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Abstract: The paper describes a method for adaptive planning of imaging operations for a multi-satellite swarm in real 
time, based on a multi-agent approach. The key object in this approach is the intelligent agent of an application 
for imaging of the observation object. Its goal is the most advantageous placement in the schedule. The 
solution to the optimization problem is obtained as a result of reaching an equilibrium point in multiple 
negotiations between agents through mutual compromises and concessions. The paper provides a brief 
problem statement of planning the operation of a multi-satellite swarm for Earth remote sensing (ERS). 
Furthermore, it describes the developed method, which makes it possible to process applications for imaging 
observation objects in real time. The paper also presents results of experimental studies that demonstrate 
efficiency of the developed multi-agent method in solving this problem versus traditional approaches. Finally, 
prospects for further development and practical application of the presented method are discussed. 

1 INTRODUCTION 

Development of a method for adaptive planning for 
multi-satellite swarms of small spacecrafts for remote 
sensing of the Earth (ERS) in real time is primarily 
relevant now due to the developing trend in the space 
industry aimed at creating, deploying and operating 
space systems (SS), including a multi-satellite (more 
than 100 spacecrafts) swarm of low-orbit satellites 
and a distributed network of ground stations for 
receiving information (GS). The purpose of creating 
such space systems is to meet the existing needs for 
remote sensing data, which are used in various fields: 
agriculture, geological and hydrological research, the 
military sphere, elimination of consequences of 
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natural disasters, creating plans for certain territories, 
etc. (Shimoda, 2016). 

Examples of such systems are the Planet Labs 
project with its satellite swarm of more than 200 
operating Dove (Flock) satellites and 13 SkySat sub-
meter satellites, and the BlackSky Global project, the 
orbital swarm of which consists of 60 Earth remote 
sensing satellites (Kopacz, 2020). 

The consequence of such an increase in 
dimension and performance of the orbital swarm is 
the growth of requirements for algorithms and 
planning systems. Thus, for a SS consisting of dozens 
of satellites and GS, it may be required to draw up a 
plan of thousands of points for observations objects 
(OO) on a significant horizon, and the time for 
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placing new applications for imaging should be 
measured in minutes from the moment of their arrival. 
The use of traditional systems for managing SS, 
which are based only on the ground control loop and 
traditional planning methods, together with multi-
satellite orbital swarms will lead to conflict situations 
when several small satellites simultaneously claim to 
perform imaging of the same OO, or to transmit data 
to the same GS (Karsaev, 2016). Increased 
requirements for operational efficiency of processing 
the applications for imaging propels implementation 
of a dynamic adaptive adjustment of the SS work 
schedule as new applications enter the system or in 
case of unpredictable events associated with 
equipment failure or rapidly changing meteorological 
conditions. 

One of the possible ways to overcome the above 
limitations inherent in traditional scheduling 
algorithms is the extended use of multi-agent 
technology (Rzevski, 2014), on the basis of which the 
method described in this paper has been developed. 
Their application at the moment has already proven 
itself in various industrial solutions (Gorodetsky, 
2020). Multi-agent technology makes it possible to 
flexibly and adaptively synthesize a schedule in real 
time, taking into account individual characteristics of 
orders and resources. Besides, the underlying actor 
computation model makes it possible to create high-
performance, distributed, fault-tolerant solutions, 
which all together helps more efficiently manage SS 
resources in comparison with traditional methods. 

The paper is structured as follows. The second 
chapter provides a brief problem statement for 
planning operations of a multi-satellite ERS group. 
The third chapter describes the current state of 
research and development on this problem. The 
fourth chapter describes the data model used with 
description of the main classes, the fifth chapter 
considers the developed method of adaptive planning. 
The sixth chapter describes the carried out 
experimental studies. Finally, the seventh chapter 
summarizes the main results and discusses the 
prospects for development and application of the 
solution. 

