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Abstract: We consider monocular 3D human pose estimation with joint rotation representations because they are more 
expressive than joint location representations and better suited to some applications such as CG character 
control and human motion analysis in sports or surveillance. Previous approaches have encountered difficul-
ties when estimating joint rotations with actual twist rotation around limbs. We present a novel approach to 
estimating joint rotations with actual twist rotations from a single image by handling joint rotations separately 
decomposed into swing and twist rotations. To extract twist rotations from an image, we emphasize the joint 
appearances and use them effectively in our model. Our model estimates the twist angles with an average 
radian error of 0.14, and we show that estimation of twist rotations achieves a more precise 3D human pose. 

1 INTRODUCTION 

In recent years, monocular 3D human pose estimation 
has been attracting attention in the computer vision 
field. Monocular 3D human pose estimation makes it 
possible to capture human motions in 3D space with-
out dedicated devices, and it is expected that it will be 
used for many applications such as CG character con-
trol and human motion analysis in sports or surveil-
lance. 

3D human poses are generally described in two 
ways: 3D joint locations with their connections or 3D 
joint rotations with a skeletal body model (Ionescu et 
al., 2014). The pose representations based on joint lo-
cations are widely used and the estimation methods 
have been improved in terms of robustness and run-
time efficiency (Mehta et al., 2017; Xu et al., 2020). 
However, most of the representations are too ambig-
uous to express precise poses such as twist of limbs as 
shown in Figure 1, and they lack the precision needed 
for some applications like CG character control.  

On the other hand, the representations based on 
joint rotations against the template pose express more 
precise poses. The pose parameters of the SMPL body 
model (Loper et al., 2015) are a well-known example. 
The SMPL body model reconstructs a 3D body mesh 
and joint locations depending on the shape and pose 
parameters. There are a variety of approaches (Bogo 
et al., 2016; Kanazawa et al., 2017; Pavlakos et al., 
2019) that can be used to estimate pose parameters, 
 

 
Figure 1: An example for different poses with same body 
joint locations of the left elbow and left wrist. Body joint 
locations have ambiguities to express a 3D body pose. 

although these approaches run into difficulties when 
estimating actual twist rotations, which are a compo-
nent of joint rotations around connected limbs. This 
is because they mainly aim to reduce joint location 
errors. Twist rotations are estimated using pose priors 
such as angle limitations to avoid unusual poses with 
impossible twists, or by using additional body key-
points like finger joints with longer processing time 
and a clearer appearance of the whole body. 

Our goal is to estimate joint rotations with actual 
twist rotations from a single image with a minimal 
number of calculations for real-time applications. It is 
difficult to estimate twist rotations with the other 
components of joint rotations because they are not 
clearly visible in images compared to the other com-
ponents such as the swing rotations of limbs. In addi-
tion, it is difficult to train a model to estimate twist 
rotations because there are relatively few images of 
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people twisting their limbs in natural scenes, and it is 
difficult to get accurate ground truth for twist rota-
tions from images.  

To solve these problems, we focus on estimating 
twist angles around limbs by swing-twist decomposi-
tion of joint rotations and emphasizing the appearance 
of limb joints because we believe important infor-
mation for twist estimation appears around the joints. 
We assume that 3D joint locations are obtainable by 
previous approaches (Mehta et al., 2017; Xu et al., 
2020) and they can be utilized to estimate swing rota-
tions. Furthermore, we prepare a pseudo ground truth 
of joint rotations for the CMU Panoptic Dataset (Joo 
et al., 2015) as the training and evaluation dataset by 
using the previous approach (Pavlakos et al., 2019) 
and annotating the qualities of their results.  

Our model estimates twist angles around arms 
with an average radian error of 0.14. Reconstructed 
joint rotations with given 3D joint locations and esti-
mated twist angles are improved by an average of 
0.08 radians in terms of twist rotations compared to 
reconstructed joint rotations with only given 3D joint 
locations. We also discuss how twist rotations affect 
human body mesh reconstruction.  

Our main contributions are summarized as fol-
lows. 
 We reduce the difficulty of estimating joint rota-

tions with actual twist rotations by decomposing 
joint rotations into swing and twist rotations. 

 We present the first model for estimation of actual 
twist angles from a single image directly in real 
time. 

