
Towards a Formalisation of Expert’s Knowledge for an Automatic
Construction of a Vulnerability Model of a Cyberphysical System

Witold Klaudel and Artur Rataj
IRT SystemX, Palaiseau, France

Keywords: Security Modelling, Cyberphysical System, Attack Graph, Graph Algorithm, Probability.

Abstract: We present a method for a quantitative formulation of the knowledge of security experts, to be used in an
evaluation of attack costs in a cyberphysical system. In order to make the formulation practical, we classify
the attacker forms and its attack positions. Applying boiler-plate patterns, like that of an operating system,
is also possible. The obtained cost model may allow an exhaustive analysis of hypothetical weaknesses,
employed in the design phase of a critical system.

1 INTRODUCTION

Estimation of vulnerabilities of computer systems
(Best et al., 2007; Gao et al., 2013) and in particular
cyberphysical systems (CPS) (Al-Mohannadi et al.,
2016) is a current topic due to the growing number of
critical applications such as autonomous cars. Yet, we
find that there is a lack of methods for formalising ex-
pert’s knowledge into a quantitative form in order to
produce an abstract vulnerability model, as opposed
to one representing concrete vulnerabilities.

There is a number of schemes of security estima-
tion (Everett, 2011) and attempts to systematise them
(Dubois et al., 2010) which, in the case of informa-
tion technology, result in labelling of hardware and
software components with differently understood se-
curity levels (Matheu-García et al., 2019). Such labels
represent a confidence and are often a statistical esti-
mation of possible future vulnerabilities, and not a set
of concrete fatalities. Thus, they do not allow a model
of concrete exploits but an approximation of poten-
tial vulnerabilities, which is a form chosen in our ap-
proach. As opposed to frameworks like (Ekstedt et al.,
2015), our method is not intended to perform searches
for known security bugs. Such bugs, if known by the
expert, would instead decrease the estimation of pro-
tection quality of corresponding security barriers. We
find that modelling of concrete vulnerabilities, while
essential for security audits, is of a limited utility in
the phase of a product design. Consider for example
a widely-known remote attack on the steering wheel
of a car (Miller and Valasek, 2015) where there was
a port open to everyone on a cellular network, giving

access to a critical D-bus functionality. If this weak-
ness had been known to the security expert, he would
probably never have accepted it. Otherwise, being un-
known, the weakness would not be part of the model
anyway.

In order to facilitate the formalisation of expert’s
knowledge and make it reusable, we classify differ-
ent security aspects, such as the attacker’s state, his
attack position or privileges of functions. Combined,
they can form different attack scenarios. For example,
having three changing attacker forms {malware, bad
data, non-availability} we may already model a mal-
ware which injects an infected package into an update
system. This, combined with attack positions, can be
used to model e.g. a security key stolen from the up-
date server. We also hierarchically classify functional
components and communication protocols, so that the
quantified knowledge can be a reusable asset not per-
taining only to a single analysed system.

We focus on security, but as we support different
states of the attacker, the method can also be applied
to safety estimation. For example, a failing sensor
might be seen as an "attack" initiated by an element
producing abnormal data or becoming unavailable.

The structure of the paper is as follows: we start
with a study of related work in Sec. 2. In Sec. 3
we discuss how the input model is translated into a
graph of visibility between functions (Sec. 3.3) which
is subsequently enhanced by the combined classifica-
tions (Secs. 3.4). This leads to a graph of costs (Sec.
3.5). Section 4 provides an example and Sec. 5 con-
cludes the paper.

Klaudel, W. and Rataj, A.
Towards a Formalisation of Expert’s Knowledge for an Automatic Construction of a Vulnerability Model of a Cyberphysical System.
DOI: 10.5220/0010207003910398
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 391-398
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

391

2 RELATED WORK

As the presented method is a workflow from model
specification to attacks graphs, we divide the related
work in a similar manner.

