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Abstract: Biomechanical analysis of human motion is applied in medicine, sports and product design. However, visual-
izations of biomechanical variables are still highly abstract and technical since the body is visualized with a
skeleton and muscles are represented as lines. We propose a more intuitive and realistic visualization of kine-
matics and muscle activity to increase accessibility for non-experts like patients, athletes, or designers. To this
end, the Biomechanical Animated Skinned Human (BASH) model is created and scaled to match the anthro-
pometry defined by a musculoskeletal model in OpenSim file format. Motion is visualized with an accurate
pose transformation of the BASH model using kinematic data as input. A statistical model contributes to a
natural human appearance and realistic soft tissue deformations during the animation. Finally, muscle activity
is highlighted on the model surface. The visualization pipeline is easily applicable since it requires only the
musculoskeletal model, kinematics and muscle activation patterns as input. We demonstrate the capabilities
for straight and curved running simulated with a full-body musculoskeletal model. We conclude that our visu-
alization could be perceived as intuitive and better accessible for non-experts than conventional skeleton and
line representations. However, this has to be confirmed in future usability and perception studies.

1 INTRODUCTION

The progress in biomechanics has brought vast op-
portunities to analyse human movement (Ezati et al.,
2019). Biomechanical simulations enable a recon-
struction of recorded motion or prediction of a novel
movement (Ezati et al., 2019; Falisse et al., 2019; Lin
and Pandy, 2017; Nitschke et al., 2020). Humans
are represented with physics-based musculoskeletal
models to calculate biomechanical variables such as
joint angles, joint moments and muscle activation. As
the methodology continues to develop, applications
in medicine, sports and product design are emerg-
ing. Hence, multiple user groups besides biomechan-
ical engineers will inspect and interpret biomechan-
ical variables in future. For example, a visualiza-
tion of Parkinson-specific motion might be exploited
for modern patient education (Udow et al., 2018)
or for visual feedback for gait retraining (Richards
et al., 2018; Van den Noort et al., 2015). As alter-
native to video analysis in sports which is restricted
to a capture volume and might not always be avail-

able, motion could be reconstructed from inertial sen-
sor data using musculoskeletal simulation (Dorschky
et al., 2019b) and later be visualized for analysis
with a human model. This reconstruction has the
additional advantages that internal variables, such as
movement-related forces, could be analysed for in-
jury prevention (Bencke et al., 2018; Vannatta and
Kernozek, 2015). Although musculoskeletal simu-
lations can support product design of, for example,
prostheses (Fey et al., 2012; Koelewijn and van den
Bogert, 2016) or shoes (Dorschky et al., 2019a), they
lack a proper tool to communicate design decisions
with non-experts. In order to inspect and interpret
the simulated biomechanical variables, a visualization
has to be intuitive and accessible for non-experts like
patients, athletes, or designers.

1.1 Related Work

A wide variety of biomechanical simulation frame-
works exists for modelling and analysis of mus-
culoskeletal models. AnyBody (Damsgaard et al.,
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Figure 1: Proposed processing pipeline to visualize kinematics and muscle activity of biomechanical simulations using a
skinned human model. From left to right it shows the musculoskeletal model visualized with OpenSim (Seth et al., 2018)
and the proposed processing steps: creation of the BASH baseline model, scaling, initial pose matching, pose transformation,
statistical deformation, and visualization of muscle activity.

2006), D-Flow (Geijtenbeek et al., 2011; Van den
Bogert et al., 2013) and LifeModeler (McGuan,
2001) are commercial software packages and Open-
Sim (Delp et al., 2007; Seth et al., 2018) is an open-
source software package. OpenSim is reaching a
worldwide and rapidly growing community due to its
accessibility (Seth et al., 2018) and its support for for-
ward dynamics to predict novel movements. Abella
and Demircan (2019) incorporated musculoskeletal
models derived from OpenSim into the Unity envi-
ronment to simultaneously track and analyse motion.

These software solutions focus on the simulation
functionality and on an accurate representation of the
modelled body segments and muscle tendon units
(MTUs). Hence, they provide an interactive interface
displaying bones only as simple geometric shapes and
muscles as two-dimensional (2D) line representations
(see for example the OpenSim visualization in Fig-
ure 1, left). Muscle activity is shown by color coding
of the muscle pathways. Although these abstract and
technical visualizations are well suited for users with
biomechanical background, they are not appropriate
for non-experts. The visualization of musculoskele-
tal simulations was integrated into a computer-aided
design environment to facilitate user-centered design,
but the model was still visualized with a skeleton and
muscle pathways (Krüger and Wartzack, 2015).