 We show how estimation of twist rotations 
achieves a more precise 3D human pose. 
Below, we review studies related to 3D human 

pose estimation with joint rotations (Section 2). Then, 
we present the data preparation method and our ap-
proach (Sections 3 and 4). In the experimental section 
(Section 5), we demonstrate the performance of our 
approach and discuss the results. Finally, we present 
our conclusion and future work (Section 6). 

2 RELATED WORK 

There are many 3D pose estimation approaches. Here, 
we discuss the most relevant approaches for handling 
3D joint rotations with a skeletal body model. 

Bogo et al. (2016), Lassner et al. (2017), Xiang et 
al. (2018), Pavlakos et al. (2019) and Mehta et al. 
(2019) proposed model fitting approaches to estimate 
pose and shape parameters for a skeletal body model 
from a single image. They extract 2D landmarks or 
3D features from a single image and optimize body 

model parameters to fit to this geometric information 
and other additional information such as pose priors 
and time consistency. Pose prior has some variations, 
and Murthy et al. (2019) proposed priors that de-
scribed the relationship between swing and twist ro-
tations. Such additional information is effective for 
avoiding strange poses. However, it is not sufficient 
for estimation of precise poses including actual twist 
rotations. As shown in some previous studies (Lass-
ner et al., 2017; Xiang et al., 2018; Pavlakos et al., 
2019), more geometric information allows poses to be 
estimated more precisely, however, it increases com-
putational complexity. We aim to estimate actual 
twist rotations with a small number of calculations. 

Another research group (Kanazawa et al., 2017; 
Omran et al., 2018; Pavlakos et al., 2018; Rong et al., 
2019) proposed direct regression approaches for pose 
parameters. They use 2D keypoints or body part seg-
mentation as an explicit intermediate representation 
to regress pose parameters. Their approaches are 
computationally rapid, but tend to be less accurate be-
cause pose parameter regression encounters problems 
due to the complexity and discontinuity of 3D rota-
tions. Kolotouros et al. (2019a) attempt to integrate 
these direct regression approaches with model fitting 
approaches, which tend to be slow but accurate, to 
compensate for the disadvantages of each approach. 
However, it is still difficult to estimate precise and 
accurate poses with a smaller number of calculations. 

More recent approaches (Zhou et al., 2019; Varol 
et al., 2018; Kolotouros et al., 2019b) avoid regress-
ing pose parameters directly. Zhou et al. (2019) re-
gress joint rotations by using 5D and 6D rotation rep-
resentations instead of pose parameters as more suit-
able representations for neural networks. Varol et al. 
(2018) and Kolotouros et al. (2019b) attempt to di-
rectly regress the body mesh from a single image. 
They obtained accurate and precise results with fewer 
calculations. However, their method requires high 
cost 3D mesh annotations for training. We regress the 
twist angles as a simpler target than 5D/6D rotation 
or 3D meshes without high cost annotations such as 
3D meshes. 

3 DATA PREPARATION 

In the training and evaluation phases of our approach, 
we require human images with their 3D joint rotations 
including accurate twist rotations. There are several 
datasets suitable for performing 3D human pose esti-
mation from images (Ionescu et al., 2014; Joo et al., 
2015; Lassner et al, 2017). We avoid datasets with 
motion sensors because sensors will become noise on 
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the human body appearance when extracting essential 
features about twist rotations that are not clearly visi-
ble in images. 

We use the CMU Panoptic Dataset (Joo et al., 
2015) because it has a huge number of natural human 
multiview images with camera parameters and accu-
rate 3D pose annotations. In the CMU Panoptic Da-
taset, 3D pose annotations are described in 3D joint 
locations for just the body or body and hands, and 
they have no twist rotation data. We predict joint ro-
tations and twist rotations from the existing annota-
tions of 3D body and hands joint locations using the 
SMPLify-x method (Pavlakos et al., 2019), which is 
able to estimate pose parameters of the SMPL body 
model accurately and precisely. We customize the 
SMPLify-x method by fitting the body model to 3D 
joint locations instead of 2D joint locations. Then, we 
select high-quality predictions manually. “High qual-
ity” means the body joint locations and the palm ori-
entations of the reconstructed SMPL model are visu-
ally consistent with the pose of the person in the im-
age. Twist rotations are extracted as pseudo ground 
truth from the selected predictions and 3D joint loca-
tions. Note that we create annotations of twist rota-
tions solely around the arms and we ignore pose pa-
rameter errors for the lower body because there are 
few high-quality results for the whole body due to the 
relatively sparse annotations for the lower body in the 
original CMU Panoptic dataset. 

