ρ7,ρ8,ρ9}
are replicated over 2 nodes (Fig. 1a). For in-
stance, ρ1, with |ρ1| = 6, is over ν1 and ν2 but
not over ν3.

We also consider MASTA+ = 〈D,T,J,c〉 with:
• 9 tasks T = {τ1,τ2,τ3,τ4,τ5,τ6,τ7,τ8,τ9}. Each

one requires the corresponding resource, e.g. ρ1
is required for τ1 ;

• 3 jobs J = {J1,J2,J3}, s.t. J1 = {τ1,τ2,τ3}, J2 =
{τ4,τ5,τ6} and J3 = {τ7,τ8,τ9}.

• the cost function which is represented in Tab. 1.
We assume that the cost of a task is proportional
to the resource size and two times more important
if the resource is remote.

The allocation represented in Fig. 1b is s.t. ~B1 =
(τ1,τ4,τ7),~B2 = (τ5,τ8,τ2) and~B3 = (τ3,τ9,τ6). The
makespan and the mean flowtime are Cmax(~A) = 10
and C(~A) = 8.33, respectively.
In summary, we consider heterogeneous nodes be-
cause the cost of tasks depend on the processing nodes
due to the locality of the underlying resources. Our
objective is to minimize the mean flowtime of the con-
current jobs containing several tasks:

Rm|ΣJ∈J max
τ∈J

Cτ(~A)

4 CONSUMPTION AND
DELEGATION PROCESS

We describe here the operations of consump-
tion/delegation and we sketch the negotiation proto-
col.

The addition/removal of the task τ in the bundle~Bi
modifies not only the set of tasks but also the schedul-
ing order over the bundle. Formally,
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Figure 1: The resource distribution and the allocation sorted by the LCJF strategy.

Table 1: The cost of the tasks for the nodes

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9
c(τ,ν1) 3 5 0.5 3 2 6 4 2 1
c(τ,ν2) 3 5 0.5 3 1 12 4 1 2
c(τ,ν3) 6 10 1 6 1 6 8 1 1

• if τ /∈ Bi then
−−−→
Bi⊕ τ denotes the bundle which

contains the set of tasks Bi ∪{τ} sorted with ≺i
;

• if τ ∈ Bi then
−−−→
Bi	 τ denotes the bundle which

contains Bi \{τ} sorted with ≺i.

These operations imply a rescheduling of the bundle.
As we will see in Sec. 5, the consumption strategy
specify the scheduling order.

A task consumption is a disruptive event which
modifies not only the allocation of tasks but also the
underlying problem.

Definition 7 (Consumption). Let MASTA+ =

〈D,T,J,c〉 be a task allocation problem and ~A be
an allocation. The consumption of τ by νi with a
non-empty bundle (Bi 6= /0) leads to the allocation
~A′ = γ(νi,~A) for the problem MASTA′ = 〈D,T′,J′,c〉
where:

T′ = T \{min
≺i

Bi} (15)

J′ =


J\{job(min≺i Bi)}

if job(min≺i Bi) = {min≺i Bi}
J else

(16)

In the latter case:

J′j =

{
J j \{min≺i Bi} if job(min≺i Bi) = J j

J j else
(17)

and

~B
′
j =

{−−−−−−−−→
Bi	min≺i Bi if j = i
~B j else

(18)

The task is removed from the set of tasks (Eq. 15)
and from the corresponding job (Eq. 17). The
latter is removed if it only contains τ (Eq. 16).
The task is removed from the allocation (Eq. 18).
Obviously, a task consumption can increase nei-
ther the makespan nor the flowtime but it de-
creases the local makespan (wi(γ(νi,~A)) < wi(~A))
and the local flowtime (ΣJ∈jobs(Bi)CJ(γ(νi,~Bi)) <

ΣJ∈jobs(Bi)CJ(~Bi)). The sequence of consumptions,
which consists of an iteration of MASTA+ problems,
removes one by one all the tasks from the initial allo-
cation to the empty one.

A task delegation is a disruptive event which
changes the current allocation, i.e. a reallocation.

Definition 8 (Delegation). Let MASTA+ =
〈D,T,J,c〉 be a task allocation problem and
~A = (~B1, . . . ,~Bm) be an allocation. If the task τ is as-
signed to the donor νi (τ ∈ Bi), then the delegation to
the recipient ν j leads to the allocation δ(τ,νi,ν j,~A)
with the m bundles δ(τ,νi,ν j,~Bk) such as:

δ(τ,νi,ν j,~Bk) =


−−−→
Bi	 τ if k = i
−−−→
B j⊕ τ if k = j
~Bk else

(19)

A task delegation must reduce the local makespan and
the local flowtime.