2 PROBLEM STATEMENT 

The task of planning operations for a multi-satellite 
ERS swarm can be presented as follows. Let there be 
a simplified model of a spacecraft, which is a 
combination of two segments: a space complex and a 
ground-based special complex. The space complex 
performs the functions of receiving and transmitting 

information, the ground-based special complex - the 
functions of receiving and processing the transmitted 
information. 

The space complex consists of a set of satellites S 
= {si},i=1,  Each spacecraft si is characterized by a .	ܮ
set of orbital elements and parameters of onboard 
equipment. In its turn, the ground complex is 
represented by a set of GS ܩோ ൌ ሼ݃ሽ, ݎ ൌ 1, ܴ. Each 
݃ station is characterized by its geographic location 
and parameters of installed antenna. For GS and 
satellites, restrictions may be indicated in the form of 
a work schedule and unavailability intervals. 

The space system must ensure fulfillment of a set 
of applications for imaging point and area observation 
objects ܱ ൌ ൛ൟ,  ൌ 1, ܲ . For the imaging 
application op, its priority prp can be specified (an 
application with a low priority should not interfere 
with the optimal location of a higher-priority 
application) and a set of restrictions: the point in time 
until which it is necessary to obtain images ݐௗ, the 
balance coefficient between efficiency and quality of 
the information received cp (set in the range from 0 to 
1), the minimum and desired linear resolution of the 
resulting image minRp and maxRp. Each application 
for imaging op, depending on its type, corresponds to 
one or more areas of surveying ܵܣ ൌ ൛ݏ ܽൟ, ݆ ൌ  ܯ,1
(Figure 1). 

 

Figure 1: Imaging areas for point and area OO. 

In the considered SS model, the satellite performs 
two operations: 
 imaging a certain area saj imagingj, characterized 

by the execution interval ݐ
 ൌ

ሾݐ
ௌ௧௧;	ݐ

ாௗሿ and the roll angle of the 
satellite sAnglej;  

 conducting a communication session of the 
satellite with the GS for transmitting the received 
data to the Earth dropj, characterized by the 
execution interval ݐ

ௗ ൌ

ሾݐ
ௗௌ௧௧;	ݐ

ௗாௗሿ.  
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GS, in turn, performs one operation - receiving 
data from the satellite receivj, characterized by the 
execution interval ݐ

௩ ൌ ሾݐ
௩ௌ௧௧;	ݐ

௩ாௗሿ. 
To implement ERS satellite imagery based on 

applications from customers, it is required to form a 
comprehensive plan for performing operations for a 
given planning horizon, drawn up in accordance with 
the criterion of minimizing the time for delivering 
images, as well as maximizing their quality. Thus, the 
objective function (OF) of the system is: 

 

ܨܱ ൌ 	
ଵ

ெ
∑ ܨܱ → ேݔܽ݉
ୀଵ , (1)

ܨܱ ൌ ܿܨଵ
  ሺ1 െ ܿሻܨଶ

 → (2) ,ݔܽ݉

ଵܨ
 ൌ

ݐ
ௗ െ	ݐ

ௗாௗ

ݐ
ௗ െ ݐ	

௦௧௧ , 

 

ଶܨ
 ൌ 	

ە
۔

ۓ
ܴ݉݅݊ 	െ ݎ

ܴ݉݅݊ 	െ ܴݔܽ݉	
ݎ	݂݅			,  ܴݔܽ݉

ݎ
ܴݔܽ݉

, ݁ݏ݈݁
 

 

where ܱܨ – is the objective function of the system, 
 , is the objective function of the k-th taskܨܱ
N is the number of planned imaging sessions, 
ଵܨ
  – evaluation of the efficiency criterion of 

receiving data for the k-th task, 
ଶܨ
  – evaluation of the quality criterion of the 

resulting image for the k-th task, 
ݐ
௦௧௧, ݐ

ௗ – the planning horizon for the k-th task, 
ݏ݁ݎ – the actual linear resolution of the resulting 
image for the k-th task. 