Here, we explain SMPL pose parameters and our 
settings. The SMPL body model defines the kinematic 
tree with the pelvis as the root (e.g. the child joint of 
the shoulder is the elbow.) As shown in Figure 2, joint 
rotations of SMPL pose parameters mean the relative 
rotation for their child joints and the connected limbs 
around them, and they can be decomposed to swing 
and twist rotations. Joint rotations of the SMPL pose 
parameters are described by angle-axis representations. 
The 3D mesh of the SMPL model is controlled by the 
pose and shape parameters, and 3D joint locations are 
regressed from the mesh. For simplicity, we assume 
that the shape parameter is always set to zero; meaning 
a normal body shape. We refer to the pose with zero 
pose parameters as the “T pose”.  

 
Figure 2: Left sphere is the parent joint and right sphere is 
the child joint. There is a limb between both joints. The joint 
rotation for the parent joint is decomposed into swing and 
twist rotations. 

For extraction of twist rotations, we follow the 
swing-twist decomposition formula of Dobrowolski 
(2015) as the direct method. First, we convert the 
joint rotations adopted as the pose parameters to qua-
ternion representations from axis-angle representa-
tions. Let 𝑅௝ be the rotation of joint 𝐽௝ (𝑗 = 0, … ,3 for 
right/left shoulder and right/left elbow). For the fol-
lowing explanations, we designate the conversion 
from axis-angle representation to quaternion repre-
sentation as 𝜑 and inverse conversion as 𝜓. We as-
sume that 𝑅௝ can be decomposed to the swing rotation 𝑆௝ and the twist rotations 𝑇௝ as formula (1). 

𝑅௝ = 𝑇௝ ∙ 𝑆௝ (1)

Let 𝑣௝ be the direction vector from joint 𝐽௝ to its child 
joint 𝐽௝೎ on T pose, and rotate 𝑣௝ by 𝑅௝ or 𝑆௝; then we 
obtain rotated direction vector 𝑤௝ as formula (2). 

𝑤௝ = 𝑅௝ ∙ ቀ𝑣௝0 ቁ ∙ 𝑅௝ି ଵ = 𝑆௝ ∙ ቀ𝑣௝0 ቁ ∙ 𝑆௝ି ଵ (2)

𝑆௝ can be calculated from 𝑣௝ and 𝑤௝ by formula (3). 

𝑆௝ = 𝜑 ቆcosିଵሺ𝑣௝ ∙ 𝑤௝ሻ ∙ 𝑣௝ ൈ 𝑤௝ฮ𝑣௝ ൈ 𝑤௝ฮቇ (3)

Here, we get the twist rotation 𝑇௝ and the twist angle 𝜃௝ around its rotation axis. 

𝑇௝ = 𝑅௝ ∙ 𝑆௝ି ଵ (4)

𝜃௝ = ൞ฮ𝜓൫𝑇௝൯ฮ, 𝑖𝑓 𝜓൫𝑇௝൯ฮ𝜓൫𝑇௝൯ฮ = 𝑤௝െฮ𝜓൫𝑇௝൯ฮ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (5)

Finally, we convert the range of angles 𝜃௝  from ሺെ2𝜋, 2𝜋ሻ to ሺെ𝜋, 𝜋ሻ. The twist angle is a simpler 
representation than the other representations. In our 
method, we represent twist rotations by twist angles 
expressed in radians.  
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Figure 3: (a)Twist angle estimation step. Our model estimates twist angles around arms from a single RGB image and the 
heatmaps for projecting the parent joint and child joint locations on the input image. (b) Pose initialization step. Initial 3D 
body joint locations (T pose) and given 3D body joint locations undergo vector alignment to calculate the rotations between 
the direction vectors for each limb, and the skeletal body model is initialized by the calculated joint rotations. (c) Pose recon-
struction step. The initialized skeletal body model undergoes body fitting so that its 3D body joint locations correspond more 
closely to the given locations and its twist angles around the arms correspond more closely to estimated angles. 

4 APPROACH 

We propose an approach to estimate twist angles 
around arms from a single RGB image and recon-
struct the skeletal body pose by using given 3D 
body joint locations and estimated twist angles 
around arms. Our approach has 3 steps: twist angle 
estimation step (Section 4.1), pose initialization 
step (Section 4.2) and pose reconstruction step 
(Section 4.3). An overview is shown in Figure 3. 