Definition 9 (Socially rational delegation). Let
MASTA+ = 〈D,T,J,c〉 be a task allocation problem,
~A be an allocation and δ(τ,νi,ν j,~A) the allocation af-
ter the delegation of τ by νi to ν j. This delegation is
socially rational:
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• with respect to the makespan if and only if the lo-
cal makespan decreases

w j(~A)+ c(τ,ν j)< wi(~A) (20)

• with respect to the flowtime if and only if the local
flowtime decreases

ΣJ∈jobs(Bi∪B j) max(CJ(
−−−→
Bi	 τ),CJ(

−−−→
B j⊕ τ))<

ΣJ∈jobs(Bi∪B j) max(CJ(~Bi),CJ(~B j))

(21)

An allocation is stable if none of the agents have so-
cially rational delegations. In a stable allocation with
respect to the makespan, agents cannot locally im-
prove the makespan.

Property 1 (Termination). Let MASTA+ =
〈D,T,J,c〉 be a task allocation problem and ~A
be a non-stable allocation with respect to the
makespan. There is always a finite path of socially
rational delegations with respect to this criterion,
which leads to a stable allocation with respect to
makespan.

The property derives from Theo. 7 in (Endriss et al.,
2006). By contrast, a sequence of socially rational
delegations with respect to the flowtime does not nec-
essarily lead to a stable allocation for this criterion.

Agents operate in multiple bilateral single-round
negotiations for task delegations. Each negotiation,
which is based on the alternating offers protocol (Ru-
binstein, 1982), includes three decision steps: (a) the
offer strategy of the proposer (Sec. 6) which selects
a potential delegation, i.e. a task in its bundle and
a recipient, (b) the acceptability rule (Sec. 6) allows
the responder to determine whether it rejects or ac-
cepts such a delegation, and (c) in the latter case, the
delegation is confirmed or withdrawn by the proposer
depending on the interleaved consumptions.

5 CONSUMPTION STRATEGY

We describe here the consumption strategy adopted
by an agent to select the next task to perform, i.e.
a scheduling order over its bundle based on its local
knowledge.

We consider a task allocation problem
MASTA+ = 〈D,T,J,c〉 and an allocation ~A.
Each agent νi ∈N which knows the problem and has
a local perception of the allocation, i.e. its bundle ~Bi,
can deduce the following metrics:

• its workload (Eq. 6);

• the delay of the tasks in its bundle (Eq. 7);

• the completion time of these tasks (Eq. 8);

• the completion time of the jobs for the node,

CJ(~Bi) =

{
maxτ∈J∩Bi{Cτ(~Bi)} if J ∈ jobs(Bi)

0 else
(22)

• the job costs for the node,

c(J,νi) = Στ∈J∩Bic(τ,νi) (23)

It is worth noticing that the mean completion time of
the jobs for an agent depends on the scheduling order
over its bundle.

A consumption strategy is defined by a schedul-
ing order, i.e. a strict total order over the bundle.
Since we aim at minimizing the completion time of
jobs rather than tasks we focus on job-oriented con-
sumption strategies. Such a strategy is a lexicographic
order which consists of sorting first jobs, and then the
tasks inside the same job.

Definition 10 (Job-oriented strategy). Let �i and �i
two strict total order relations over T and J, respec-
tively. A job sorting strategy based on (�i,�i) sorts
the bundle Bi according to the strict total order rela-
tion ≺i defined by:

∀τ j,τk ∈ Bi τ j ≺i τk⇔
job(τ j)�i job(τk)∨ (job(τ j) = job(τk)∧ τ j�i τk)

(24)

J1�iJ2 means that the tasks in J1 are prior to the
tasks in J2. The tasks in the same job are consecutive
in the bundle.

The job-oriented consumption strategy we con-
sider in this paper aims at minimizing the completion
times of jobs by sorting them according to their costs.

Definition 11 (LCJF). Let �i a strict total order on
T. A job sorting strategy based on (�i,�i) is said
”Locally Cheapest Job First” (LCJF) if and only if
the relation �i over the jobs satisfies :

∀J j,Jk ∈ J, J j�i Jk⇔
c(J j,νi)< c(Jk,νi)∨ (c(J j,νi) = c(Jk,νi)∧ J j < Jk)

(25)

where < denotes the order over the jobs induced by
the natural order over their identifiers.