In this case, a number of restrictions are imposed 
on the resulting solution: 
1) fulfillment of the observability condition between 

the small satellite and the OO during imaging; 
2) radio visibility between the small satellite and the 

GSwhen transmitting the imaging results; 
3) availability of free space in the on-board memory 

of the satellite; 
4) fulfillment of condition for prioritizing 

applications; 
5) consistency of the sequence of times of 

operations; 
6) satellite and GScan simultaneously perform no 

more than one operation. 
In addition, it is necessary to carry out adaptive 

rebuilding of the locally optimal operating plan of the 
satellite with dynamic appearance of events that 
change the initial data for planning, such as changes 
in the composition and characteristics of the satellite 
elements (events of adding/removing the satellite and 
GS, changes in the available volume of satellite 
memory, adding/deleting work schedules and 

intervals of inaccessibility of satellite and GS, etc.), 
changes in the composition and parameters of 
applications for imaging of point and area objects. 

3 OVERVIEW OF REFERENCES 

As a solution to the problem of planning operations 
for orbital swarms, various heuristic algorithms are 
proposed, which have been previously tested on 
classical tasks of resource planning and allocation. 
Thus, the paper (Wang, 2016) describes application 
of the linear integer programming method for 
planning imaging of OO by a satellite group, taking 
into account possible cloudiness, modeled as 
stochastic events. The authors transform the random 
constraint programming model into a linear integer 
programming model using the sample approximation 
method. Then a search for solution is carried out 
using the developed branching and cutting algorithm 
based on generation of "lazy" calculations. 

Another approach to solving this problem is given 
in (Iacopino, 2014). The authors suggest using an ant 
algorithm based on the model of behavior of ants 
looking for the shortest path from the colony to the 
food source. 

Application of a multi-agent approach to planning 
the work of a swarm of ERS satellites is considered 
in (Bonnet, 2015). Advantages of self-adaptation and 
self-organization are given as prerequisites for 
application of the multi-agent approach for solving 
this problem, in relation to multi-criteria problems of 
large dimensions, requiring dynamic adaptation of the 
plan in case of abnormal events. 

The work (Xiaolu, 2017) is devoted to solution of 
the subproblem of planning the operation of a satellite 
with several degrees of freedom using the method of 
local search in an expandable neighborhood. Planning 
of satellite communication sessions based on the 
methods of simulating annealing and search for 
options with restrictions is described in (Karapetyan, 
2015). The use of a genetic algorithm for planning 
imaging of area objects by an ERS satellite swarm is 
considered in (Niu, 2018). 

Besides, autonomous planning on board the 
satellite, which is the subject of papers (Gorodetsky, 
2017) and (Lenzen, 2014), can also be singled out as 
a promising area of research. However, these studies 
are mostly theoretical in their nature. For their 
practical implementation, it is necessary to solve a 
number of fundamental problems. 

The review has shown that the currently available 
methods of scheduling the work of orbital swarms are 
mainly of a centralized, hierarchical and monolithic 
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nature, which greatly complicates flexible adaptation 
of the schedule in the rapidly changing conditions of 
the target environment. Moreover, these methods are 
based not on traditional mathematical optimization 
methods, the use of which leads to an avalanche 
increase in the volume of calculations, but on various 
kinds of heuristics for reducing exhaustive search. 
Meanwhile, other methods and algorithms are 
beginning to appear, which take into account domain 
semantics, analyzing conflicts, non-deterministic 
behavior, self-organization, adaptation, and working 
in real time. However, there are yet no descriptions of 
integral solutions to the problem of increasing 
efficiency of managing large-scale orbital swarms of 
small spacecrafts, suitable for practical digital 
implementation. 

4 DATA MODEL  

 

Figure 2: Data model. 

The developed method uses a data model, the 
structure of which is shown in Figure 2 in the form of 
a class diagram in UML notation. 

