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Abstract: Deep segmentation networks are increasingly used in medical imaging, including detection of Diabetic 
Retinopathy lesions from eye fundus images (EFI). In spite of very high scores in most EFI analysis tasks, 
segmentation measured as precise delineation of instances of lesions still involves some challenges and 
deserves analysis of metrics and comparison with prior deep learning approaches. We build and confront 
state-of-the-art deep learning segmentation networks with prior results, showing up to 15 percentage points 
improvement in sensitivity, depending on the lesion. But we also show the importance of metrics and that 
many frequently used metrics can be deceiving in this context. We use visual and numeric evidence to show 
why there is still ample space for further improvements of semantic segmentation quality in the context of 
EFI lesions. 

1 INTRODUCTION 

Diabetic Retinopathy (DR) is an eye condition related 
to microvascular changes in the retina that affects 
people with Diabetes. The changes involve leakage of 
extra fluid and small amounts of blood in the eye 
(microaneurysms and hemorrhages) and deposits of 
cholesterol and other fats (exudates) (Wilkinson, 
2003). Figure 1 shows some lesions and some 
structures on eye fundus image (EFI), where the 
coloured image indicates the lesions and the optic 
disk.  

The deep segmentation network is a software 
system inspired in convolution neural networks that 
uses supervised learning from training images and 
groundtruths to learn how to segment images in a 
certain context. These networks are increasingly used 
in every medical imaging problem with great results 
when compared to previous alternatives. Figure 2 
shows one such network receiving an image as input 
and outputting a segmentation map that is supposed 
to classify each pixel as one of a number of classes.  
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Figure 1: EFI and lesions characteristic of Diabetic 
Retinopathy. 
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Figure 2: Illustration of the deep segmentation procedure. 

The deep segmentation network shown in Figure 
2 is made of an encoding and a decoding part. The 
encoding part is a Convolution Neural Network 
(CNN), and its function is to extract features from 
images in the form of a compressed representation of 
the main features, hence the label “encoding”. But 
while CNNs classify images, segmentation networks 
classify each individual pixel as belonging to one of 
a set of classes, a.k.a. semantic segmentation.   

Semantic Segmentation, also called scene 
labeling, refers to assigning a semantic label (e.g. car, 
people, and road) to each pixel of an image (Yu, 
2018). In semantic segmentation each pixel must be 
assigned the exact class to which it belongs in reality, 
and groundtruths should be pixelmaps as much as 
possible, as opposed to coarse regions defined around 
groups of lesions. In analysis of EFI images, semantic 
segmentation aims at finding areas and numbers of 
lesions instances as accurately as possible, as opposed 
to just detecting if images have lesions of certain 
types or some regions engulfing sets of lesions.   

Recent reviews of EFI analysis, such as in 
(Qureshi, 2019), (Asiri, 2019), (Raman, 2019) report 
highest scores (e.g. between 90% and 100%) in most 
tasks related to analysis of EFI and DR classification. 
A smaller fraction of the works reviewed there 
mention lesion segmentation and, as we review in 
related work section, an even smaller fraction actually 
evaluate the whole process of segmentation of 
lesions. For those we have to look into the details to 
retrieve the actual reported scores. The sensitivities 
found in those works for one False Positive per Image 
are in the intervals, for different lesions: hemorrhages 
HA=47-50%; hard exudates HE=40-57%; soft 
exudates SE=64-70% and micro-aneurisms MA=7-
38%. These values contrast with scores between 90% 
and 100% for other tasks such as detecting if an image 
has any lesion of a certain type. 

These reported prior works use various CNN-
based approaches to EFI analysis. Our purpose in this 
work is twofold: on one hand we build and compare 
a state-of-the-art semantic segmentation network 
(DeepLabV3, FCN, UNET) with those prior works, 
showing that it improves the results, but on the other 
hand we also discuss metrics and the need to be 
careful in the use of metrics when evaluating this kind 
of systems. Analyzing the quality of segmentation in 
terms of sensitivity versus false positives we find that 

our proposed network is quite competitive and 
overcomes prior work. But at the same time we also 
reveal the limitations with some frequently applied 
segmentation metrics in the context of evaluation of 
segmentation of EFI lesions in general. We discuss 
limitations of popular metrics that include 
ROC/AUC, specificity and even sensitivity alone 
(sensitivity versus false positives, which we use to 
compare with prior works, does not have the problem) 
in our context. We show that, from a perspective of 
evaluation of semantic segmentation, where the class 
of each individual pixel matters, work is still required 
to improve the approaches further. 