Instead of using muscle pathways, muscles can be
modelled with volumetric geometries to increase ac-
curacy of the simulations or to study muscle deforma-
tion (Blemker and Delp, 2005; Maurice et al., 2009;
Peeters and Pronost, 2014; Teran et al., 2003; Teran
et al., 2005). However, volumetric muscle models are
rarely used in biomechanical simulations since com-
plexity of model creation and simulation increases
considerably. Others include volumetric muscle mod-
els only for visualization of computed muscle activ-
ity to increase interpretability without using them for
simulation (Pronost et al., 2011; Van den Bogert et al.,
2013). Pronost et al. (2011) provided an OpenSim

plugin with predefined muscle geometries that can be
assigned to the MTUs of the musculoskeletal model.
However, none of these visualizations for biomechan-
ical analysis uses three-dimensional (3D) skinned hu-
man models. An overlay of volumetric muscle shapes
on a video stream for color coding of muscle activ-
ity (Murai et al., 2010) might be closer to reality
than the existing skeletal representations. This ap-
proach operates in real-time based on electromyog-
raphy measurements. Nevertheless, it is not appli-
cable if no video recording is available, which is the
case when motion is reconstructed from inertial sen-
sor data or when novel motions are predicted. Hence,
3D skinned human models might be the most intuitive
visualization of reconstructed and predicted biome-
chanical movements especially for non-specialists.

In computer graphics, biomechanical and physi-
cal knowledge is also used to increase realism of hu-
man animations. Muscle and soft tissue deforma-
tion are modelled with mass-spring systems, finite el-
ement method, or finite volume method (Aubel and
Thalmann, 2001; Lee et al., 2009; Lee et al., 2012;
Murai et al., 2017; Sueda et al., 2008). Geometries
have to be modelled by hand or based on medical
image data and simulations often have high compu-
tational demands. Hence, these methods are usually
only applied for single muscles or body parts. Alter-
natively, human surface models can be directly an-
imated with data-driven methods without explicitly
taking the deformation of underlying structures into
account (Lee et al., 2012). An elegant way to cre-
ate a virtual skin envelope is to use statistical para-
metric shape models, which are often used for ani-
mation of human subjects in motion (Cheng et al.,
2018). Anguelov et al. (2005) first implemented a
parametric model for pose-induced soft tissue defor-
mation and body shape variation to perform Shape
Completion and Animation of PEople (SCAPE). Pa-
rameters are learned from 3D full-body scans of var-
ious poses and people. They separate rigid (skele-
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tal) and non-rigid deformations to simplify mathemat-
ically formulation and to accelerate the learning al-
gorithm. However, the SCAPE model determines the
soft tissue deformation based on only a static pose and
does not take muscle activation or dynamics into ac-
count. The Dyna (Pons-Moll et al., 2015) model also
reflects dynamic soft tissue deformations caused by
motion. Nevertheless, the statistical surface models
used in computer graphics lack the connection to tra-
ditional biomechanical simulations of musculoskele-
tal models. Torque-driven animation is intensively in-
vestigated to obtain authentic human motion instead
of prescribing the motion (Geijtenbeek and Pronost,
2012; Jiang et al., 2019). But, in contrast to mus-
cle control, torque control does not generate biologi-
cally reasonable motion since human torques are not
limited to a constant range and the energy function
minimizing torques does not reflect the human mus-
culoskeletal system (Jiang et al., 2019).

1.2 Purpose

In this work, we aim to develop a method to ani-
mate 3D human surface models for biomechanical
analysis. We propose the Biomechanical Animated
Skinned Human (BASH) model which provides an
animated skinned visualization of a musculoskeletal
model defined in the commonly used OpenSim for-
mat (Seth et al., 2018) without requiring any addi-
tional data. The body proportions of the virtual hu-
man are automatically adapted to match the subject-
specific dimensions of the musculoskeletal model.
Kinematic coordinates are processed to apply pose
transformation and thus to animate the skin envelope
in order to reflect a movement. The statistical model
SCAPE (Anguelov et al., 2005) should yield natu-
ral human appearance and realistic soft tissue defor-
mations. Furthermore, muscle activity of underlying
MTUs is highlighted on the surface which enables a
kinetic analysis. We evaluate the pipeline with ten
full-body musculoskeletal models scaled to each sub-
ject and simulated data of straight and curved running.
Though this assumption has to be proven in further
studies, we assume that our representation is more in-
tuitive than conventional visualizations and therefore
more accessible, especially for users without biome-
chanical background.