2.1 Models

Model-based engineering (MBE) defines the devel-
opment procedure from ideas to product (here, a
CPS) and is a proven approach to abstraction and
modularisation (Kossiakoff et al., 2011) which in-
creases understanding and thus facilitates analysis
(Eppinger et al., 1994). The lowest practical ab-
straction for model specification are formal automa-
tons, like Markov processes or probabilistic timed au-
tomata (Beauquier, 2003). It is a flexible but some-
times tedious way of defining custom systems. For
example (Hildmann and Saffre, 2011) study the pres-
ence of malicious strategies in a distributed system
of energy production with a model specified directly
in the language of Prism (Kwiatkowska et al., 2011).
This gives access to a vast set of properties calcula-
ble in Prism, but is paid by a potentially high cost of
a manual model creation. An example of a formal-
ism at a higher level of abstraction is the language
AADL (Feiler and Gluch, 2012) dedicated to con-
current systems. (Ibrahim et al., 2020) applied it to
model objects as different as a nuclear power plant or
a vehicular network system. However, AADL does
not explicitly support attack costs or probability, thus
finding of basic properties of interest here is not sup-
ported. Many custom approaches exist. For example,
a modelling software Securicad (Ekstedt et al., 2015)
uses its own model representation, which operates on
lists of concrete, predefined attacks (also possible in
our framework, but not discussed here).

2.2 Attack Graphs

An attack graph (AG) is a formal representation of
possible attack paths in a system (Sheyner et al., 2002;
Zeng et al., 2019; Jha et al., 2002). A node in an
AG may represent not only attacker’s position but a
general system state (Sheyner et al., 2002). An edge
represents a unitary attack step (Zeng et al., 2019);
edges are typically directed, which may express an
asymmetry of attacks costs, depending on which of
the two nodes is the attacking one.

An AG can also be represented as an automaton
[15]. AADL, and a number of other architectural
languages, have toolchains which allow translation to
such automata – the mentioned (Ibrahim et al., 2020)
translates its models to Lustre (Pilaud et al., 1987), for

which model checking tools exists. In (Ekstedt et al.,
2015) AGs use a custom representation where costs
are represented by probabilities and delays.

3 PROPOSED WORKFLOW

The workflow starts with a graph of functions and
their interactions. It should also be completed with in-
formation resulting from the physicality of the model:
kernels and routers should also be present as func-
tions, even if they do not normally make part of a
pure functional architecture. Routing rules, and thus
the resulting network visibility, should be known.

We will start with a function definition (Sec. 3.1).
Then we describe completion of the functional inter-
action with system-level interactions (Sec. 3.2) and
the so-called intercepting attacks (Sec. 3.3). Finally,
we propose an interpretation which uses the classifi-
cation in question (Sec. 3.4) which, accompanied by
vulnerability costs, allow the generation of an attack
graph (Sec. 3.5).

3.1 Functions and Dependencies

Functions are calculating entities. Each is of some
class like for example PosixCriticalApp. Classes
are proposed and precised as a consensus between ex-
perts which facilitates a coherent estimation of vul-
nerabilities. A more fine-grained classification is
possible if increased precision is desired. For ex-
ample, there might be need for a refinement of a
general class PosixCriticalApp by introducing its
two subclasses: of a simple proxy HttpBasicProxy
and of a proxy with advanced security mechanisms
HttpEnterpriseProxy.

Dependencies between functions are defined by
functional interactions (FI). A FI joins ports of two
functions and is directed which conveys a dependency
in a producer-consumer relation. An FI has a specific
protocol class. Ports have individual names which de-
fine their roles. For example, an interaction https has
two port named client and server. Communication
via an FI must be realised by some infrastructure (like
the kernel of an operating system and/or a network
router).

See that the direction of a FI may be independent
from the roles of ports. For example, a server of geo-
graphical data with malware may infect its client and
thus, it would be the client which is a dependent con-
sumer. Similarly, the server, if put out of order, may
cause a cascading unavailability in a tree of recursive
consumer functions which directly or indirectly de-
pend on the server. But the functional dependency

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

392

may also be opposite if the same protocol is used:
consider a HTTP client which infects a database via
a HTTP server. A bidirectional service is represented
by two parallel opposing FIs and depicted by a single
line with two arrowheads.