This strategy executes the tasks in the cheapest
jobs before the tasks in the expensive ones.

The relation over the jobs �i is based on the
knowledge of the agent about the MASTA+ problem
and its own bundle. This scheduling order is strict and
total since < discriminates the ties. Since we assume
a strict total order over the tasks �i (e.g. arbitrary the
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natural order over the task identifiers),≺i is also strict
and total.

A LCJF strategy allows νi to locally minimize the
completion time of jobs. None permutation of jobs in
the bundle can strictly decrease the local flowtime.

Lemma 1 (LCJF). Let ≺i be a LCJF strategy based
on (�i,�i).

∀σ ∈ S(jobs(Bi)),

ΣJ∈jobs(Bi)CJ(~Bi)≤ ΣJ∈jobs(Bi)CJ(σ(~Bi))
(26)

where S(jobs(Bi)) denotes the set of all the permuta-
tions of the jobs assigned to νi.

The lemma derives from Theo. 3.1.1 in Chap. 3
of (Pinedo, 2008).

Example 2 (LCJF). Let us consider Ex. 1. If the
bundles are B1 = {τ1,τ4,τ7}, B2 = {τ2,τ5,τ8} and,
B3 = {τ3,τ6,τ9}, the allocation sorted with the LCJF
strategy (Fig. 1b) is s.t.:

• ~B1 = (τ1,τ4,τ7) since (c(J1,ν1) = c(τ1,ν1)) <
(c(J2,ν1) = c(τ4,ν1))< (c(J3,ν1) = c(τ7,ν1));

• ~B2 = (τ5,τ8,τ2) since (c(J2,ν2) = c(τ5,ν2)) =
(c(J3,ν2) = c(τ8,ν2)) < (c(J1,ν2) = c(τ2,ν2))
and J2 < J3;

• ~B3 = (τ3,τ9,τ6) since (c(J1,ν3) = c(τ3,ν3)) =
(c(J3,ν3) = c(τ9,ν3)) < (c(J2,ν3) = c(τ6,ν3))
and J1 < J3.

6 DELEGATION STRATEGY

We describe here the different parts of the delega-
tion strategy (peer modelling, acceptability rule, offer
strategy) and we sketch the agent behaviour.

The peer modelling is built upon the information
exchanged by the agents through messages. In par-
ticular, the agent νi informs its peers about the job
costs for it (c(J,νi), ∀J ∈ J) before the negotiation
process and after each delegation in which it is in-
volved. Since the number of jobs is much smaller
than the number of tasks, the size of theses messages
(O(|J|)) is negligible wrt the task bundle descriptions
(O(|T|)). The peer modelling of the target ν j by the
subject νi is based on:

• the belief base of the subject, eventually partial or
obsolete, which contains the belief about the job
costs for ν j (ci(J,ν j) ∀J ∈ J) and the belief about
the workload of ν j (wi

j(
~A) = ΣJ∈Jci(J,ν j));

• the consumption strategy of the target assumed by
the subject which boils down to the relation over
the jobs adopted by the target, denoted �i

j.

For readability, we denote ci(J,νi) = c(J,νi) and
wi

i(
~A) = wi(~A). From its beliefs about the target and

the assumed consumption strategy, the subject can de-
duce the completion time of the job J for the target,
eventually after the addition/removal of τ : C i

J (~B j),

C i
J (
−−−→
B j⊕ τ) and C i

J (
−−−→
B j	 τ). Then, the subject can de-

duce the completion time of a job for the allocation:

C i
J (~A) = max

ν j∈N
C i

J (~B j) where C i
J (~Bi) = CJ(~Bi) (27)

The subject considers the target as a bottleneck for the
job J (ν j = nodeMaxi(~A,J)) if the completion time of
this job for the target is the completion time for the
allocation, i.e. C i

J (~A) = C i
J (~B j).

The acceptability rule is a local decision by the
recipient of a delegation, which is based on its knowl-
edge and its peer modelling, to determine whether a
delegation is accepted or declined depending on its
perception of the social rationality of the delegation.