1.3 Outline

The processing pipeline is summarized in Figure 2.
In Section 2, the biomechanical data and the SCAPE
model are introduced. In Section 3, the generation of
the baseline version of the proposed BASH model is

described. Section 4 explains how the BASH model
was matched to a subject-specific musculoskeletal
model. Section 5 covers the animation and statisti-
cal deformation of the surface model. The visual-
ization of muscle activity is presented in Section 6.
The results of the experiments and analyses from
Section 7 are evaluated and discussed in Section 8.
The paper concludes with a short summary and out-
look in Section 9. The code is publicly available at
https://github.com/mad-lab-fau/BASH-Model.

2 VISUALIZATION INPUT

A musculoskeletal model, kinematics and muscle ac-
tivity serve as biomechanical input for the visualiza-
tion (see Figure 2). Since OpenSim (Seth et al., 2018)
is a widely used open-source software for muscu-
loskeletal simulations, its data format and framework
is used. All variables belonging to the biomechani-
cal data are denoted in this paper with a hat ·̂. The
musculoskeletal model consists of a skeletal struc-
ture where bone segments are connected via moving
joints Ĵ = {Ĵ0, . . . , ĴNĴ−1}. Joints can be manipulated

using generalized coordinates ~̂q(t), thus defining the
kinematics of the model over time t. Virtual mark-
ers M̂ = {~̂m0, . . . , ~̂mNM̂−1} are commonly attached to
the musculoskeletal model for subject-specific model
scaling and inverse kinematics. Muscles are described
by MTUs with 2D pathways Ê(t) and maximum iso-
metric forces f̂max, among other parameters. Forces
acting during a movement are encoded as muscle ac-
tivation â(t) of a specific MTU.

To obtain a realistic surface representation of
the musculoskeletal model, the human statistical
SCAPE (Anguelov et al., 2005) model is used as ba-
sis. SCAPE, the first established method of its kind,
provides a sophisticated framework for our approach.
All variables belonging to the SCAPE model are de-
noted in this paper with a tilde ·̃. Training of pose
parameters Q̃ and shape parameters D̃ was performed
on full-body 3D scans from a large data set (Yang
et al., 2014). Additionally, training of the shape co-
efficients was refined using further 3D scans (Hasler
et al., 2009b; Hasler et al., 2009a; Hasler et al., 2010).
In order to eliminate any pose deviations for the shape
learning, a volume aware non-rigid mesh registration
was performed (Colaianni et al., 2014). Training gen-
erates a template mesh Ṽ which corresponds to the
envelope of a virtual person in static pose with aver-
age shape parameters.
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Figure 2: Processing pipeline to visualize kinematics and muscle activity using a skinned human surface model. The input of
the pipeline (grey rectangles) and the processing steps (green rectangles) are explained in the following sections.

3 BASELINE MODEL

The simulated generalized coordinates of the mus-
culoskeletal model cannot directly be applied to the
SCAPE model due to differences in skeletal struc-
tures, body proportions and initial poses which would
lead to an incorrect visualization. In particular, the
disparate definition of the skeletal structure of both
models is a challenge. The BASH model is developed
to overcome the differences and to generate an accu-
rate yet realistic 3D surface representation of the sim-
ulated musculoskeletal motion. Figure 3 illustrates
the three components which define the BASH model:

• Mesh geometry to represent the model’s surface
and virtual appearance of the skinned human

• Articulated skeleton to enable surface deforma-
tions using the interconnected bones

• Marker attachments to create a clear relation-
ship to the musculoskeletal model for scaling of
body proportions and initial pose matching

The SCAPE template mesh Ṽ is used as the
BASH geometry V with vertices ~v. A skeletal ar-
mature with the same hierarchical composition as the
musculoskeletal model is placed into the mesh by rig-
ging the bones B = {B0, . . . ,BNB−1} as defined by
the joints Ĵ of the musculoskeletal model. Devia-
tions in position and dimensions can be neglected
since body proportions will be scaled in a separate
step. Automatic computed skinning weights Ω~v =
{ωB0 , . . . ,ωBNΩ−1} connect the skeleton and the mesh
geometry (Kavan et al., 2009). The weight ωB deter-
mines by how much the transformation of a bone B
is transferred to its assigned vertices. The maximum
number of influencing bones for one vertex is set to
NΩ = 4 which is common in character animation due
to efficiency in hardware (McLaughlin et al., 2011).
Improperly assigned weights are corrected manually.
Finally, virtual markers M = {~m0, . . . ,~mNM−1} cor-
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Figure 3: The conceptual design of the generic BASH
model on the basis of SCAPE (Anguelov et al., 2005). It in-
corporates a surface mesh, an underlying articulated skele-
ton and attached marker points.

responding to the markers M̂ of the musculoskeletal
model are attached to the BASH model at landmark
points near the surface to establish a relationship be-
tween the models. The markers are used to determine
body proportions and to match the initial poses. The
resulting generic version of the BASH model reflects
a non-scaled musculoskeletal model with a specific
anatomical structure.

