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Abstract: Information geometry (IG) provides the characterization of the structure of statistical models from a 
differential geometric point of view. By considering families of probability distributions as manifolds with 
coordinate charts determined by the parameters of each individual model, the tools of differential geometry, 
such as divergences and metric tensors, provide effective means of studying their characteristics. The research 
undertaken in this paper presents a novel approach to the modelling study of information geometrics of a 
queueing system. In this context, the manifold of stable M/G/1queue is characterised from the viewpoint of 
IG, the Kullback’s divergence (KD) and J-divergence (JD) are determined. Also, it is revealed that the stable 
M/G/1 queue manifold has a zero 0 -Gaussian curvature a non-zero Ricci Curvature Tensor (RCT). Unifying 
IG with Queueing Theory enables the study of dynamics of queueing system from a novel Riemannian 
Geometry (RG) point of view, leading to the analysis of the stable M/G/1 queue, based on Theory of Relativity 
(TR). 

1 INTRODUCTION 

Information geometry (IG) has been widely applied 
in many research fields such as statistical inference, 
stochastic control and neural networks (c.f., Amari, 
1985) In other words, IG aims to apply the techniques 
of differential geometry (DG) to statistics. This 
means that IG’s main idea is to apply methods and 
techniques of non-Euclidean geometry to stochastic 
processes and probability theories. IG indicates that 
the use of an Euclidian geometry technique is useful 
to think of a family of probability distributions as a 
statistical manifold (SM). Moreover, IG has been 
adopted for the study of statistical manifolds (SMs), 
where the geometric metrics gave a new description 
of the probability density function which plays an 
important role in SM and can be regarded as the 
coordinate system.  

A manifold (c.f., Škoda, 2019) is a topological 
finite dimensional Cartesian space,  ℝ , where one 
has an infinite-dimensional manifold.  ℝ could be 
described merely as topological space (may be 
defined as a set of points, along with a set of 
neighbourhoods for each point, satisfying a set of 

axioms relating points and neighbourhoods). In 
addition, IG supports reasoning intuitively the 
description of SMs. Note that although figures can be 
visualised (i.e., plotted in coordinate charts), they 
should be thought of as purely abstract figures, 
namely, geometric figures. One may have a higher 
level of appreciation of the significant importance of 
IG (c.f., Nielsen, 2018). In Figure 1, the parameter 
inference 𝜃∧ of a model from data can be interpreted 
as a decision-making problem: One has to decide 
which parameter of a family of models 𝑀 = {𝑚ఏ}ఏఢ 
suits “best’’ the data, where Θ is the set of parameters 
{𝜃ଵ, 𝜃ଶ, . . , 𝜃} of the probability density function of 
the distribution of the geometric manifold. IG 
provides a differential-geometric manifold 
structure 𝑀  that is useful for developing decision 
rules. In (Amari, 1985), the exponential distribution 
families were investigated whilst (Dodson, 1999) 
studied some special exponential distributions such as 
the bivariate normal distribution, the Gamma 
distribution, the McKay distribution and the Frund 
distribution and revealed their geometric structures.  

In this paper, a study is undertaken of the 
geometric structure of the stable M/G/1 queue 

A. Mageed, I. and Kouvatsos, D.
The Impact of Information Geometry on the Analysis of the Stable M/G/1 Queue Manifold.
DOI: 10.5220/0010206801530160
In Proceedings of the 10th International Conference on Operations Research and Enterprise Systems (ICORES 2021), pages 153-160
ISBN: 978-989-758-485-5
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

153



manifold (QM) as well as finding its information 
matrix exponential (IME). The (IME) is a matrix on 
square matrices analogous to the ordinary exponential 
function. 

 

Figure1: Parametrization of a SM (c.f., Nielsen, 2018). 

It is used to solve systems of linear differential 
equations. In addition to that, the matrix exponential 
plays a crucial role in the theory of Lie groups (c.f., 
Hall, 2015). To our knowledge, there is only one 
research paper (c.f., Nakagawa, 2002), which studied 
the IG of a stable M/D/1 queues, where a geometric 
structure was introduced on the set of M/D/1 queues 
by employing the properties of queue length paths. 
This point of view motivated the novel track of the 
research of this paper linking IG with information 
matrix theories towards a new re-interpretation of the 
stable M/G/1 queue. In this context, by analogy to 
information theory (IT), the geometric approach 
adopted in this paper enables the study of invariance 
and equivariance of figures in a coordinate-free 
approach (n.b., by equivariance as a concept, it is 
meant when there is a group acting on a pair of spaces 
and there is a map from functions on one to the 
functions on the other (c.f., Kondor and Trivedi, 
2018). In the context of this paper, Ricci curvature 
(c.f., Nielsen, 2020) measures the deviation of the 
Riemannian metric (RM) from the standard 
Euclidean metric (EM) and how scalar curvature 
measures the deviation in the volume of a geodesic 
ball from the volume of an Euclidean ball of the same 
radius (c.f., Figure 2). 