We model an operating system by adding a kernel
function, discussed in detail in Sec. 3.2. In order to
model processes (as understood in POSIX-compliant
operating systems or in Autosar (Fürst et al., 2009))
functions can be grouped into a process. A process
may have additional vulnerabilities due to decreased
security measures, like the presence of a common
memory.

3.2 System Interactions

System interactions (SI) model boiler-plate vulnera-
bilities which result from traits of operating systems
or hardware. Because these traits are repetitive (e.g. a
kernel can practically always kill a user process) our
method adds them to the model using predefined tem-
plates.

Details of determining SIs depend on the organ-
isation (presence of an operating system etc.) in a
physical entity, further called a terminal. A terminal
can represent a multitude of hardware, like a machine
running a cartography server, a battery control mod-
ule, a network switch or even a simple sensor. Each
function is associated with some terminal. Let us dis-
cuss some examples of organisation within a terminal.

Kernel-based Operating System. To model such a
system, we use the template illustrated in Fig. 1 which
shows all potentially possible candidates for SIs. The
candidates are checked against actual physical links
and routing rules in the model. The ones which are
actually realisable become SIs. Protocols of SIs are

K

U Rx/
kernel

x/
kernel

x/
user

x/
root

x/
network

x/
app

x/
app

x/
user

x/
root

x/
network

k1

x/k
1

x/k1

x/k2

x/k1

x/k2

x/k
1 x/k1

K
k2

x/k 2

U Ux/
kernel

x/
kernel

x/
app

x/
app

x/
pro

c x/proc

x/k
1 x/k1x/k

1 x/k1

x/proc
x/proc

link

terminal terminal
process

x/k1

Figure 1: A template for system attacks within an operating
system with a kernel: K is a kernel, U a user application
and R a user application with root privileges, interactions
are depicted with arrows and decorated with protocols.

named after the scheme x/〈kernel class〉 where the
prefix x/ denotes a special protocol uniquely for sys-

tem interactions, as opposed to function–specific pro-
tocols of FIs. The naming scheme reflects that the
quality of the kernel is a primary factor in deciding
about the cost of system attacks in a computer system
managed by that kernel.

The template in Fig. 1 reflects several common
traits of an operating systems:

• a compromised K may easily attack U or R, e.g.
by killing them or by watching their memory - it
is represented by ports x/kernel;

• as opposed to R, K is a managing software which
thus controls ports belonging to any application
in its system, which adds to K’s vulnerability by
making it listen to the network and is represented
by its ports x/network;

• any application may attack the kernel via the API
of the latter (ports x/user); normally these attacks
tend to be very expensive as they rely on e.g. un-
patched kernels which should be rare in critical
systems;

• R may attack U thanks to its root privileges (ports
x/app);

• due to common resources, functions within a pro-
cess have additional ways of attacking one another
via ports x/proc.

An example of filtering of canditates for SI: R (from
the left computer system in Fig. 1) is limited by local
routing rules (if K is not compromised) and thus the
respective SI between R and U is not always realis-
able.

No Kernel. An embedded system often consists of
a set of functions without a kernel which would other-
wise protect one function from another. This lack of
routing rules results in a total local visibility of ports
within the set. To generate SIs, the same template is
used as before (Fig. 1), but all functions are R (have
root privileges) and the name of the kernel class in
protocol definition is empty.

Other templates similar to that in Fig. 1 can be
added, e.g. to model hypervisors.

3.3 Visibility Graph

A visibility graph V is an intermediate structure be-
fore the construction of an attack graph which com-
pletes it with costs. In V nodes are functions and
edges are the so-called visibility vectors (VV), de-
rived from FIs, SIs and the so-called interception in-
teractions (II) (introduced at the stage of V) represent-
ing the interception attacks (like man-in-the-middle).