The Resource class describes some abstract 
resource, and its time of use must be scheduled. The 
spacecraft (Satellite) and GS (GroundStation) act as 
resources. For a resource, limitations can be set in the 
form of schedules (Calendar) and intervals of 
unavailability (AvailabilityConstraint). 

The ObjectForImaging class is an abstract 
observation object that needs to be captured. The 
point OO corresponds to the PointObjectForImaging 
class, and the area OO corresponds to the 
AreaObjectForImaging. An imaging area 
(ImagingArea) is created for each OO. 

The Task class is a task that needs to be scheduled. 
A task for imaging an area object (AreaTask) is a set 
of tasks for imaging point objects (PointTask). 

For each task for imaging a point object, 
placement options (ImagingWorkOption) are formed, 
which are a combination of the satellite-observation 
object visibility (SatelliteOOVisible) and the satellite-
ground station visibility (SatelliteGSVisible), as well 
as the OF value (2). During the planning process, one 
of the placement options is selected for the task, on 
the basis of which the ImagingWork is created. The 
imaging job consists of three operations (Operation): 
imaging, transmitting the data (drop) and receiving 
the data. A Schedule is used to store all planned 
imaging jobs. 

5 ADAPTIVE PLANNING 
METHOD 

Figure 3 shows the state diagram of the adaptive 
planning method, which includes the following main 
stages: 
1) generation of tasks for imaging of OO; 
2) calculation of options for possible placement; 
3) conflict-free planning; 
4) proactive planning. 

5.1 Generation of Tasks for OO 
Imaging 

At the first stage, tasks are generated for OO imaging 
based on the received applications. At the same time, 
depending on the type of OO, one or more imaging 
areas are created. Thus, an application for imaging a 
point OO is associated with one imaging area 
containing this object, and for an application for 
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imaging an area object, it is divided into a set of 
adjacent areas, each corresponding to a point OO. 

 

Figure 3: State diagram of the adaptive planning method. 

For each task, the deadlines are set in which it 
must be completed. The start time is the beginning of 
the planning horizon, and the end time is selected as 
the smallest of the two values: the end of the planning 
horizon or the point in time until which it is necessary 
to receive images, if it is specified in the application. 

5.2 Calculation of Possible Placement 
Options  

At the next stage, for each task, calculation of 
possible placement options is carried out, 
implemented on the basis of the method of successive 
concessions between criteria for efficiency and 
quality of received data, set by the coefficient cp. The 
efficiency criterion has been chosen as the main one. 
Based on formula (2), the endpoint (boundary time) 

for transmitting the imaging results x is calculated by 
formula (3). 
 

ݔ ൌ
1
ܿ
൫ݐௗ െ ௦௧௧൯ݐ ൈ 

ൈ ቆ1 െ
ܴ݉݅݊ 	െ	ݎ

ܴ݉݅݊ െܴ݉ܽݔ
ቇ ൈ 

ൈ ሺ1 െ ܿሻ  ݐ
ௗாௗ, 

(3)

 

where х is the endpoint for transmitting the imaging 
results, 

rp is the current linear image resolution, 

ݐ
ௗாௗ is the current drop time. 

The pseudocode for the algorithm is shown in 
Algorithm 1.  

Algorithm 1: Calculation of options for possible placement 
of the task. 

Input: taskj, saj, SGSV – set of visibilities between the 
satellite and GS, SOSVj – set of visibilities between the 
satellite and saj 
Output: IWOj – set of placement options for taskj 
1: sort(SGSV, ‘startTime’, ‘asc’)  
2: sort(SOSVj, ‘startTime’, ‘asc’) 
3: x = taskj.endTime 
4: IWOj = [] 
5: bestEvaluation = 0 
6: do 
7: sgsvk = SGSV.next() 
8: if sgsvk.startTime <= x  
9: do 
10: sosvp = SOSVj.next()  
11: if sosvp.endTime <= sgsvk.startTime  
12: iwo = createIWO(taskj, sgsvk, sosvp) 
13: IWOj add iwo 
14: while SOSVj.hasNext() and sosvp.endTime 