4 MODEL MATCHING

The baseline model has to be matched to a scaled ver-
sion of the musculoskeletal model in its initial pose.
This preprocessing step is performed once for a sub-
ject before animation.

4.1 Scaling of Body Proportions

In musculoskeletal modelling, individual variations in
body proportions are taken into account by adjust-

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

28



ing the body segments using recorded marker posi-
tions (Delp et al., 2007). Using the same principle,
we match the subject’s anthropometry and ensure a
realistic visualization by scaling segment sizes based
on the defined virtual marker positions (see Figure 4).
For each bone B, an uniform scaling transformation
SB is determined as average ratio between marker
distances of the musculoskeletal model and of the
generic BASH model.

Figure 4: 3D positions of attached markers ~̂m and ~m are
used to scale body segments.

However, the scaling with matrix SB is not ap-
plied directly in bone space since a change of bone
size should only be applied to a particular bone B and
not inherited through the skeletal hierarchy. There-
fore, the new position N′B of a bone B is computed by
propagation through the skeleton starting at the root
node:

N′B = N′Bparent ·NB ·SB ·S−1
Bparent

, (1)

where NB is the 3D state of the bone before scal-
ing. Scaling of the parent bone Bparent is reversed
by multiplying the inverse scaling matrix S−1

Bparent
to

avoid inheritance. For the root node, N′Bparent
and

S−1
Bparent

are the identity matrix. To scale the generic
mesh, the new position N′B is multiplied by the in-
verse offset matrix OB

W
−1 which denotes the projec-

tion from bone space B to world space W . The result-
ing transformation matrices are applied to the markers
and vertices of the generic mesh. Consequently, lin-
ear blend skinning shifts all vertices ~v by the extent
of the defined skinning weights Ω~v which simultane-
ously prevents hard borders and noticeable gaps be-
tween limbs (Magnenat-Thalmann et al., 1988).

4.2 Initial Pose Matching

Within OpenSim, pose transformations are specified
by generalized coordinates. However, the relation be-
tween the initial pose of the musculoskeletal model
and the scaled BASH model is unknown and has to be
established before deploying any pose transformation.

This relation is described by a change of basis, i.e. by
a projection PĴ

B from the coordinate system of joint Ĵ
of the musculoskeletal model to the corresponding co-
ordinate system of bone B of the scaled BASH model.
The generalized coordinates ~̂q define the pose of the
musculoskeletal model which matches the initial pose
of the scaled BASH model. They are obtained by in-
verse kinematics using the OpenSim application pro-
gramming interface (API) (version 4.0) (Seth et al.,
2018). In inverse kinematics, the sum of squared dis-
tances between corresponding marker pairs of the two
models is minimized. For the resulting pose, the pro-
jection matrix PĴ

B is received from the OpenSim API
as global transformation of the bones with respect to
the ground. Applying the inverse transformations to
the scaled BASH model causes a deformation of the
mesh via skinning weights to match the pose of the
musculoskeletal model.

5 ANIMATION AND
STATISTICAL DEFORMATION

In order to create an animation of the simulated mus-
culoskeletal model, a series of transformations is ap-
plied to the scaled BASH model for each time frame
t of the motion sequence.

5.1 Pose Transformations

Traditional character animation techniques are used to
obtain an animated surface representation of the input
kinematics. The affine transformation T̂Ĵ(t) contains
the translation and the rotation defined by the gen-
eralized coordinates ~q(t) given in the OpenSim mo-
tion file. For each frame, the input transformation
T̂Ĵ(t) can be directly applied to the bones of the scaled
BASH model in the global coordinate system due to
prior scaling and initial pose matching. The surface
deformation was achieved by linear blend skinning
with previously computed skinning weights. As a re-
sult, the pose transformed BASH model contained the
aggregated animation based on the given movement
of the musculoskeletal model.