4.1 Twist Angle Estimation 

Our model estimates twist angles around arms from 
a single RGB image and the heatmaps for the pro-
jected parent joint and child joint locations on the 
input image as shown in Figure 3(a). 

First, we extract image features 𝐹 from a single 
RGB image 𝐼 ∈ ℝ௛ൈ௪ൈଷ by using the first 10 lay-
ers of the pretrained VGG19 from the ImageNet 
dataset (Simonyan & Zisserman, 2014) and one 
convolutional layer. In our approach, the input im-
age 𝐼  is assumed to contain a single person. We 
consider that the twist rotation around a limb 
mainly affects the appearance of its parent and 
child joint. Thus, we also create the heatmaps 𝐻௝,௝೎ ∈ ℝ௛ൈ௪ for the locations of the parent joint 𝐽௝ 
and child joint 𝐽௝೎ on the input image 𝐼. The joint 
locations on the image are projected from given 3D 
body joint locations and given camera parameters. 
Here, the heatmap 𝐻௝,௝೎  is calculated by formulas 
(6) and (7). 
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𝐻௝ሺ𝑝ሻ = exp ቆെ ฮ𝑝 െ 𝑙௝ฮ𝜎ଶ ቇ (6)

𝐻௝,௝೎ሺ𝑝ሻ = max ቀ𝐻௝൫𝑝, 𝑙௝൯, 𝐻௝൫𝑝, 𝑙௝೎൯ቁ (7)

Where 𝐻௝ ∈ ℝ௛ൈ௪ is the heatmap of the joint 𝐽௝ loca-
tion, 𝑝 ∈ ℝଶ is any location on heatmaps, 𝐻ሺ∙ሻ is the 
value of the heatmap on the input location, 𝑙௝ ∈ ℝଶ is 
the location of 𝐽௝  and 𝜎ଶ  controls the spread of the 
peak on the heatmap. These heatmaps 𝐻௝,௝೎ and image 
features 𝐹 are concatenated to emphasize the image 
features around the parent and child joints effectively, 
and then they are passed to the convolutional layer, 
average pooling layer, and three fully connected lay-
ers. 

Thereby, we obtain the set of twist angles 𝜃∗. The 
range of these twist angles is ሺെ𝜋, 𝜋ሻ, however, the 
valid range for human joints is limited around zero. 
Therefore, we do not need to consider the singularity 
around െ𝜋 and 𝜋. For this reason, we simply adopt 
the mean squared error as the loss function for 𝜃∗. 
The 𝜃∗  and the ground truth 𝜃  are the normalized 
range from ሺെ𝜋, 𝜋ሻ to ሺ0, 1ሻ by formula (8) for sim-
plicity of training, and our model is trained by mini-
mizing the loss function ℒ𝑜𝑠𝑠௧௪ప௦௧തതതതതതതത  defined by for-
mula (9). 

�̅� = 𝜃 ൅ 𝜋2𝜋  (8)

ℒ𝑜𝑠𝑠௧௪ప௦௧തതതതതതതത = ฮ�̅� െ 𝜃∗തതതฮଶ (9)

4.2 Pose Initialization 

In the pose initialization step, the skeletal body model 
is initialized to make the following pose reconstruc-
tion step easier as shown in Figure 3(b). We make the 
relative joint locations of the skeletal body model 
closer to given 3D body joint locations. We call the 
joint locations of the skeletal body model with T pose 
as the initial 3D body joint locations. The vector from 
a specific joint location to its child joint location is 
called as a limb direction vector. The pair of limb di-
rection vectors for the initial joint locations and given 
joint locations are applied to the vector alignment. 
Vector alignment means calculating a rotation be-
tween the pair of direction vectors in the same manner 
as expressed in the formula (3). The skeletal body 
model is initialized by the obtained joint rotations. 

 
Figure 4: The distributions for twist angles around the arms 
of (a) training and (b) evaluation dataset. The title of each 
graph is the parent joint name of the target limb. 