Definition 12 (Acceptability criterion). Let
δ(τ,νi,ν j,~A) be the delegation of τ from νi to
ν j in~A. This delegation is acceptable by the recipient
:

• with respect to the makespan if and only if the re-
cipient believes that the delegation decreases the
local makespan,

w j(~A)+ c(τ,ν j)< w j
i (
~A) (28)

• with respect to the flowtime if and only if the re-
cipient believes that the delegation decreases the
local flowtime,

ΣJ∈J max(C j
J (
−−−→
Bi	 τ),CJ(

−−−→
B j⊕ τ))<

ΣJ∈J max(C j
J (
~Bi),CJ(~B j))

(29)

While the first criterion is built upon the belief
about the workload of the donor (Eq. 28), the second
one is built upon the knowledge about the comple-
tion times of the jobs for the recipient before/after the
delegation and its belief about the completion times
of the jobs for the donor before/after the delegation
(Eq. 29).

In order to reduce the flowtime, the acceptability
rule consists in checking not only the acceptability
criterion wrt the flowtime but also the acceptability
criterion wrt the makespan which guarantees the con-
vergence of the negotiation process (Prop. 1).

The offer Strategy of a possible donor νi, which
is based on its knowledge and its peer modelling, se-
lects a potential delegation: a recipient, a task and so
a job. The strategy is divided in 4 steps:

1. Job Selection. According to the principle of sub-
sidiarity, the goal of the donor is to reduce the
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completion time of the jobs it is responsible for.
In order to reduce not only the completion time
of one job for the donor but also the completion
time of the next jobs in ~Bi, our heuristic selects
the prior job for which the donor is a bottleneck,

∀J′ ⊆ J, J∗ = σi(J
′) =

min
�i
{J ∈ jobs(Bi)∩J′ | νi = nodeMaxi(~A,J)}

(30)

2. Recipient Selection. The jobs assigned to the re-
cipient which are impacted by the delegation are
those after J∗ according to �i

j. Not to increase
the completion times of these jobs, our heuristic
selects the recipient for whom the sum of the dif-
ferences between the completion time for the al-
location and the completion time for this agent is
the greatest one,

∀N′ ⊆N, ν∗ = σi(N
′,J∗) =

min
<
{argmax

ν j∈N′
∑

J∗�i
jJ

(C i
J (~A)−C i

J (~B j))} (31)

where < denotes the order over the nodes induced
by the natural order over their identifiers.

3. Task Selection. In order to reduce the completion
times, the donor selects a distant task whose dele-
gation reduces its cost since it is locally executed.
For this purpose, our heuristic selects the task in
the job J∗ or in the prior jobs in~Bi with the highest
payoff. In case of tie, the prior task is chosen,

∀T′ ⊆ T, τ∗ = σi(T
′,ν∗,J∗) =

min
�i
{ argmax

τ∈T′∩Bi∩{J|J=J∗∨(J�iJ∗)}
c(τ,νi)− c(τ,ν∗)}

(32)

4. Validation. By symmetry with the acceptability
criterion (Def. 12), the trigger criterion is a lo-
cal decision by the donor to determine whether
a delegation is perceived as socially rational. In
order to warranty the convergence of the negoti-
ation process, the trigger rule is a conjunction of
the trigger criterion wrt the makespan and the trig-
ger criterion wrt the flowtime. If the trigger rule
is not satisfied, then another task (T′ = T′ \ {τ∗}
in step 3) or another recipient (N′ = N′ \ {ν∗} in
step 2), eventually another job (J′ = J′ \ {J∗} in
step 1) is chosen. In case of failure, no delegation
is proposed and the agent enters in pause until its
belief base is updated and a new opportunity (i.e.
a potential delegation) is found.

In our approach, the task reallocation is the outcome
of negotiations between agents adopting the same be-
haviour: they alternatively play the roles of proposer,

responder and contractor. The agents execute this be-
haviour according to their knowledge and beliefs. The
agent behavior is specified in (Beauprez and Morge,
2020) by a deterministic finite state automaton1. In
order to avoid deadlock, the proposals are associated
with deadlines.

It is worth noticing the reception of the message
from the peers updates the belief base of the agent
and none proposal is sent when the agents believes
that the allocation is stable.