5.2 Transformations into SCAPE Space

Statistical transformations introduced in the SCAPE
model (Anguelov et al., 2005) are performed for each
time frame t after the pose transformation to achieve
realistic soft tissue deformations and therefore en-
hance the natural appearance. Before applying the
statistical transformations, the rigid part rotations RB̃
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of all body parts B̃ have to be determined in order
to define the current pose in the SCAPE space. The
original method proposed by Anguelov et al. (2005)
is adapted to operate without a full body scan of the
target person by using the pose transformed BASH
model from the previous processing step as reference
instead. All vertices of the mesh V serve as refer-
ence points to determine the current pose in corre-
spondence to the template mesh Ṽ which requires
an identical geometric topology of all meshes in the
SCAPE space. The rigid registration of two corre-
sponding body parts B̃ with NB̃ vertices is described as
minimization of the root mean square error (RMSE):

min
RB̃

√√√√ 1
NB̃

NB̃−1

∑
i=0
‖RB̃ ·~̃vi−~vi‖2, (2)

where ~̃v and~v are the vertices of the SCAPE template
mesh and the pose transformed BASH model, respec-
tively. This optimization is solved as constrained Pro-
crustes problem (Schönemann, 1966) using the Kab-
sch algorithm (Kabsch, 1976) and performing singu-
lar value decomposition (Golub and Reinsch, 1970).
The obtained optimal rotations, i.e. the nearest or-
thogonal matrices, describe the rigid part transforma-
tions RB̃ of the SCAPE model.

The main feature of SCAPE is a realistic soft tis-
sue deformation which is achieved by pose-induced
transformations Q̃ f affecting the shape of each face
f on the mesh based on training data and the cur-
rent pose defined by RB̃. The rotations of adja-
cent joints J̃0, J̃1 and the learned regression vector
~̃a f ,i, j = (ã0, ã1, ã2, ã3, ã4, ã5, ã6)

T from the SCAPE
framework are used to build the matrix:

Q̃ f [i, j] =
(
~∆T

RJ̃0
,~∆T

RJ̃1
,1
)T
·~̃ai, j, f , (3)

where i and j are the row and column indices, re-
spectively. ~∆RJ̃

= (∆x,∆y,∆z)
T denotes the twist vec-

tor in angle-axis representation (Ma et al., 2004) of
a joint rotation RJ̃ = RB̃0

·RT
B̃1

composed of adjacent
rigid body parts B̃0 and B̃1. The body shape is omit-
ted within this paper. Hence, the average shape of
the trained SCAPE template mesh is used by setting
shape deformation matrix D̃ f to the identity matrix
for all faces.

The geometry of the new mesh is retrieved by
minimizing the following non-linear optimization
problem to avoid inconsistencies within the mesh in-
stead of applying the rigid part rotations RB̃ f

, pose
dependent deformations Q̃ f , and shape dependent de-

formations D̃ f directly to the vertices~v:

min
~v

N f−1

∑
f=0

∑
i=1,2
‖RB̃ f

· D̃ f · Q̃ f ·~̃v f ,i− (~v f ,0−~v f ,i)‖2.

(4)
The two edges~v f ,0−~v f ,i with i = 1,2 span the face f
built of the three vertices~v f ,0,~v f ,1, and~v f ,2.

Since the SCAPE framework omits the global po-
sition and orientation of the model in space for com-
putational reasons, it has to be restored. A constrained
orthogonal Procrustes problem is solved globally to
register the SCAPE transformed mesh with the pose
transformed mesh.

6 VISUALIZATION OF MUSCLE
ACTIVITY

In addition to the animation of the model, muscle ac-
tivation is visualized on the model’s surface. The area
of influence and the intensity are computed dynami-
cally during run-time for the current time frame t.

6.1 Area of Influence

In the musculoskeletal model, a muscle F̂ is charac-
terized by a MTU with the 2D pathway ÊF̂(t). The 3D
locations of the connected line segments are defined
by multiple points ~̂p fixed to the articulated skele-
ton. Before visualizing the muscle activity, a map-
ping from the 2D muscle pathways to the surface of
the animated BASH model is established by finding
the smallest distance from an underlying MTU to the
model’s surface. The perpendicular distance d is the
shortest way from the line segment defined by ~̂pi and
~̂pi+1 to a vertex. Vertices with a distance d smaller
than a threshold CmaxDist are included into the area of
influence of the particular muscle.

6.2 Intensity Visualization

The identified areas of influence are used to highlight
the muscle activation âF̂(t) on the surface via color
coding. The force of the muscle contraction scales
linearly with the muscle activation and the maximum
isometric force f̂maxF̂

(Thelen, 2003). Hence, the
measure iF̂(t) is composed as follows:

iF̂(t) =
1

CmaxMeasure
· âF̂(t) · f̂maxF̂

. (5)

The constant CmaxMeasure is introduced to normalize
by the maximum possible value that concentrates on a
point. This enables an objective comparison of move-
ment visualizations of distinct subjects with different
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muscular constitutions. For each vertex, the measures
iF̂(t) of all influencing muscles are accumulated and
added to the red color channel of the mesh. Due to the
implementation in the fragment shader, color values
are interpolated across the faces resulting in smooth
transitions at the boundaries and overlapping areas of
the influencing muscle regions.