The paper is organized as follows: section 2 
contains related work. Section 3 describes the 
segmentation network we build and propose in this 
work for the comparisons, and the limitations of some 
metrics in the context of EFI lesions segmentation is 
also discussed there. Section 4 contains experimental 
work and section 5 concludes the paper. 

2 RELATED WORK 

Recent surveys on analysis of Eye Fundus Images 
(EFI) for diagnosis of Diabetic Retinopathy (DR) and 
for detection and localization of lesions (Qureshi, 
2019), (Asiri, 2019), (Raman, 2019) report scores 
between 90% and 100% for most tasks, including 
some mentioning “segmentation” and “localization”. 
The fraction of works reviewed that “segment” 
lesions include Prentasic et al. (Prentašić,2015), 
Gondal at al. (Goindal, 2017), Quellec et al. (Quellec, 
2017) (exudates, hemorrhages and microaneurisms), 
Haloi et al. (Haloi, 2015), Van Grinsven et al. (Van 
Grinsven, 2016), Orlando et al. (Orlando, 2018) and 
Shan et al. (Shan, 2016) (microaneurisms, 
hemorrhages or both). From those, a considerable 
number are classifiers of small windows. That is the 
case of Prentasic et al. (Prentašić,2015), Haloi et. al. 
(Haloi, 2015),  Van Grinsven (Van Grinsven, 2016), 
and Shan et al. (Shan, 2016), which are classification 
CNNs that classify small square windows around 
potential lesions. These works achieve high 
classification scores, but they do not segment the 
lesions, instead they classify  small windows. For 
instance, (Prentašić,2015) proposes applying a simple 
CNN classifier to each pixel by obtaining a small 
window around it, and achieves a classification score 
of 77% sensitivity for exudates. Not only the 
sensitivity is lower than 90 to 100% and target only 
exudates, as also for training and evaluation the 
authors collect windows statically, taking all the 
exudate pixels as positive samples and the same 
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amount of pixels randomly sampled among all non-
exudate pixels but without repetition. The approach 
does not deal with the difficulty of scaling to classify 
all pixels in an EFI and realtime operation, a difficult 
issue because the classifier has to be applied to each 
pixel. More generically, it is not clear how to scale 
approaches classifying small windows around pixels 
to realtime semantic segmentation of lesions.    

Other related works do segment lesions, e.g. 
Gondal at al. (Gondal, 2017), Quellec et al. (Quellec, 
2017) are two variations of DR classifiers 
(classification of EFI images as DR or not), that at the 
same time up-sample and extract heatmaps to get the 
positions of lesions. Orlando (Orlando, 2018) uses a 
different approach that combines DL with image 
processing to find candidate regions. These works do 
include evaluation of the quality of segmentation of 
lesions, using a criterion of overlap of segments. They 
reported the following sensitivities for segmentation 
of lesions (for 1 false positive per image=FPI): 
Quellec (Quellec, 2017) (HA=47%; HE=57%; 
SE=70% and MA=38%), Gondal (Gondal, 2017) 
(HA=50%; HE=40%; SE=64% and MA=7%) and 
Orlando (Orlando, 2018) (HA:50%, MA: 30%). 
These scores illustrate the fact that segmenting the 
lesions does not result in scores near to 100%. Also 
important, it must be noted that a “relaxed” connected 
components evaluation criteria is used in those works 
(described for instance in (Zhang, 2014)), where a 
threshold of partial overlap between found segments 
and groundtruth regions is sufficient for considering 
a match. The connected components criteria, 
described for instance in Zhang’s work (Zhang, 
2014), considers a match if an overlap of 20% (or 
another threshold) between found segments and 
groundtruth regions exists. The groundtruths of the 
datasets themselves are frequently large coarse 
regions defined around groups of lesions (e.g. 
datasets Diaret (Kälviäinen, 2007)] or e-ophtha 
(Erginay, 2008)). We believed that a state-of-the-art 
deep learning segmentation network (DeepLabV3) 
can do better than many prior approaches, such as 
(Gindal, 2017), (Quellec, 2017), (Orlando, 2018). For 
that reason, we created the setup and compared the 
approaches.  