4.3 Pose Reconstruction 

In the pose reconstruction step, the skeletal body 
model is optimized to fit the given 3D body joint lo-
cations and estimated twist angles as shown in Figure 
3(c). We seek to minimize the objective function ℒ𝑜𝑠𝑠௕௢ௗ௬ defined in formula (10) to (12) by using the 
Levenberg-Marquardt algorithm. ℒ𝑜𝑠𝑠ଷ஽ = ฮ𝐿௕௢ௗ௬ െ 𝐿௚௜௩௘௡ฮଶ (10)ℒ𝑜𝑠𝑠௔௡௚௟௘ = ฮ𝜃௕௢ௗ௬ െ 𝜃∗ฮଶ (11)ℒ𝑜𝑠𝑠௕௢ௗ௬ = ℒ𝑜𝑠𝑠ଷ஽ ൅ 𝜀ℒ𝑜𝑠𝑠௔௡௚௟௘ (12)

Where 𝐿௕௢ௗ௬ and 𝐿௚௜௩௘௡ are the 3D body joint loca-
tions of the current skeletal body pose and given pose. 𝜃௕௢ௗ௬ is the twist angles around arms calculated from 
the current skeletal body pose by formulas (1) to (5). 
The 𝜀 controls the weight for ℒ𝑜𝑠𝑠௔௡௚௟௘. Finally, we 
obtain the prediction of the joint rotations.  
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Figure 5: Body meshes reconstructed by the ground truth joint rotations (GT), initial joint rotations at the pose initialization 
step (Initialized), estimated joint rotations without twist angle estimation (Estimated w/o twist angle) and estimated joint 
rotations with twist angle estimation (Ours). Our approach improves the twist of arms (solid line circle) compared to the result 
without twist angle estimation (dotted line circle).  

Table 1: The mean error of estimated twist angles (radian) 
for the evaluation dataset (623 poses) with some of them 
having a large twist angle around any limb (96 poses). 

parent joint 
name LSho RSho LElb RElb 

eval data 0.06 0.17 0.18 0.15 
w large twist 0.06 0.20 0.17 0.17 

5 EXPERIMENTS 

We present the performance of our approach by eval-
uating the accuracy of the twist angle estimated at the 
first step and the poses reconstructed at the final step 
and the computational efficiency. Reconstructed 
poses are evaluated in terms of twist angle errors, 
joint rotation errors and vertex errors. First, we show 
our dataset and training details, and then each result 
is described and discussed. 

5.1 Dataset and Training Details 

Our dataset prepared in Section 3 provides the human 
body images with the ground truth joint rotations and 
locations. It has 2,042 poses with 61,539 images from 
multiple views and 7 video sequences for training, 
and 623 poses with 623 images from a single view 
and 2 video sequences for evaluation. These 9 video 
sequences are the same as the sequences used in the 
experiments conducted by Xiang et al. (2019). Figure 
4 shows the distributions for twist angles around arms 

of a (a) training and (b) evaluation dataset. Twist an-
gles are concentrated on small values, and it makes 
training difficult. 

Our model requires an input image size of 
368x368 (single person cropped). We train our model 
for 19.7K iterations with 8 images in a batch. 

5.2 Twist Angle Estimation Accuracy 

We evaluate our model at the twist angle estimation 
step. Our approach requires 3D body joint locations 
as input. We use the ground truth locations for our all 
evaluation to focus on twist of arms. Table 1 shows 
the mean error of estimated twist angles in radians for 
the evaluation dataset with 623 poses and some of 
them with 96 poses including a large twist angle (over 
0.35 radians) around any limb. The estimated twist 
angles for the evaluation dataset has small errors from 
0.06 to 0.18 with an average of 0.14 radians. There 
are few poses with a large twist angle in the training 
dataset as shown in Figure 4(a), however, the errors 
for the evaluation dataset with large twist angles are 
still relatively small from 0.06 to 0.20 with an average 
of 0.15 radians. It means our model makes it possible 
to capture the magnitude of the twist around arms ro-
bustly from a whole-body image and the heatmaps of 
joint locations.  

5.3 Pose Reconstruction Accuracy 

We evaluate reconstructed joint rotations at the final 
step of our approach and show the effect of the twist 
angles estimated at the first step by comparing with 
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the poses reconstructed without twist angles. The 𝜀 in 
formula (12) is 0.02 for reconstruction with twist an-
gles and the 𝜀 is zero for reconstruction without twist 
angles. Table 2(a) shows the mean error of twist an-
gles in radians calculated from the reconstructed joint 
rotations in the same manner as formulas (1) to (5). 
Results were obtained for the entire evaluation data 
and part of the data having a large twist angle around 
any limb. For the entire evaluation data, estimated 
twist angles improve the results by a max of 0.15 and 
an average of 0.08 radians, and for the data with a 
large twist angle, a greater effect was observed for 
most joints, improving by a max of 0.33 and an aver-
age of 0.12 radians.  