Towards a Formalisation of Expert’s Knowledge for an Automatic Construction of a Vulnerability Model of a Cyberphysical System

393

A VV is a one-hop directed adjacency between
a function f1 and a port p of a function f2 and can
be interpreted as a potential unitary step within an at-
tack. The attacker at f1 must see p via at least one of
possible means, like a network route or a system call.
This is true for SIs, thanks to the filtering of SI can-
didates. As of FIs, any FI without the visibility of p
of the interaction’s consumer makes the whole model
ill-defined, because functional interactions, being part
of the system by design, must by principle be also be
physically realisable. All VVs are additionally dec-
orated with a further discussed attack position of the
attacker.

At most two VVs are derived from an interaction:

• a forward attack, from the interaction’s producer
to its consumer;

• a reverse attack, from the consumer the producer;
does not exist for IIs, as in their case, by defini-
tion, the attacker is already at the source; reverse
attack are often unviable, e.g. if the source port is
physically not receiving any information.

Actual viability of an attack via a VV depend on fur-
ther discussed attack costs which are specified as infi-
nite or non-existing if an attack is not viable (the latter
quality differs from the former only in disallowing the
presence of associated interactions which in turn im-
proves finding errors in model specification).

During the construction of a V , IIs are searched
for by exhaustively checking each FI for its possible
interceptions, the condition being the visibility of the
FI’s producer or consumer port by an intercepting at-
tacker. We do not repeat the process for SIs, as the
attacker never attacks a SI from the side, because if
such an interaction were possible, it should already
be introduced directly to a respective template as an-
other SI.

In order to differentiate attack costs more finely,
each VV has a class determining the attacker’s attack
position (AP). Let us define a physical communica-
tion path (PCP) as an (unordered) set of all termi-
nals which may potentially take part in the transport
of data of an FI, including the host terminals of two
concerned peer functions. Depending on the physi-
cal position of the attacker, we divide VVs into the
following classes:

• AP S (source): attacker is at one of the two end
points of the attacked interaction; thanks to this,
he may e.g. steal the security keys more easily
and use them on the other peer; all VVs derived
from FIs and SIs are of the class S, because the
other classes model only intercepting attacks;

• AP P (path): concerns only IIs; a man-in-the-
middle-scheme where the attacker function is in

a terminal belonging to PCP of a FI to be attacked
and the function is also a kernel (thus, a network-
managing function) and therefore it may listen to
and easily intercept the routed interaction;

• AP A (access): concerns only IIs; not of the class
P, but (by definition of a VV) the target (attacked)
port is seen; the attacker has a smaller number of
possibilities, it may though perform e.g. a DOS.

In case of an II, the attack difficulty always includes
both the intercepting attack on a respective FI and a
subsequent attack on a peer function of the FI.

A compromised kernel, due to its privileges, may
have several impersonation capabilities (here under-
stood as posing as another function) which may trick
other functions, in particular kernels which manage
the routing rules. We put a line here concerning the
impersonation limits which, while not perfect, seems
simple and reasonable to us: the impersonation in
question may work around routing rules in remote
terminals (like a network router), as a kernel may
set/alter a network packet’s origin data (MAC etc.) as
it wishes and routing hardware typically controls just
that. Conversely, the impersonation cannot give an
attacker a better AP, even if the compromised kernel
makes it seem that it is a peer of an FI or a router on
a PCP, because:
• an advantage of AP S is associated with confiden-

tial information in a VV’s peer of the function
to attack, and here we assume that it cannot be
stolen if the attacker has merely an AP of class P
or A (which does not always hold – consider e.g.
(Mavrogiannopoulos et al., 2012) where a func-
tion stores secure data in the kernel);

• similarly, an advantage of AP P stems from the ac-
tual physical position of the attacker, which can-
not thus be replaced by impersonation.
The line in question would not work if a peer

within a FI authenticated its other peer only via the
packet’s origin data. In that case, an impersonation
would help in gaining advantages of the AP S. We
assume, however, that it is an unlikely practice in a
critical system.

3.4 Compromised States

We augment the modelling with variable states of the
attacker. This will allow further fine-tuning of costs.
Namely, the attacker, during its propagation through
the system, puts functions into different compromised
states (CS):
• malware (M) where the attacker is a live code;
• bad data (B) where the attacker hides in a passive

blob of data;

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

394

• unavailability (N) where the attacker disables a
function.