Example 3 (Delegation strategy). Let us consider the
MASTA+ instance and the allocation ~A of Ex. 1. We
assume that the agents have up-to-date beliefs and
that they know that all of them adopt the LCJF strat-
egy. Contrary to ν1 and ν2, the agent ν3 can make a
proposal since it selects:

1. the job for which it is a limiting factor (Eq. 30),
J∗ = J2 ;

2. the less bottleneck agent for the impacted jobs
(Eq. 31) which are the jobs J3 for ν1 and the jobs
J1 and J3 for ν2:

∑
J∗�3

1J

(C 3
J (~A)−C 3

J (~B1)) = 0 (33)

∑
J∗�3

2J

(C 3
J (~A)−C 3

J (~B2)) = 8 (34)

Therefore, ν∗ = ν2;
3. the prior task with the highest payoff (Eq. 32) in

J2 or in the prior jobs, i.e. J1 and J3:

(c(τ6,ν3)− c(τ6,ν2)) = 6−12 =−6
(c(τ9,ν3)− c(τ9,ν2)) = 1−2 =−1
(c(τ3,ν3)− c(τ3,ν2)) = 1−0.5 = 0.5

(35)

Therefore, τ∗ = τ3 ;
4. the delegation is triggerable since the trigger cri-

terion wrt the flowtime is satisfied,

ΣJ∈J max(CJ(
−−−−→
B3	 τ3),C 3

J (
−−−−→
B2⊕ τ3)) = 16.5 <

ΣJ∈J max(CJ(B3),C 3
J (B2)) = 17.0

(36)

and the trigger criterion wrt the makespan is sat-
isfied,

w3
2(~A)+ c(τ,ν2) = 7.5 < w3(~A) = 8.0 (37)

The donor ν3 delegates the task τ3 to the agent ν2 to
reach~A

′
= δ(τ3,ν3,ν2,~A) s.t. ~B

′
1 = {τ1,τ4,τ7},~B

′
2 =

{τ5,τ8,τ3,τ2} and ~B
′
3 = {τ9,τ6}. The allocation is

stable.

1https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/
tree/master/doc/specification
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7 EMPIRICAL EVALUATION

We consider as a practical application the distributed
deployment of the MapReduce design pattern in or-
der to process large datasets on a cluster, as with
Hadoop (The Apache Software Foundation, 2020) or
Spark (Zaharia et al., 2012). We focus here on the
reduce stage of MapReduce jobs. This can be formal-
ized by a MASTA+ problem where several jobs are
concurrently submitted and the cost function is s.t.:

ci(τ,ν j) = ∑
ρ j∈Rτ

ci(ρ j,ν j)

with ci(ρ j,νi) =

{
|ρ j| if νi ∈ l(ρ j)

κ×|ρ j| else

(38)

where we empirically calibrate κ = 2 as a realistic
value.

To our best knowledge, no alive project of agent
platforms provides a logic-based agent programming
language, allowing a direct implementation of con-
cepts such as beliefs and goals, that supports the de-
velopment of cognitive agents for large-scale, dis-
tributed applications and services. That is the rea-
son why our testbed (Beauprez and Morge, 2020)
is implemented with the general purpose program-
ming language Scala and Akka (Lightbend, 2020) for
highly concurrent, distributed, and resilient message-
driven applications. We assume that: (a) the mes-
sage transmission delay is arbitrary but not negligi-
ble, (b) the message order per sender-receiver pair is
preserved, and (c) the delivery of messages is guar-
anteed. Experiments have been conducted on a blade
with 20 CPUs and 512Go RAM.

We consider three metrics: (1) the mean flowtime
(Eq. 11), (2) the local availability ratio (Eq. 13), and
(3) the scheduling time. We aim at (i) comparing the
allocation reached by our negociation process with
the classical approach, and (ii) evaluating the accel-
eration thanks to the decentralization.

The outcome reached by the general-purpose
solver IBM® ILOG® CPLEX® tackling the under-
lying non-linear discrete mathematical optimization
problem is poor. This is the reason why our base-
line is a hill climbing algorithm. The latter and our
method both start with the same randomly generated
initial allocation sorted according to the LCJF strat-
egy. At each step, the hill climbing algorithm itera-
tively selects among all the possible delegations, the
one which minimizes the flowtime after the applica-
tion of the LCJF strategy.

The MASTA+ problem instances we consider are
such that m ∈ [2;12] nodes/agents, ` ∈ [2;5] jobs and
n = 3× `×m tasks. We consider one resource per
task. Each resource ρi is replicated 3 times and

|ρi| ∈ [0;100]. We generate 10 MASTA+ problem in-
stances, and for each we randomly generate 10 initial
allocations.