Some frequently used metrics are also an 
important detail in this context (Tiu, 2019), (Csurka, 
2013) and in particular class imbalance can bias the 
evaluation scores. Zhang (Zhang, 2014) mentions 
that, “given that the classes are clearly unbalanced, 
TP, FN and FP are in practice negligible with respect 
to TN, therefore computing the specificity, i.e. 
TN/(FP+TN), and therefore ROC (Receiver operating 
characteristic) curve does not seem appropriate”. For 

that reason we pay a special attention to how metrics 
should be used in our study. In that respect we both 
discuss metrics and in the experimental work we 
include a section revealing the false positives-related 
limitations of current approaches that are exposed by 
use of some metrics and/or visual inspection.   

There exist some very popular segmentation 
networks. The Fully Convolutional Network (FCN) 
(Long, 2015) uses a CNN to encode (typicaly a 
VGG16 (Simonyan, 2014)), replacing the final fully 
connected layers by convolutional layers with large 
receptive fields, and adds up-sampling layers based 
on simple interpolation filters. The FCN we use in 
this paper has around 50 layers. We would also 
mention the use of forwarding paths. Ronneberger 
(Ronneberger, 2015) proposed the U-Net, a DCNN 
especially designed for segmentation of biomedical 
images (around 75 layers). The architecture consists 
of “a contracting path to capture context” and a 
“symmetric expanding path that enables precise 
localization”. The network beat other competitors in 
the ISBI challenge for segmentation of neuronal 
structures in electron microscopic stacks. Finally, the 
DeepLabV3 network (Chen, 2017) that we 
experiment with uses Resnet-18 encoder and applies 
some new techniques to improve the quality, 
including Atrous Spatial Pyramid Pooling (ASPP) 
(Lin, 2017), capturing objects at multiple scales, and 
Conditional Random Fields (CRF) for improved 
localization of object boundaries using probabilistic 
graphical models. We obtained some of the best 
results using this network (Porwal, 2019). 

3 SEGMENTATION NETWORKS 
AND METRICS 

3.1 Segmentation Networks 

As already mentioned before, segmentation networks 
have two well distinguished parts, the encoder, most 
frequently an existing CNN encoding architecture, 
and a decoder that reinstates the full image size, and 
the pixel classifier layer that assigns a score for each 
class to each pixel. DeepLabV3, with a rough sketch 
shown in Figure 3, is a very successful segmentation 
network. Our design for DeepLabv3 shown in Figure 
3 includes well-known Resnet-18 CNN classification 
network as encoder and benefits from the innovations 
that include Atrous Spatial Pyramid Pooling (ASPP) 
(Lin, 2017), which enables better segmentation at 
multiple scales, and Conditional Random Fields 
(CRF), which improve definition of contours in final 
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result. The network accepts as input the full EFI 
image and outputs the classification for each 
individual pixel as belonging to a specific lesion or 
not. The fact that it classifies all individual pixels end-
to-end at the same time in one pass (typically taking 
a few milliseconds to classify all pixels at once) 
makes it the perfect tool for segmentation, as 
compared with any CNN that would output an 
accurate classification of a single pixel but would not 
scale well. Since backpropagation learning is applied 
end-to-end with segmentation masks as targets, the 
network actually learns how to segment images based 
on the groundtruths. DeepLabV3 is about 100 layers 
deep. Figure 4 shows the architecture of FCN, another 
well-known network architecture that uses VGG16 
instead and has a total of about 50 layers. 

 
Figure 3: DeepLabV3. Figure 4: FCN. 