<= sgsvk.startTime 
15: sort(IWOj, ‘evaluation’, ‘desc’) 
16: firstIWO = IWOj[0] 
17: if firstIWO.evaluation > bestEvaluation  
18: bestEvaluation = firstIWO.evaluation 
19: x = calcBoundary(taskj, firstIWO) 
20: while SGSV.hasNext() and  

sgsvk.startTime <= x 
21: return IWOj 

 
Let us take a closer look at the operation of this 

algorithm. The input of the algorithm is the following: 
taskj, for which it is necessary to calculate the options 
for possible placement, the imaging area saj 
corresponding to this task, as well as the pre-
calculated satellite-OO visibility SOSVj and satellite-
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GS visibility SGSV. At the beginning of the 
algorithm, the visibilities SOSVj and SGSV are sorted 
in ascending order of the start time of the 
corresponding interval (lines 1-2). The time limit for 
resetting the imaging results x is taken equal to the 
end time of scheduling the task taskj.endTime (line 3). 
Next, sequential enumeration of the satellite-GS 
visibility SGSV is performed until the start time of the 
next visibility period sgsvk.startTime exceeds the 
current boundary time x (lines 6-20). At each 
iteration, the satellite-GS visibility SGSV and the 
previous satellite-OO visibility SOSVj are combined, 
and a placement option iwo is formed based on the 
pair sgsvk and sosvp (lines 9-14). At the end of each 
iteration, the system checks that the evaluation of the 
newly found variants does not exceed the current 
bestEvaluation (line 17). If so, the boundary time is 
recalculated to reset the imaging results x, and 
bestEvaluation takes on the new best value (lines 18-
19). 

In the course of the algorithm, a sequence of 
possible placement options for the problem ܹܫ ܱ ൌ
ሼ݅ݓሽ, ݈ ൌ 1, ܵ  is built, at the beginning of which 
there is a placement option located at the global 
optimum OFk of the problem’s OF (2). 

5.3 Conflict-free Planning 

At the stage of conflict-free planning, an initial 
feasible schedule is constructed using a greedy 
optimization algorithm. The solution obtained at this 
stage will show the main bottlenecks of the 
considered schedule and will become a reference 
point for further improvements. 

The pseudocode for the algorithm is shown in 
Algorithm 2. At the beginning, the list of tasks is 
ordered and grouped by the value of the prp priority 
(lines 1-2), thereby enforcing the constraint that a 
lower priority task cannot interfere with placement of 
a higher priority one. Then, sequentially for each 
group of tasks, an attempt for placement is made 
(lines 4-11), during which the tasks are placed on the 
first available option from the set IWOj, where there 
are no conflicts with other tasks. Meanwhile, a set of 
planned jobs	ܹܫ ൌ ሼ݅ݓሽ, ݇ ൌ 1,  .is formed ܭ

5.4 Proactive Planning  

At the stage of proactive planning, using a multi-
agent algorithm, the schedule obtained in the previous 
step is optimized by resolving conflicts between tasks 
that arise during placement. 

 

Algorithm 2: Conflict-free planning algorithm. 

Input: tasks, IWO is set of possible placement options 
for the problem 
Output: IW is set of planned jobs 
1: groupedTasks = group(tasks, ‘priority’) 
2: sort(groupedTasks, ‘priority’, ‘desc’) 

3: IW = []

4: for taskGroup in groupedTasks 

5: parallel for taskj in taskGroup 

6: IWOj = IWO[taskj] 

7: for iwok in IWOj 

8: conflicts = findConflicts(iwok) 

9: if conflicts.empty 

10: iw = createImagingWork(iwok, taskj)