The hypothesis we want to test are: (1) the flow-
time reached from our strategy is close to the one
reached by the classical approach and (2) the decen-
tralization significantly reduces the scheduling time.

Figures 2a and 2b present the medians of the flow-
time and the scheduling time exhibited by the meth-
ods depending on the number of nodes and the num-
ber of jobs. Figures 2c, 2d and 3 focus on the medians
and the standard deviations of all the metrics depend-
ing on the number of nodes with `= 4 jobs. It is worth
noticing that the hill climbing algorithm has been
used with small MASTA+ instances due to its pro-
hibitive scheduling time. At each step, the hill climb-
ing algorithm considers all the possible delegations,
thus it reaches an allocation with a better flowtime
than our strategy. Since the overhead of our strategy
is 25%, our delegation strategy seems to be efficient
even if the acceptability criterion wrt the makespan,
which is required to guarantee the convergence, may
lead to discard some delegations which may reduce
the flowtime (Sec. 4). This is due to the fact that
the delegation strategy selects the distant tasks whose
delegations reduce their cost in order to improve lo-
cal availability ratio which is slightly better than the
one reached by the hill climbing algorithm. More-
over, since the latter evaluates at each step all the pos-
sible delegations, its scheduling time is much higher
than the one of our negociation strategy. For instance,
it is six times higher for 9 agents and 4 jobs.

It is worth noticing that the gap between the
scheduling times of the two methods increases expo-
nentially with the number of agents, while the gap
between the flowtimes is roughly constant. We can
expect a higher scheduling time if we adopt a local
search method such as the simulated annealing with-
out any warranty about the optimality of the outcome.

As a result, even if the number of agents is small,
the gain realized on the flowtime by the hill climb-
ing algorithm will be penalized and cancelled by the
overhead of its scheduling time. This overhead pe-
nalized the time-extented assignment in a distributed
system which should be adaptive to disruptive phe-
nomena (task consumption, job release, slowing down
nodes).

Finally, we observe that, when it is decentralized
on several cores, the acceleration of our algorithm in-
creases with the number of agents and jobs. For in-
stance, with a similar flowtime neglecting the observ-
able nondeterminism of their executions, the decen-
tralized version runs 3 times faster than the central-
ized one for 12 agents and 4 jobs.
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Figure 2: The mean flowtime and the scheduling time for our (centralized and decentralized) negociation strategy and the hill
climbing algorithm.
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Figure 3: The local availability ratio for our (centralized and
decentralized) negociation strategy, the hill climbing algo-
rithm and the initial allocation.

8 CONCLUSION

In this paper, we have proposed a multi-agent system
for task reallocation among distributed nodes based
on the location of the required resources in order to
minimize the mean flowtime of concurrent jobs. Our
prototype has been empirically evaluated. Our experi-
ments show that the flowtime reached by our strategy
is close to the one reached by the classical heuristic
approach and it significantly reduces the rescheduling
time. This is due to the fact that our negotiation pro-

cess continuously adapts the allocation in order to im-
prove the load-balancing by reducing the completion
times of the jobs for the bottleneck agents. On one
hand, the consumption strategy performs the tasks of
the cheapest jobs before the most expensive ones. On
the other hand, the delegation strategy selects a job
which can reduce the completion times of the donor
by choosing a receiver which is not a bottleneck for
the impacted jobs and by choosing a task whose del-
egation reduces its cost since it is locally executed. A
sensitivity analysis to study the influence of the repli-
cation factor has been beyond the scope of this work,
but it is certainly worth of further investigation. Obvi-
ously, our approach is scalable since it tackles a large
number of tasks due to the local decisions of agents
about the next task to delegate/execute. Moreover, the
overhead of the negotiation is negligible with respect
to the benefit of the load-balancing since no negotia-
tion is triggered when the agents believe that the allo-
cation is stable.

A comparative study of our strategy with different
distributed resolution methods algorithms is beyond
the scope of this paper, but it is certainly worth of fur-
ther investigation. Some of our experiments suggest
that we need to extend our negotiation framework to
consider (a) task swaps to improve the mean flow-
time of stable allocations, and (b) a less restrictive
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acceptability rule which currently discards some task
delegations which may reduce the flowtime. Gener-
ally, future work must extend the task reallocation
toward an iterated, dynamic and on-going process,
which takes place concurrently with the task execu-
tion, allowing the distributed system to be adaptive to
disruptive phenomena (task consumption, job release,
slowing down nodes).
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