3.2 Limitations of Metrics 

Most works on EFI analysis, and in particular in 
segmentation of lesions in EFI images, frequently 
report metrics such as sensitivity, ROC curves and 
AUC. But in some circumstances, those metrics can 
bias the analysis in the context that is being 
considered. As we already reviewed in the related 
work, Zhang (Zhang, 2014) mentions: “given that the 
classes are clearly unbalanced, TP, FN and FP are in 
practice negligible with respect to TN, therefore 
computing the specificity, i.e. TN/(FP+TN), and 
therefore ROC (Receiver operating characteristic) 
curve does not seem appropriate”. The TN mentioned 
by Zhang refers to the true negatives represented by 
the background, which composes 90 to 95% of all 
pixels in the EFI. The background is much easier to 
segment than the rest of the objects because it is fairly 
constant and huge, and the problem is that such huge 
number may mask the real quality of segmentation of 
lesions. Looking at the formulas of some popular 
metrics we can see that specificity and false positive 
rate (FPR) will both score very well “always” in the 
EFI segmentation context due to that bias, and 

therefore ROC curves and AUC using FPR are also 
problematic:  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ 𝑇𝑁𝑇𝑁 ൅ 𝐹𝑃 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 ሺ𝐹𝑃𝑅ሻ ൌ 𝐹𝑃𝐹𝑃 ൅ 𝑇𝑁 
 

ROC: a function usually based on TPR vs FPR 
 
There is also a potential limitation with the metric 
sensitivity, also known as recall or TPR if it is used 
alone:   𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ 𝑟𝑒𝑐𝑎𝑙𝑙 ൌ 𝑇𝑃𝑅 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑁 

In this case the limitation is that it does not consider 
false positives (FP), meaning that a situation with a 
huge number of FP could still have high sensitivity. 
FPs are common because background pixels are 
sometimes classified as a lesion since parts of the 
background can resemble a lesion in colour or other 
details. Evaluations using sensitivity versus false 
positives (FP) solve this problem, as also does the use 
of IoU (intersect-over-the-union) or the pair recall + 
precision, because in those cases FPs are considered:  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑃 

𝐼𝑜𝑈 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑁 ൅ 𝐹𝑃 

The last part of our experimental work concerns 
precisely the analysis of the FP problem, revealing 
that there are still important limitations of the 
approaches due to a significant amount of FP. Future 
work should try to handle that problem.   

4 EXPERIMENTAL RESULTS 

For this investigative work we work with two 
datasets. On one hand we use the publicly available 
dataset IDRID dataset (Porwal, 2019), with 83 Eye 
Fundus Images (EFI) and groundtruth pixelmaps, 
where most images have a large number of instances 
of each specific lesion. To increase the variety and 
size of the training data we introduced data 
augmentation in the training process, with random 
translations of up to 10 pixels. For the comparison 
with prior works to be based on the same dataset and 
evaluation approach, we use DIARET-DB1 dataset 
(Kauppi, 2007). DIARET-DB1 consists of 89 color 
fundus photographs collected at the Kuopio 
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University Hospital, in Finland (Kauppi et al., 2007). 
Images were captured with the same fundus camera, 
a ZEISS FF450plus digital camera with a 50-degree 
field-of-view. Images all have a definition of 1500 x 
1152 pixels. Independent markings were obtained for 
each image from four medical experts. The experts 
were asked to manually delineate the areas containing 
microaneurysms (or ‘small red dots’), hemorrhages, 
hard exudates and cotton wool spots (a.k.a ‘soft 
exudates’) and to report their confidence (< 50 %, ≥ 
50 %, 100 %) for each segmented lesion.   

We initially obtain performance scores for 
DeepLabV3, FCN and even U-Net to choose 
DeepLabV3 as the main contender for comparison 
with prior Works. Then we report the results of 
DeepLabV3 compared to results with prior works 
(Gondal, 2017), (Quellec, 2017), (Orlando,2018) 
regarding quality of segmentation. After showing that 
DeepLabV3 improves compared with those 
approaches, we use visual and metric approaches on 
the first dataset (IDRID) to show the limitations 
related to FP and the need for more work improve the 
approaches further. 