11: IW.add(iw) 
12: return IW 

 
In the developed method, there are two types of 

agents: a task agent, the purpose of which is to occupy 
the most advantageous option in the schedule, and a 
scene agent, designed to control the activity of task 
agents and interact with external systems. The task 
agent is responsible for performing permutations in 
the schedule and has the satisfaction function SF (4) 
(Rzevski, 2020), determining the evaluation of the 
current satisfaction of its requirements: 

 

ሻݓሺ݅ܨܵ ൌ 1 െ ሺܱܨሺଓݓሶ ሻ െ െ	ܱܨሺ݅ݓሻሻ, (4)
 

where SFk is the agent's satisfaction function, 
ଓݓሶ  is the placement option located at the global 
optimum point of the task’s OF, 
iwk is the current job on OO imaging. 

Before starting the planning process, a smart 
agent is created for each task. Planning is controlled 
by the scene agent, which acts in accordance with 
Algorithm 3. 

This algorithm works as follows. The launch of 
agents for proactivity is carried out iteratively, and 
before the start of each iteration, the system checks 
for new events changing the initial data (line 2). If 
there are such events, the planning context is updated 
by applying the events to the current initial data (line 
3). Then the list of all taskAgents received as input is 
placed in a queue which is sorted in ascending order 
by the value of the agent satisfaction function (lines 
4-5). Thus, at the very beginning of the queue there 
are those agents that are either the most unsatisfied 
with their position in the schedule, or not scheduled 
at all. Task agents are sequentially retrieved from the 
queue (line 9), and if the agent is not completely 
satisfied with its current position in the schedule (the 
value of its satisfaction function SF (4) is less than 1) 
(line 10), then a signal about the beginning of 
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proactivity is sent to it (line 11). After receiving a 
message with results of proactivity, if the proactivity 
ended successfully, evaluations of all tasks affected 
by this proactivity are recalculated and the order of 
tasks in the queue is updated (lines 12-14). The 
condition for completing proactive planning is the 
absence of permutations of task agents at the next 
planning iteration, which means reaching an 
equilibrium point during negotiations and the 
possibility of issuing a ready-made solution (line 15). 

Algorithm 3: Proactive planning algorithm. 

Input: taskAgents, N – maximum number of 
simultaneously active task agents 
Output: Optimized schedule 
1: do 
2: if events of changes in the source data 
3: update planning context 
4: tasksQueue = new Queue(taskAgents) 
5: sort(tasksQueue, ‘elevation, ‘asc’) 
6: while !tasksQueue.isEmpty 
7: if number of active agents >= N 
8: waiting for the end of the proactivity of one 

of the agents 
9: taskAgent = tasksQueue.poll() 
10: if taskAgent.satisfaction < 1  
11: sceneAgent.sendMessage(taskAgent, 

“Start proactivity”) .then(proactiveResult 
=> 

12: if proactiveResult.isSuccessful  
13: updateEvaluation( 

proactiveResult.changedTasks) 
14: sort(tasksQueue, ‘elevation’, 

‘asc’)) 
15: while there were relocations in the schedule 

 
Upon receiving a signal about the beginning of 

proactivity, the task agent attempts to find a more 
advantageous placement option for it according to 
Algorithm 4. To do this, it sequentially searches 
through possible placement options which are better 
than the current one (lines 2-16). At each search 
iteration, the agent first calculates the maximum 
possible compensation for displacement 
compensation, which it can provide to task agents 
conflicting for placement (line 4). This compensation 
is calculated according to the formula (5). It then 
searches for placement conflicts (line 6) and, if any, 
attempts to resolve them using the computed 
compensation (lines 7-12). In this case, each agent of 
the conflicting task is sequentially sent a message 
with a request to find other allocation intervals 
(line 10). The latter, in turn, upon receipt of this 
message, makes an attempt to find a new placement 
option using the compensation provided by 

Algorithm 4. If the attempt to resolve the conflict is 
successful and the agent of the conflicting task is 
ready to move, the compensation required by this 
agent is deducted from the total compensation, the 
conflict is marked as resolved and is removed from 
the general list of conflicts (lines 11-13). Otherwise, 
it proceeds to the next possible placement. After all 
conflicts are resolved, based on this placement option, 
an imaging job is created and added to the schedule 
instead of the previous one (lines 14-16). 