 
Figure 2: Geometric representation of geodesics on curved 
surfaces (c.f., Norton, 2020). 

In IG, the Fisher information metric (FIM) is a 
particular Riemannian metric (RM), which can be 
defined on a smooth statistical manifold (i.e., a 
smooth manifold whose points are probability 
measures defined on a common probability space). It 
can be used to calculate the informational difference 
between measurements. The FIM measures closeness 
of the shape between two distribution functions, it is 
also proportional to the amount of information that 
the distribution function contains about the parameter 

of the probability density function of the SM. The 
focus of this work is foundational with the following 
list of its contributions: 
i) The FIM and its inverse as well as the FIM for the 

stable M/G/1 QM are introduced.  
ii) A novel 𝛼 (or ∇() )-connection (the 𝛼 −connection (c. f. , Dodson, 2005), maps each co

ordinate 𝜃 𝑜f 𝜃, 𝑖 = 1,2,3, … , 𝑛  to a value. In 
particular, the 1-connection (or, ‘exponential 
connection’) and the (-1) – connection (or, 
‘mixture connection’) of a stable M/G/1 queue 
manifold are devised. iii) The KD and the JD of a 
stable M/G/1 queue are determined. iv)The stable 
M/G/1 queue’s manifold could be considered to 
be incompressible or solenoidal, in which case 
any closed surface has no net flux across it (n.b., 
A flux is a vector quantity, describing the 
magnitude and direction of the flow of a substance 
or property c.f., Divergence Theorem by (c.f.,MIT 
Open Course Ware, 2010), which is the second 3-
dimensional analogue of Green’s Theorem stating 
that ‘If F is a vector field with continuous 
derivatives defined on a region D ⊆  𝑅ଶ with 
boundary curve C, then, the flux of F across C is 
equal to the integral of the divergence over its 
interior’). v) The exponential of the FIM for the 
stable M/G/1 queue is shown to be a solution of a 
differential equation of the form ௗ௫ ௗ௧ = Ax, where x 
is an n-dimensional vector and A is an nxn matrix.  
This paper is a major extension of a short paper by 

(Mageed and Kouvatsos, 2019) with the following 
contributions: 
• The determination of the Kullback Divergence 

and the J-divergence of the stable M/G/1 QM. 
• The proof that the exponential of the Fisher 

information matrix of the stable M/G/1 QM is a 
solution of a differential equation of the form ௗ௫ ௗ௧  = 
Ax. 
The main original contributions of this paper are 

described below. 
• The inclusion of the definitions of Gaussian and 

Ricci curvatures and their physical 
interpretations; 

• The proposed novel approach for the pioneer 
visualization of queueing systems via 
computational information geometry; 

• The development of a new quantitative approach 
(which hadn’t been discovered at the time we 
presented our UKPEW 2019;  

• The determination of new important links 
between classical queueing theory and other 
mathematical disciplines, such as IG, matrix 
theory Riemannian geometry and the Theory of 
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Relativity by providing for first time i) The full 
detailed derivations of the Gaussian curvature ii) 
The Ricci curvature tensor and iii) The full 
physical as well as the geometric interpretation of 
these new results;  

• The provision of a novel link between Ricci 
Curvature (RCT) and the stability analysis of the 
stable M/G/1 QM. 
The rest of this paper is organised as follows: 

Section 2 presents preliminary definitions associated 
with (IG). The FIM and its inverse as well as the 
Fisher information metric for a stable M/G/1 queue 
manifold are introduced in Section 3. The 𝛼(or ∇())-
connection of a stable M/G/1 queue manifold is 
obtained in Section 4. The KD and JD (c.f., Peng, Sun 
and Jiu, 2007) of a stable M/G/1 QM are obtained in 
Section 5. The structured proofs that the stable M/G/1 
queue manifold has a non-zero Ricci Curvature 
Tensor (RCT) is devised in Section 6. The 
exponential matrix analysis of a stable M/G/1 queue 
is obtained in Section 7. Conclusions and future 
research directions are included in Section 8.  

2 MAIN DEFINITIONS IN IG 

Definition 2.1: Statistical Manifold (SM).  𝑀 = {𝑝(𝑥, 𝜃)|𝜃ϵΘ} is called an SM (c.f., Li, Sun, Tao 
and Jiu, 2007) if x is a random variable in sample 
space 𝑋  and 𝑝(𝑥, 𝜃)  is the probability density 
function, which satisfies certain regular conditions. 
Here, 𝜃 = (𝜃ଵ, 𝜃ଶ, . . , 𝜃)ϵΘ  is an n-dimensional 
vector in some open subset Θ ⊂ ℝ୬ , and 𝜃  can be 
viewed as the coordinates on manifold M.  
Definition 2.2: Potential Function. The potential 
function Ψ(𝜃) (c.f., (2.1)) (c.f., Li, Sun, Tao and Jiu, 
2007) is the distinguished negative function of the 
coordinates alone of (ℒ(𝑥; 𝜃) = 𝑙 𝑛൫𝑝(𝑥; 𝜃)൯) and in 
a sequel, it will appear in the information geometric 
analysis of the M/G/1 queue manifold. 
Definition 2.3: Fisher’s Information Matrix 
(FIM). The FIM (or, Fisher’s metric) [ 𝑔 ] (c.f., 
Dodson, 2005) is given by the Hessian (the nxn 
matrix of the partial derivatives of the potential 
function Ψ(𝜃) with respect to the coordinates) i.e.,  ൣ𝑔൧ = ቈ ∂ଶ∂𝜃 ∂𝜃 ൫Ψ(𝜃)൯ , 𝑖, 𝑗 = 1,2, . . , 𝑛 (2.1)