For all networks the SGDM learning optimization 
function was used, with learning rate 0.005 that 
allowed the networks to converge to a classification 
of all lesions. Training used 300 epochs, since all 
networks would stabilize much before that, minibatch 
sizes of 32, momentum of 0.9. In terms of hardware, 
we used a machine running windows 10. The 
hardware was an intel i5, 3.4 GHz, 16 GB of RAM 
1TB SSD disk. A GPU was added to the PC, 
consisting of an NVIDEA GForce GTX 1070 GPU 
(the GTX 1070 has a Pascal architecture and 1920 
cores, 8 GB GDDR5, with memory speed of 8 Gbps).  

Our first experiment intended to pick the 
segmentation network that would exhibit best results 
using IDRID. Figure 5 compares three networks. 
FCN had very good accuracy and IoU (90%, 88%), 
DeepLabV3 was also quite good, always > 75%, and 
both exhibited improvements over U-Net. We will 
show later on (Table 3) that IoU scores per lesion are 
much worse than these metrics shown in Figure 5, 
which is related to the need for a careful interpretation 
of metrics. Accuracy measures the fraction of pixels 
that were classified well versus all pixels, and 
weighted IoU measures the degree of correct overlap 
of regions. These metrics usually score very high 
when averaged over all pixels simply because the 
background is huge and most of it is well segmented 
because it is fairly constant (eye fundus).    

 
Figure 5: Comparing FCN, DeepLabV3 and U-Net. 

4.1 Comparing Lesion and  
Image-Level Sensitivities to Prior 
Works 

Table 1 shows the results we obtained concerning the 
comparison of lesion-level sensitivities between our 
approach and those in (Gondal, 2017) and in 
(Quellec, 2017). These results were obtained using 
the connected components model of evaluation 
(Zhang, 2014) with similar conditions as used in the 
compared works. The sensitivities are measured 
against the number of false positives per image (FPI), 
and both should be considered in the analysis of 
results. Note that we used the approach in (Quellec, 
2017) where FPIs can differ because they are 
obtained against the class classification threshold (0 
to 1). Since only thresholds in the interval 0.1 and 0.9 
with 0.1 steps are tested, only some values for FPI are 
obtained, and from those, one is chosen that allows 
easy comparison, as much as possible.  

In general these results show that sensitivities 
vary significantly between works and varied between 
50 and 87% for HE, 47 and 94% for HE, 71 and 90% 
for SE and 21 and 61% for RSD, also depending on 
the number of FPI to consider.  

They show that DeeplabV3 actually improves 
scores for most lesions, i.e. for HA, HE and SE, while 
for MA the results seem worse than (Orlando, 2018) 
but inline with the results of the remaining prior work 
compared. 

Table 2 compares image-level detection of lesions 
for referral, DeepLabV3 ranks first in HA and SE and 
also ranks well in HE and MA. We can also see that 
this is a quite easy problem for any technique, since 
the objective is only to tell whether there is any lesion 
of a certain type in the whole EFI image, without the 
need to locate any precisely. 
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Table 1: Comparing lesion-level sensitivities. 

Method Hemorrhages Hard Exudates Soft Exudates RSD 
(micro-aneurisms) 

 SE% FPs/I SE% FPs/I SE% FPs/I SE% FPs/I 
(Quellec, 2017) 71 10 80 10 90 10 61 10 
Gondal, 2017) 72 2.25 47 1.9 71 1.45 21 2 

(Orlando, 2018) 50 1     50 1 
Ours 87 10 94 2.76 87.5 3.92 48 6.4 

 
Table 2. Image-level sensitivities. 