 

ܨܵ∆ ൌ ෦൯ݓ൫ଓܨܵ െ ൯ (5)ݓ൫݅ܨܵ
 

where ∆ܵܨ is the increment of the agent's satisfaction 
function, 
 , is the current job on OO imagingݓ݅
ଓݓ෦ is the new job on OO imaging. 

Algorithm 4: Proactivity of the task agent. 

Input: taskAgentj, IWOj, iwj 
Output: ıw෦  the new task for imaging taskj 
1: сompensation = 1 
2: while IWOj.hasNext() and  

compensation > 0 
3: iwok = IWOj.next() 
4: compensation = iwok.evaluation - 

iwj.evaluation  
5: if compensation > 0  
6: conflicts = findConflicts(iwok) 
7: while conflicts.hasNext() and 

compensation > 0 
8: conflict = conflicts.next() 
9: conflictingTaskAgent = conflict 

.conflictingTaskAgent 
10: response = taskAgentj .sendMessage( 

conflictingTaskAgent, “Find other 
allocation intervals”, compensation) 

11: if response.message == “Found”  
12: compensation -= 

response.compensation 
13: conflicts.remove(confp) 
14: if conflicts.empty 
15: sw෦  = createImagingWork(iwok, 

taskj) 
16: addToSchedule(ıw෦  ) 
17: return ıw෦  

 
When new events changing the initial planning 

data are received, the proactive phase is launched 
again and dynamic adaptation of the schedule is 
performed in accordance with the changes that have 
occurred.  
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6 EXPERIMENTAL STUDIES 

To conduct experimental studies in order to assess 
suitability of the proposed method for solving 
problems of managing swarms of satellites in real 
time, the SS model is used, which includes a group of 
30 identical satellites, and a network of 10 GS. 

Experiments were carried out on a PC with an 
Intel Core i7-3770 CPU (4 cores / 8 threads, 3.4GHz) 
and 8GB RAM, running under Windows 10. 

6.1 Analysis of the Planning Process 
and Its Results 

In this study, statistical information was obtained in 
order to assess the quality of the schedule and analyze 
the process of its construction.  

The graphs in Figure 4 show the history of 
changes of values of the current and limiting 
objective function of the system since the start of 
planning, on the basis of which it is possible to 
estimate the difference between the current OF 
value (1) and its maximum possible value (6). 

 

ܨܱ݈݉݅ ൌ	
ଵ

ெ
∑ ሶݓሺଓܨܱ ሻ
ே
ୀଵ , (6)

 

where limOF is the maximum possible OF of the 
system, 
M is the total number of tasks, 
N is the number of considered tasks, 
ଓݓሶ  is the placement option located at the global 
optimum point of the OF of the k-th problem. 

Figure 5 shows a diagram of distribution of the 
number of task placement options, which are better 
than their current placement. The diagram analysis 
shows that about 1200 tasks are scheduled at the most 
optimal option for them, and more than half of the 
remaining tasks are located in the 30% of the best 
options, which indicates a good quality of the 
resulting schedule. 

 

Figure 4: Graphs of changes in the value of the current and 
limiting OF during planning. 

 

Figure 5: Distribution of the number of task placement 
options, which are better than their current placement. 

The diagram of distribution of the number of task 
permutations at each iteration of proactive planning 
(Figure 6) demonstrates its fast convergence – the 
number of permutations already at the second 
iteration of planning is 7 times less than the number 
of permutations at the first iteration. 

 

Figure 6: Number of task permutations at each iteration of 
proactive planning. 