7 EXPERIMENTS AND
ANALYSES

We conducted experiments and analyses to confirm
the functionality of the visualization approach using
a full-body musculoskeletal model (Nitschke et al.,
2020). The comprehensive musculoskeletal structure
included 20 joints, 92 MTUs in the lower body and
46 markers.

The scaling functionality and the initial pose
matching were evaluated with ten male test sub-
jects. The generic musculoskeletal model (Nitschke
et al., 2020) was scaled using the OpenSim scaling
tool (Delp et al., 2007) to match the marker data of
static trials of nine subjects (Dorschky et al., 2019b)
(subject A to I). Additionally, an already scaled mus-
culoskeletal model was used as subject J (Nitschke
et al., 2020). To evaluate the scaling, the height H of
the scaled BASH model was determined as the dis-
tance between the smallest and greatest y-coordinate
of the mesh in the initial pose. The height should cor-
relate with the body height of the subject.

The pose transformation and animation of the
BASH model was analysed for subject J with simu-
lated kinematics of straight running and curved run-
ning with 50 time samples available in the OpenSim
file format (Nitschke et al., 2020). The proposed sur-
face visualization of the muscle activity was tested
with corresponding simulated muscle activation pat-
terns of the motions and compared to the line repre-
sentation in the OpenSim environment.

8 RESULTS AND DISCUSSION

Figure 5 presents the final surface visualization in
comparison to the visualization from OpenSim (Seth
et al., 2018). In the following, the individual process-
ing and transformation steps are discussed separately.

8.1 Scaling of Body Proportions

The scaling of body proportions is an essential step
for a representative visualization. An incorrect model

(a) (b) (c)

Figure 5: Final visualization of the kinematics including
the muscle activation on the surface compared to the Open-
Sim (Seth et al., 2018) representation as reference. (a) and
(b) show frontal and sagittal view of simulated straight run-
ning, respectively. (c) shows superimposed frames of simu-
lated curved running.

size would lead to incorrect postures and would in-
fluence the analysis. For example, the ground contact
time (Mooses et al., 2018) or foot clearance (Begg
et al., 2007) are of interest for biomechanical analy-
ses of gait, but would be erroneous.

Figure 6 shows the outcomes of the body part
scaling for the ten subjects. The height H of the
BASH model is greater than the actual body height
for all subjects except for subject D and J. The mean
and standard deviation of the absolute error is 6.7±
4.8cm. Nevertheless, the proposed scaling is bene-
ficial since the height of the scaled model is always
closer to the body height than the generic model. We
propose uniform scaling to produce robust result even
when few markers are present. However, non-uniform
scaling with individual scale factors for each dimen-
sion might be beneficial.

Nevertheless, the comparison of heights has to be
interpreted with caution since marker placement or
scaling of the musculoskeletal model can introduce
errors as well. Furthermore, the estimated height H
of the BASH model depends on the initial pose and
might change when the model is transformed into
SCAPE space. Also the skinning weights influence
the shape and thus the scaling and height.

8.2 Initial Pose Matching

The quality of the mapping PĴ
B between the initial

pose of the musculoskeletal model and the scaled
BASH model influences the accuracy of the following
pose transformations. Visual inspection shows that
the BASH model is brought into a pose very similar to
the pose of the musculoskeletal model (see Figure 7).
However, the surface geometry does not completely
envelope the musculoskeletal skeleton especially at
the extremities due to missing marker data and miss-
ing mobility of hands and feet.

In inverse kinematics, the objective is to mini-
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Figure 6: Frontal view of the scaled models before pose transformation and transformation into SCAPE space. Body heights
reported by the subjects are displayed in the upper right corners. As reference, the generic model with a height H of 185cm
is displayed.

(a) (b) (c)

Figure 7: Visualization after the initial pose matching. (a),
(b), and (c) show the skeletal representation of subject J in
OpenSim (Seth et al., 2018), the proposed surface represen-
tation, and an overlay of both for comparison, respectively.

mize the marker tracking error. For the ten test sub-
jects, the mean and standard deviation of the RMSE
and of the maximum marker error is 2.1± 1.5cm
and 5.0± 3.0cm, respectively. The error is therefore
mainly within the range of the OpenSim recommen-
dation (OpenSim, 2020). Similar to optical motion
capture, the quality of the pose estimation highly de-
pends on the marker placement.