B should be used only in specialised cases: the idea
is, that the attacker stealthy uses a legal (i.e go-
ing via functional dependencies) transmission mech-
anism which can be relatively cheap if it replaces ex-
pensive compromise of all functions on the same path
into M. An example might be the update system,
transporting a compromised binary via a number of
proxies, or a faulty speed sensor reporting an invalid
speed (see that only in the former case a final tran-
sition from B to M seems likely). If the mechanism
does not exist or cannot be clearly evaluated for some
protocol, the attacks which include the B state should
be impossible (which is specifiable via a non-existing
attack cost).

In order to justify the function states, we present
an interpretation of the resulting attacks types, shown
in Fig. 2. The interpretation is arbitrary and does not
preclude other interpretations from being compatible
with the further presented verification methods. In
particular, it is also arbitrary that costs of some edges
are equated to 0 in the figure, which denotes an ex-
tremely easy attack.

As illustrated in Fig. 2, CSs can be mapped to the
elements of the CIA triad. VV’s AP divides them fur-
ther into six categories in total (only in the attacking
function, as it is where AP plays a role). The cate-
gories Ms and Mp belong, amongst others, to the com-
promised part of the triad, because a live code may
take advantage of e.g. a security key stolen from a
compromised interaction peer (AP S) or from eaves-
dropping (AP P) which may allow to e.g. prepare bad
data (Ms to B′, a primed CS denotes an attacked func-
tions).

path
(MITM)

access
(port visible)

M
fB'injection

BfB'
injection propagation

NfN'=0
n/a propagation

M
P
S

source

M{pa}M'
worm

M
{pa}B'

 injection

 M
aN' M

pN'=0

 DOS interception

m
al

w
ar

e
ba

d
da

ta
no

n-
av

ai
l.

FI, SI
II

B
'M

'
w

a
ke

-u
p

MfM'
worm

M
fN'damage

k
p NkN'

no kernel routing

p

A
I

attacker attacked

 edges of the cost graph

 edge of the visibility graph

 C

kernel on
path (MITM)

B
'N

'
p

a
n
ic

M
'N

'=
0

p
a
n
ic

source

source

Figure 2: Example of possible attack types, with interpreta-
tion. Also illustrates the transformation from V to C.

Let us add more detail to the interpretation of
edges depicted in the figure.

• From M:

– M{spa}M′ could be a typical worm;
– M{spa}B′ is a concealed injection of tainted

dangerous data;
– MsN′ could symbolise a panicked kernel or an-

other function forced into a non-active state;
– MpN′ is a physical blocking of an interaction,

which renders its functionally dependent con-
sumer inactive; it is an easy attack to perform
by e.g. a switch;

– MaN′ could be a DOS attack.

• From B: passive attacker cannot intercept an in-
teraction, thus only AP S.

– BsB′ is a further, passive propagation of bad
data, assumed to passes all easily all verifica-
tions, because it did so already when initially
injected (M{spa}B′); not possible for SI, be-
cause the transfer of bad data, as said, concerns
only legal mechanisms.

• From N: unavailability, by disabling infrastructure
may sometimes intercept an interaction.

– NsN′: attacker has once induced unavailabil-
ity, which then propagates by itself in cascade
via FIs due to recursively broken consumer–
producer dependencies;

– N p
k N′: a panicked kernel stops routing and thus

breaks all concerned interactions via IIs having
AP P.

• Inside the attacked function:

– B′M′: a wake-up of malware from a binary blob
into an active form (typical to update subsys-
tems);

– B′N′: malformed data consumed by a function
finally inactivates it; it is a passive equivalent of
MsN′;

– M′N′ is an in-application equivalent of M{s}N′.

A kernel manages network interfaces and inter–
process communication, thus compromising it causes
the following changes in visibility:

• M disables restrictions imposed by local routing
rules within a terminal, as this is the kernel which
controls them;

• N disables an activity of all local network inter-
faces, i.e. links from/to the respective terminal
can no more be used, except for further propaga-
tion of N.