6.2 Studying the Method’s Capability 
of Adapting the Schedule 

In this study, capability of the method to adapt the 
schedule damaged by failure of one of the satellites 
has been evaluated. The time spent on rescheduling 
and the quality of the resulting schedule are the 
studied parameters. A series of 10 experiments was 
carried out, during which it was initially planned to 
execute 3000 applications for OO imaging, generated 
randomly according to a uniform distribution law. 
After all applications were successfully placed in the 
schedule, one of the satellites was excluded from the 
system, and the time spent on rebuilding the schedule, 
changes in the value of the system OF (1) and changes 
in the number of planned applications were measured. 
Results of the experiment are presented in Table 1. 
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Table 1: Results of experiments to study the system’s 
ability to adapt the schedule.  

№ 
Resche
duling 
time, s 

After failure of a 
satellite 

After 
reconstruction of 

schedule 

Number 
of 

planned 
applicati

ons 

ΔOF 

Number 
of 

resched
uled 

applicat
ions 

ΔOF 

1 9 422 -0,11 418 0,07 
2 8 379 -0,10 371 0,04 
3 10 468 -0,11 465 0,08 
4 11 411 -0,10 406 0,07 
5 9 407 -0,11 396 0,06 
6 10 425 -0,11 422 0,09 
7 7 397 -0,11 395 0,06 
8 8 388 -0,10 376 0,05 
9 8 377 -0,07 372 0,05 

10 9 419 -0,10 417 0,06 
 

Thus, failure of one of the satellites led to a sharp 
drop in the system’s OF by an average of 0.1 and the 
need to search for new placement options for 409 
applications. During rescheduling to other satellites, 
403 applications were rescheduled, which is 98% of 
the number of applications planned for the removed 
satellite. As a result of schedule reconstruction, OF 
increased to 0.69, which is less than the initial value 
by only 0.04. The average rescheduling time was 
about 9 seconds. Thus, the use of a multi-agent 
approach in planning makes it possible to quickly 
parry external events leading to a change in 
conditions of the problem being solved.  

6.3 Efficiency Analysis versus Planning 
Algorithms based on Traditional 
Optimization Methods  

In this study, efficiency of the developed method has 
been analyzed in comparison with planning 
algorithms based on traditional optimization 
methods, such as the simulated annealing algorithm, 
the Late Acceptance Hill Climbing algorithm and the 
Tabu Search algorithm. These were compared in 
terms of the quality of the resulting schedule and the 
time required for its compilation. 

Within this series of experiments, the number of 
applications for OO imaging varied from 100 to 
20,000. The time spent on compiling the plan and the 
system OF (1) were measured. 

Based on results of these experiments, graphs of 
dependence of OF (Figure 7) and planning time 
(Figure 8) on the number of applications for various 

planning algorithms were built. For the simulated 
annealing algorithm and the Tabu Search algorithm, 
results were received only up to 5000 applications for 
imaging, because after that, an exponential increase 
in the time of work and consumed resources was 
observed. 

 

Figure 7: Graph of dependence of OF on the number of 
applications. 

 

Figure 8: Graph of dependence of planning time on the 
number of applications. 

Results of these experiments show that the 
proposed multi-agent method is not inferior to 
traditional heuristic algorithms for low-
dimensionality problems, and with an increase in the 
number of planned applications, it demonstrates a 
higher speed of scheduling without losing the quality. 

7 CONCLUSIONS 

The authors of the paper propose a method for solving 
the problem of adaptive planning of operations for a 
large-scale orbital swarm of remote sensing of the 
Earth small satellites on the basis of a multi-agent 
approach. 
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Experimental studies have demonstrated high 
suitability of the method for increasing efficiency of 
using resources of the new generation satellites. 

Further research will focus on improving the 
planning algorithms by introducing a virtual 
marketplace and adding deeper analysis of the current 
planning context to reduce enumeration of options. In 
addition, it is planned to introduce the space system 
ontology in order to provide a more flexible and 
adaptive ability to customize the applied rules. All 
these actions will ultimately make it possible to create 
a real management system with the ability to service 
a large number of small satellites and applications. 
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