8.3 Pose Transformation

The pose transformation is the main step of to ani-
mate the BASH model according to an input motion
sequence. Due to the initial pose matching, kinemat-
ics are directly applied to the mesh using linear blend
skinning which is commonly used in traditional com-
puter animation. Although it produces accurate vi-
sualizations, some regions like elbow and hip are af-
fected by strong deformations (see Figure 1).

8.4 Transformation into SCAPE Space

The transformation into SCAPE space makes use of
a large training data set of full-body scans and thus
can enrich the natural appearance of the animated hu-
man envelope. The SCAPE algorithm includes pose-
induced deformations Q̃ f for realistic soft tissue de-
formation, e.g. muscle contractions, and shape de-
pendent deformations D̃ f for realistic representation
of the body structure.

The undesired strong deformations of the mesh at
elbow and hip are reduced by the transformation into
SCAPE space (see Figure 8a and 8b). Although the
realism is enhanced, the accuracy of the surface rep-
resentation suffers (see Figure 8c). Especially slight
offsets at the feet might impact gait analysis where
ground contact is crucial (Begg et al., 2007; Mooses
et al., 2018).

(a)
(b) (c)

Figure 8: Views after transformation into SCAPE space for
straight running. In (c) the articulated skeleton is overlaid.

The global registration of position and orienta-
tion after transformation into SCAPE space produces
robust results due to the use of 12500 vertex corre-
spondences. Alternatively, the pose transformation of
the root bone could be used to apply the global po-
sition and orientation. Nevertheless, this would not
acknowledge the fact that the SCAPE transformed
model is fixed to the global coordinate system with
a vertex at the right foot instead of the root bone.

We did not yet include shape dependent deforma-
tions by applying the shape coefficients provided by
the SCAPE framework, which would enable a rep-
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resentation of individual’s anthropometry. For real-
ism and identification with a virtual self, authenticity
of a subject-related representation is key (Waltemate
et al., 2018). Other statistical human models (Cheng
et al., 2018) are more complex, but might also further
increase the realism of the representation. Blending
of strong deformations is improved (Hirshberg et al.,
2012; Jain et al., 2010) and the Skinned Multi Person
Linear Model (SMPL) (Loper et al., 2015) produced
the most accurate results. SMPL+H (Romero et al.,
2017), a recent extension of SMPL, allows posing and
animation of individual fingers which would lead to
an overall more natural representation. A slightly dif-
ferent aspect is included in the Dyna (Pons-Moll et al.,
2015) model as it produces realistic dynamical soft
tissue deformations during movement.

However, increased realism might not benefit the
visualization. Lungrin et al. (2015) found that a
nearly realistic human visualization evoke a strange
feeling for an observer referred as the uncanny val-
ley effect. Whether the visualization is perceived as
realistic and whether subjects can identify themselves
with the visualized model has to be confirmed in stud-
ies, especially with respect to the application and user
group. In general, a balance between fidelity and de-
gree of realism has to be found.

8.5 Visualization of Muscle Activity

MTUs are projected orthogonally onto the model sur-
face to visualize muscle activity since it does not
require additional data in contrast to other methods
and allows therefore for easy visualization of various
MTU sets. Furthermore, we hypothesize that a vi-
sualization on the surface is more accessible for non
experts than volumetric muscle visualizations (Murai
et al., 2010; Pronost et al., 2011; Van den Bogert et al.,
2013) or line representations of OpenSim (Seth et al.,
2018) or AnyBody (Damsgaard et al., 2006).

Depending on the application, the maximal dis-
tance CmaxDist has to be chosen in order to represent
the underlying MTUs well. For all figures in this pa-
per, CmaxDist is set to 8cm as this produces appropriate
results (see Figure 9). Alternatively, the maximum
isometric force f̂maxF̂

of each muscle could be in-
cluded in the definition of the maximal distance since
it is related to muscle volume.

Although the area is determined well for most
muscles, it overflows into the other leg for the gracilis
(see Figure 9c) and covers the complete shank instead
of the rear part of the calf for the peroneus longus
(see Figure 9d). This could be avoided by consider-
ing the orientation of the muscles with respect to the
attached bones. Additionally, anatomical knowledge

(a) vas int r (b) psoas l (c) grac r (d) per long l

Figure 9: Areas of influence (blue) assigned to the corre-
sponding muscle pathways (red) using a maximal distance
CmaxDist of 8cm.

could be included, though this would limit the usabil-
ity of the approach for other musculoskeletal models.
Constraining the curvature in tangent space (Dennis
et al., 1997) or using alternative algorithms like re-
gion growing (Adams and Bischof, 1994) could pre-
vent propagation across valleys. Further improve-
ments might be achieved by using barycentric coor-
dinates (Rustamov, 2010) to overcome the limitation
to vertex assignments.