Method HA HE SE MA 
(Zhou, 2016) 94.4 - - - 
(Liu, 2017) - 83 83 - 

(Haloi, 2015) - 96.5 - - 
(Mane, 2015) - - - 96.4 

(Gondal, 2017) 97.2 93.3 81.8 50 
Ours 100 90 87.5 71 

4.2 Limitations Revealed using 
Semantic Segmentation Metrics 

In spite of good comparative results when measured 
using the connected components model (Zhang, 
2014) that is used in most works on segmentation of 
lesions in EFI, we also found that a large number of 
false positives appears if we try to obtain higher 
scores for lesions (sensitivities), especially apparent 
if we evaluate in the perspective of semantic 
segmentation. While in the connected component 
model overlaps between segments are evaluated and 
50%, 20% or any overlap at all are considered 
matches, in “semantic segmentation” each pixel must 
be assigned the exact class to which it belongs and 
groundtruths should be pixelmaps with, as much as 
possible, the exact class of each pixel. Since the 
groundtruths of the IDRID dataset (Porwal, 2019) are 
near to this concept where each pixel is assigned its 
class, the next experiment evaluates based on this 
principle. Figure 6 shows, on the left, the groundtruth 
segments superimposed on the image, for FCN and 
for DeepLabV3, and on the right the corresponding 
segmentations. Many FP are apparent on the right, 
more so in DeepLabV3. 

Taking the segmentation masks of the same image 
on FCN, Figure 7 shows, on the left image, the real 
groundtruth mask for the lesions and optic disk, and 
the right image shows lesions and optic disk pixels 
that were not detected. We can see that only a very 
small fraction of all lesions (which corresponds to 
around 2.2%) were undetected, which is a very good 
result. This corresponds to high sensitivity (SE). 
If we analyze IoU of each class (each lesion plus the 
optic disk and the background), it reveals the 

deficiencies of segmentation outputs. Those results 
shown in Table III reveal that the background and 
optic disk have high IoU scores, but the lesions, have 
low IoU scores, between 19 and 38%. 

This is also seen visually in Figure 8, showing the 
groundtruth labels (a) and the background false 
positives (b), which are background pixels classified 
as lesions. The total area of those false positives is 8% 
of all image pixels or around 100% of all lesions plus 
optic disk pixels. This agrees with the large amounts 
of FP previously in the outputs of segmentation in 
figure 6. The conclusion is that more work is 
necessary in the future to improve and filter out false 
positives.  

 

 
Figure 6: Comparing groundtruths with outputs: Deeplab 
and FCN. 

 

(a) Groundtruth (b) Undetected Lesions 
(2.2%) 

Figure 7: FCN detections of lesions. 
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4.3 Conclusions from Experiments 

It is a common misconception that segmentation of 
eye fundus lesions already achieves almost 100% 
quality, and this misconception is supported by the 
way metrics are used and also by the interpretation of 
the task. One example is to consider partial overlaps 
(e.g. > 10%) as detected lesion, versus measuring 
precise degree of overlap (semantic segmentation). 
Our experiments show that a simple segmentation 
network scores very high and higher than prior work 
in the tasks using those loose interpretations, but still 
has serious difficulties correctly segmenting small 
lesions using the semantic segmentation 
interpretation (e.g. 21 to 32% IoU for small lesions). 
As a conclusion, further work is necessary in the 
future to improve the approaches. 

Table 3: Per-class IoU. 

Class IoU FCN IoU Deeplab 
Background 88 83 
OpticDisc 75 70 

SoftExudates 35 32 
Haemorrhages 38 32 
HardExudates 26 26 
Microaneurs 19 21 

 

(a) Groundtruth (b) FP~=100% of lesions 
area 

Figure 8: FCN false positives. 

5 CONCLUSIONS 

In this work we have studied the problem of accurate 
segmentation of Eye-Fundus-Lesions. We have 
proposed and evaluated carefully the use of deep 
segmentation networks, in particular DeepLabV3 and 
FCN, concluding that the proposed approach 
improves when compared with previous work. But 
we also highlighted some limitations of current 
approaches, which are  revealed mostly if we evaluate 
the quality of semantic segmentation and use false 
positives revealing metrics, such as IoU. We also 
explain why we need to be careful with some metrics, 
such as specificity, ROC or AUC in the context of 

segmentation of lesions in EFI, and what sensitivity 
alone does not reveal. In our future work we will 
experiment more with loss functions and filtering out 
false positives as some post-processing step, but also 
improvements in architectures to deal with small 
lesions.        
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