We also evaluate the result by the quaternion error 
of joint rotations. Quaternion error 𝐸௤  shows the 
magnitude of rotation between two rotations, and it is 
defined by formula (13). 𝐸௤ = ‖𝜓ሺ𝑄௘௦௧௜௠௔௧௘ௗ ∙ 𝑄ீ்ିଵሻ‖ (13)

Where 𝑄௘௦௧௜௠௔௧௘ௗ  and 𝑄ீ்  are respectively the esti-
mated and ground truth joint rotations in quaternion 
representation. The mean quaternion errors 
with/without estimated twist angles for the entire/part 
of the evaluation data are shown in Table 2(b). The 
estimated twist angles improve the results especially 
for elbow rotations. Table 2(a) and Table 2(b) show 
that the errors for right shoulder rotations for the data 
with a large twist angle are increased by estimated 
twist angles. Estimated twist angles around the limb 
connected to the right shoulder are relatively inaccu-
rate as shown in Table 1, and it makes the optimiza-
tion around the right shoulder difficult. We consider 
that the lower accuracy of estimated twist angles for 
the right shoulder is caused by data bias. The evalua-
tion dataset includes the rare right shoulder postures 
for training data. 

In Table 2(c), we present the vertex-to-vertex 
(v2v) error of the reconstructed body mesh. The v2v 
error is the mean error of the reconstructed mesh ver-
tex locations. They are usually used for evaluation of 
reconstructed joint rotations. There are negligible dif-
ferences between the v2v error results. It is not suita-
ble for evaluation of twist estimation because the dis-
placement of limb meshes caused by a twist rotation 
is minor in comparison with whole body meshes. In 
addition, these v2v errors are much smaller than pre-
vious approaches in general because the precise 3D 
body joint locations are given as input unlike previous 
ones. 

Finally, we show that the estimated twist angles 
improve the quality of body mesh reconstruction 
around arms in Figure 5. It’s highly effective against 
body meshes with large twist angles.  

5.4 Runtime and Model Size 

On a NVIDIA TITAN V GPU, our model at the twist 
angle estimation step is small with 41.98 MB param-
eters, and it performs very rapidly at 5 msec/person. 
It shows our model estimates twist angles from a sin-
gle image directly in real time. However, the pose re-
construction step takes 139 msec/person on 12 CPUs 
(Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz) and 
the total processing time is 189 msec/person. Alt-
hough it is difficult to make a direct comparison due 
to differences in input and output data, SMPLify-x 
method (Pavlakos et al., 2019), which is able to esti-
mate the poses accurately and precisely, takes much 
longer time in our environment. 

Table 2: The mean error of (a) twist angles (radian)/(b) qua-
ternions (radian)/(c) v2v (mm) calculated from the recon-
structed joint rotations with/without estimated twist angles 
for entire/part of the evaluation data.  

(a) 
parent joint 

name LSho RSho LElb RElb 

eval 
data 

w 0.29 0.23 0.15 0.20 
w/o 0.29 0.32 0.30 0.27 

w large 
twist 

w 0.23 0.42 0.28 0.30 
w/o 0.25 0.25 0.61 0.60 

(b) 
parent joint 

name LSho RSho LElb RElb 

eval 
data 

w 0.42 0.37 0.50 0.50 
w/o 0.39 0.39 0.64 0.65 

w large 
twist 

w 0.33 0.52 0.56 0.59 
w/o 0.32 0.34 0.87 0.91 
(c) 

 w w/o 
eval 
data 20.74 20.13 

w large 
twist 26.34 25.67 

6 CONCLUSION 

We proposed a novel approach to estimate twist rota-
tions around limbs to improve 3D human pose esti-
mation from a single RGB image. Previous vision-
based approaches did not handle twist rotations 
around limbs directly because of their ambiguity. Our 
experiments demonstrated the feasibility of estimat-
ing twist rotations from an image and its effect on 
pose reconstruction using a skeletal body model. 
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There is no enough dataset which includes 3D 
joint rotations on images, so we focus on normal twist 
rotations around the arms. As future work, we will 
create a larger dataset to evaluate our model in more 
detail and estimate twist rotations around the other 
limbs including variety of poses. We also believe cre-
ating a larger dataset for training and applying data 
balancing to twist angles bias would be effective 
strategies to improve the robustness and accuracy of 
our model. We will also tackle the problems of pose 
reconstruction from noisy 3D body joint locations and 
make a performance comparison between previous 
approaches and ours. 
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