For color coding of the determined area, the in-
tensity is normalized with a constant CmaxMeasure =
14000N to ensure comparability of the visualization
across different motion sequences or subjects. In-
tensity normalization is for example important when
evaluating temporal progress of diseases, gait train-
ing, or running technique of athletes or when com-
paring body constitutions or designs of equipment.
The constant CmaxMeasure should be chosen specific to
the musculoskeletal model and application. Since the
intensity measure iF̂ is added to the red color chan-
nel, the value of the red color channel could exceed
its limits for inappropriate constants and would be
cropped.

The color coding of the muscle activation is vi-
sually compared to the line representation of Open-
Sim (Seth et al., 2018) (see Figure 1). The mus-
cle activation is highlighted plausibly on the surface
with smooth transitions at borders and overlapping re-
gions due to the color interpolation of the fragment
shader. In Figure 5, kinematics and muscle activation
of straight and curved running are visualized. Es-
pecially for people with little biomechanical knowl-
edge, the surface representation likely appears more
vivid and realistic. At the same time, it does not re-
quire additional data and can easily be applied to dif-
ferent musculoskeletal models. Hence, the proposed
visualization of the muscle activity might offer a use-
ful alternative compared to the 2D line (Damsgaard
et al., 2006; Seth et al., 2018) or volumetric represen-
tation (Murai et al., 2010; Pronost et al., 2011; Van
den Bogert et al., 2013).
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9 CONCLUSION
We have presented a visualization pipeline to animate
a skinned representation for biomechanical analysis
of kinematics and muscle activity. The goal was to
make biomechanical analysis more intuitive and re-
alistic and increase accessibility for non-experts. To
this end, we developed the BASH model to establish
a bridge between the musculoskeletal model and a
statistical surface model. Traditional animation char-
acter techniques and the SCAPE framework enabled
body part scaling, pose transformations and realistic
surface deformations for the input kinematics. Ad-
ditionally, muscle activity related to the motion se-
quence is highlighted on the model’s surface. Still,
our approach does not require more input data than a
traditional biomechanical approach: a musculoskele-
tal model, kinematic data and muscle activation. This
ensures high usability and makes it easily applicable
to other musculoskeletal models.

The proposed approach was evaluated us-
ing scaled musculoskeletal models of ten sub-
jects (Dorschky et al., 2019b; Nitschke et al., 2020)
and data of simulated straight and curved run-
ning (Nitschke et al., 2020). Our method achieved a
realistic person-specific representation of the biome-
chanical input. Beside minor discrepancies, body
part dimensions and the movement sequence was re-
flected accurately compared to state-of-the-art repre-
sentations like OpenSim (Seth et al., 2018). The pro-
posed 3D skinned human surface model seemed more
accessible for non-experts, especially the visualiza-
tion of muscular activity on the surface might offer
an intuitive representation.

However, various topics could be investigated for
further improvements. For applications where real-
time feedback is required, such as gait retraining,
Realtime-SCAPE (Chen et al., 2016) could be inves-
tigated. Furthermore, it might be possible to learn
the pose regression parameters using the skeleton of
the musculoskeletal model directly to eliminate some
intermediate processing steps. The body shape pa-
rameters could be included to enhance person-specific
visual representation. Besides expensive full-body
scans or medical imaging, an extraction of shape co-
efficients from a photo of the subject could provide
a practical solution (Bogo et al., 2016) to determine
the body shape parameters. Constraint curvatures
in tangent space (Dennis et al., 1997), region grow-
ing (Adams and Bischof, 1994), or barycentric coor-
dinates (Rustamov, 2010), should be considered for
the visualization of the muscle activity since they
could be beneficial without requiring additional input
data.

In this paper, the proposed methodology was eval-

uated by visual inspection and comparison with state-
of-the-art tools. Since realism, intuitiveness and body
ownership of a novel visualization cannot be mea-
sured objectively, there is a need to perform usability
and perception studies for an application specific eval-
uation. Besides questionnaires and interviews about
the proposed representation, efficiency of task execu-
tion should be studied with an user group.

The proposed pipeline is the first step to study us-
ability and perception of biomechanical data visual-
ization for non-experts. Our visualization method has
the potential to enable non-experts, like patients, ath-
letes and designers, to gain from biomechanical anal-
ysis for patient education, gait retraining, technique
training, or design of equipment.
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