Towards a Formalisation of Expert’s Knowledge for an Automatic Construction of a Vulnerability Model of a Cyberphysical System

395

3.5 Cost Graph

An attacker pays the cost of infiltrating a system. It is
represented by a cost graph C, that is, an AG where a
unitary attack step is decorated with a cost expressing
its difficulty. A cost graph is automatically derived
from the visibility graph by augmenting it with infor-
mation about CS: every node f (a function) in V is
transformed into three nodes in C: fM , fB and fN , in-
dexed with a respective CS; every edge (a VV) in V is
transformed into a set of edges joining the triplets, us-
ing the pattern in Fig. 2. We assume that the total cost
of an attack is a sum of costs of unitary steps. It may
be realistic if it is about monetary costs, but otherwise
it may require transforming functions in order to be
realistic.

3.5.1 Valuation of Costs

The following factors influence the cost:

• the combination protocol class/attacked port class
(e.g. http/client); this cost element is ex-
pressed in the number of stars from 0 to 5 with a
step of 1/4, representing the difficulty from very
easy to extremely expensive;

• a quality multiplier of the class of the attacked
function (one which contains the attacked port)
which is a real value with 1 being the neutral de-
fault; for example, a more costly database may
have a higher quality;

• attack position;

• CS of both the attacking and the attacked function:
see that the pair, together with the attack position,
determine the attack types enumerated in the in-
terpretation in Sec. 3.4.

All these factors are discrete and thus number of cost
values is finite and can be stored in a simple (cost)
table. Creating it might be, though, a rather involved
process due to its size. It is, however, a crucial ele-
ment of a realistic vulnerability modelling. The effort
is a formalisation of expert’s knowledge and thanks to
the generality of classes on the level of abstraction on
which we operate, such a table may serve as a gen-
eral library representing a consensus within a group
of security experts, reusable in a number of models.

Using the number of stars is intuitive but does not
reflect well summing of costs of unitary attacks. A
very easy attack of one star does not have as much as
1/4 costs of a four-star attack, but the ratio is likely
much larger. Thus, summing of four one-star attacks
cannot produce a value which represents a four-star
attack. To accommodate for that, if s is the number of

stars, q is the quality and c is the cost, let

c = exp(as)q

where a is the strength of the exponential growth to be
decided. For a = 1 which we use in the further exam-
ple, the ratio in question would be exp(4)/exp(1) ≈
20.

3.5.2 Artifacts of C

Because C should be static and reasonably small for
efficiency, the transition from V to C introduces cer-
tain artifacts to the modelling. Let us consider if they
are not too troublesome, comparing to the abstrac-
tions which have already been introduces (like the
quantisation to only three CS). Firstly, the division of
nodes when transforming V to C makes it possible for
DST to return to the already compromised function if
the respective CS is different from the original one.
It adds certain possibilities but also minor modelling
problems (further, the symbol y denotes ‘returning
to the same function’, and by viable we understand
possibly profitable for an optimal attacker):

• B y {M,N}: having passed in the past via a func-
tion as bad data was a secret operation not dam-
aging that node, thus it did not change the costs of
its future compromise into M or N, so no problem
with the evaluation of costs;

• N y {M,B} is never possible (see Sec. 3.4);

• M y N is not viable, because a direct attack M′N′

is cheap (Fig. 2);

• M y B is problematic cost-wise because it is
a reasonable assumption that an already com-
promised function would accept bad data at a
smaller cost; however, the only reason of trying
this would be a future attempt of infecting a non-
compromised function with the same bad data,
because just passing bad data between functions
compromised already is not viable; otherwise, i.e.
if there is a non-compromised function to be in-
fected, it means that the bad data must be prepared
well enough, which may at least partially justify
the higher cost in question.

The two visibility changes due to a compromised
kernel, discussed in Sec. 3.4, are realised in the static
C as follows: any additional visibility thanks to reach-
ing the state kM of a kernel k is reflected by respective
edges stemming from kM , and any visibility lost by
reaching kN is not reflected at all. Let us analyse po-
tential problems here:

• Lost visibility: Reaching kN means that the at-
tacker, from now on, can only passively propagate
unavailability, as its code does not exists anymore

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

396

(see the lack of edges in Fig. 2), yet by definition,
the lost of visibility does not affect such a propa-
gation (Sec. 3.4).

• Extra visibility: After reaching kM of a terminal
t, the routing rules are compromised which may
change t into a more permissive router. It is not re-
flected by the static C but neither does it produce
modelling artifacts, because taking advantage of
the increased permissiveness in the future is never
viable. For once, it never concerns attacks via FI,
as these have their legal paths so they do not need
the increased permissiveness. FIs entail in turn
confidentiality advantages of the B state (see the
description of BsB′ in Sec. 3.4). Neither it con-
cerns SI, as these can be impersonalised by an-
other SI attacking directly from kM . As of II, their
only advantage of AP P exists only on a PCP of a
FI, thus such II do not use the increased permis-
siveness as well.

4 EXAMPLE

Let us consider two attacks of a certain system. Both
begin in a function Attacker which exists in an at-
tacker’s terminal connected to the diagnostic port, and
end in F4. In the case of the first attack, F4 should
only be made unavailable, while the other attack must
infect it with malware. Let there be also a network
switch Router through which pass all FI with F3. The
costs table which produces C is not shown for brevity.

Bs

M
P
S

Ms
Mp
Ma

Ns
N k

p

Bs

M
P
S

Ms
Mp
Ma

Ns
N k

p

Bs

M
P
S

Ms
Mp
Ma

Ns
N k

p

Bs

M
P
S

Ms
Mp
Ma

Ns
N k

p

Attacker Router F3 F4

4.25

0

4.5

4.04.75 F2

F1

0

Figure 3: Paths for attacks: 1st (violet), 2nd (green). An-
gled edges depict intercepting attacks and are labelled with
the non-attacked function of the intercepted interaction. As
depicted in Fig. 2, arrowheads point to the target function
only with the precision of one of three compromised states,
while tails also take into account the attack position.

Fig. 3 illustrates example paths. We see that the
two respective attacks go via the same functions but
compromise them in a different way. In the case of the
second attack, after disabling the router, there is only
a zero-cost, passive propagation of unavailability: a

producer F1 cannot send data anymore via Router to
its consumer F3, which in turn makes the consumer
unavailable. The first attack cannot do this, as the at-
tacker’s malicious code must be transferred until the
end. Thus, malware is installed in subsequent func-
tions, with an intercepting attack on the interaction
F2→F3.

5 DISCUSSION

We have shown how a number of simple classi-
fications, like the attack position (Sec. 3.3) and
the classes of compromised states (Sec. 3.4) pro-
duce together a versatile and intuitive interpretation
(Sec. 3.4) which facilitates the quantification of secu-
rity experts’ knowledge.

Our further work includes a translation from a sys-
tem documentation given in the form of architectural
layers, as practices in the industry (Braga and Sztajn-
berg, 2004), in order to analyse real-life systems. We
will also support a probabilistic analysis on the basis
of a distribution of costs formed by opinions of sev-
eral experts.

REFERENCES

Al-Mohannadi, H., Mirza, Q., Namanya, A., Awan, I.,
Cullen, A., and Disso, J. (2016). Cyber-attack model-
ing analysis techniques: An overview. In 2016 IEEE
4th International Conference on Future Internet of
Things and Cloud Workshops (FiCloudW), pages 69–
76. IEEE.

Beauquier, D. (2003). On probabilistic timed automata.
Theor. Comput. Sci., 292(1):65–84.

Best, B., Jurjens, J., and Nuseibeh, B. (2007). Model-based
security engineering of distributed information sys-
tems using umlsec. In 29th International Conference
on Software Engineering (ICSE’07), pages 581–590.
IEEE.

Braga, C. and Sztajnberg, A. (2004). Towards a rewriting
semantics for a software architecture description lan-
guage. Electronic Notes in Theoretical Computer Sci-
ence, 95:149–168.

Dubois, É., Heymans, P., Mayer, N., and Matulevičius, R.
(2010). A systematic approach to define the domain
of information system security risk management. In
Intentional Perspectives on Information Systems En-
gineering, pages 289–306. Springer.

Ekstedt, M., Johnson, P., Lagerström, R., Gorton, D., Ny-
drén, J., and Shahzad, K. (2015). Securicad by fore-
seeti: A cad tool for enterprise cyber security man-
agement. In 2015 IEEE 19th International Enterprise
Distributed Object Computing Workshop, pages 152–
155. IEEE.

Towards a Formalisation of Expert’s Knowledge for an Automatic Construction of a Vulnerability Model of a Cyberphysical System

397

Eppinger, S. D., Whitney, D. E., Smith, R. P., and Gebala,
D. A. (1994). A model-based method for organizing
tasks in product development. Research in engineer-
ing design, 6(1):1–13.

Everett, C. (2011). A risky business: Iso 31000 and 27005
unwrapped. Computer Fraud & Security, 2011(2):5–
7.

Feiler, P. H. and Gluch, D. P. (2012). Model-based engi-
neering with AADL: an introduction to the SAE archi-
tecture analysis & design language. Addison-Wesley.

Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-
Biller, F., Heitkämper, P., Kinkelin, G., Nishikawa, K.,
and Lange, K. (2009). Autosar–a worldwide standard
is on the road. In 14th International VDI Congress
Electronic Systems for Vehicles, Baden-Baden, vol-
ume 62, page 5.

Gao, J.-b., Zhang, B.-w., Chen, X.-h., and Luo, Z. (2013).
Ontology-based model of network and computer at-
tacks for security assessment. Journal of Shanghai
Jiaotong University (Science), 18(5):554–562.

Hildmann, H. and Saffre, F. (2011). Influence of variable
supply and load flexibility on demand-side manage-
ment. In Proc. 8th International Conference on the
European Energy Market (EEM’11), pages 63–68.

Ibrahim, M., Al-Hindawi, Q., Elhafiz, R., Alsheikh, A., and
Alquq, O. (2020). Attack graph implementation and
visualization for cyber physical systems. Processes,
8(1):12.

Jha, S., Sheyner, O., and Wing, J. (2002). Two formal
analyses of attack graphs. In Proceedings 15th IEEE
Computer Security Foundations Workshop. CSFW-15,
pages 49–63. IEEE.

Kossiakoff, A., Sweet, W. N., Seymour, S. J., and Biemer,
S. M. (2011). Systems engineering principles and
practice, volume 83. John Wiley & Sons.

Kwiatkowska, M., Norman, G., and Parker, D. (2011).
PRISM 4.0: Verification of probabilistic real-time sys-
tems. In Proc. 23rd International Conference on Com-
puter Aided Verification (CAV’11), volume 6806 of
LNCS, pages 585–591. Springer.

Matheu-García, S. N., Hernández-Ramos, J. L., Skarmeta,
A. F., and Baldini, G. (2019). Risk-based automated
assessment and testing for the cybersecurity certifica-
tion and labelling of iot devices. Computer Standards
& Interfaces, 62:64–83.

Mavrogiannopoulos, N., Trmač, M., and Preneel, B. (2012).
A linux kernel cryptographic framework: decoupling
cryptographic keys from applications. In Proceedings
of the 27th Annual ACM Symposium on Applied Com-
puting, pages 1435–1442.

Miller, C. and Valasek, C. (2015). Remote exploitation of an
unaltered passenger vehicle. Black Hat USA, 2015:91.

Pilaud, D., Halbwachs, N., and Plaice, J. (1987). LUSTRE:
A declarative language for programming synchronous
systems. In Proceedings of the 14th Annual ACM
Symposium on Principles of Programming Languages
(14th POPL 1987). ACM, New York, NY, volume 178,
page 188.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., and Wing,
J. M. (2002). Automated generation and analysis of

attack graphs. In Proceedings 2002 IEEE Symposium
on Security and Privacy, pages 273–284. IEEE.

Zeng, J., Wu, S., Chen, Y., Zeng, R., and Wu, C. (2019).
Survey of attack graph analysis methods from the per-
spective of data and knowledge processing. Security
and Communication Networks.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

398