with respect to natural coordinates. 
Definition 2.4: Inverse Matrix of Fisher’s 
Information Matrix (FIM). Given the FIM, the 

inverse matrix of [𝑔] is defined by (c.f., Dodson, 
2005). 

[𝑔]= ([𝑔 ]) )ିଵ = ௗൣೕ൧∆ , ∆= detൣ𝑔൧ (2.2)

The FIM for the manifold M is given 
in 𝜃 coordinates by the arc length function. (𝑑𝑠)ଶ =  𝑔,ୀଵ (𝑑𝜃)(𝑑𝜃) (2.3)

Definition 2.5: 𝜶 -Connection. For each 𝛼𝜖ℝ, the 𝛼 (or ∇() )-connection (c.f., Dodson, 2005) is the 
torsion-free affine connection with components: Γ,(ఈ) = (ଵିఈଶ )(𝜕𝜕𝜕(Ψ(𝜃))) (2.4)

where 𝛹(𝜃) is the potential function and 𝜕 = డడఏ. 
Definition 2.6: Kullback’s Divergence (KD), 𝑲(𝒑, 𝒒).  Assume 𝑝൫𝑥; 𝜃൯  and 𝑞൫𝑥; 𝜃൯  are two 
points on the manifold M, the Kullback’s divergence 𝐾(𝑝, 𝑞) (c.f., Li, Sun, Tao and Jiu, 2007) is defined 
by  𝐾(𝑝, 𝑞) = 𝐸ఏ 𝑙 𝑛 ൬൫௫;ఏ൯൫௫;ఏ൯൰൨=∫ 𝑝൫𝑥; 𝜃൯𝑙 𝑛 ൬൫௫;ఏ൯൫௫;ఏ൯൰ 𝑑𝑥 (2.5)

where 𝐸ఏ  stands for the expected value and the J-
divergence is defined by 

𝐽(𝑝, 𝑞) = ∫ 𝑙 𝑛 ቆ𝑝൫𝑥; 𝜃൯𝑞൫𝑥; 𝜃൯ቇቀ൫௫;ఏ൯ି൫௫;ఏ൯ቁ 𝑑𝑥  (2.6)

When the two 𝑝(𝑥; 𝜃)  and 𝑞(𝑥; 𝜃)  are close 
enough and by using Taylor’s formula, the following 
analytic (c.f., Li, Sun, Tao and Jiu, 2007) result holds:  𝐾(𝜃, 𝜃 + 𝑑𝜃) = 𝐽(𝜃, 𝜃 + 𝑑𝜃) =  12 (𝑑𝑠)ଶ 

where (𝑑𝑠)ଶ stands for the square of the arc length of 
the manifold. 
Definition 2.8: 
1. Under the 𝜃  coordinate system, the 𝛼 −curvature Riemannian Tensors,  𝑅(ఈ)  (c.f., Li, 

Sun, Tao and Jiu, 2007) are defined by  𝑅(ఈ) = ൣ൫𝜕𝛤௦(ఈ) − 𝜕𝛤௦(ఈ)൯𝑔௦+ ൫𝛤௧,(ఈ)𝛤௧(ఈ)− 𝛤௧,(ఈ)𝛤௧(ఈ)൯൧, 𝑖, 𝑗, 𝑘, 𝑙, 𝑠, 𝑡= 1,2,3, … . , 𝑛 

(2.7)

where 𝛤(ఈ) =  𝛤,௦(ఈ)𝑔௦, i,j,k,s = 1,2,...,n  
2. The  𝛼 − Ricci curvatures (Ricci Tensors)  𝑅(ఈ) 

are determined by (c.f., Li, Sun, Tao and Jiu, 
2007). 𝑅(ఈ) = 𝑅(ఈ) 𝑔, 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3, … . , 𝑛 (2.8)

3. The 𝛼 − sectional curvatures 𝐾(ఈ)  are defined 
by (c.f., Li, Sun, Tao and Jiu, 2007). 
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𝐾(ఈ) =  ோೕೕ(ഀ)()൫ೕೕ൯ି(ೕ)మ , 𝑖, 𝑗 = 1,2, … , 𝑛  (2.9)

Specifically, if 𝑛 = 2, the 𝛼 − sectional curvature 𝐾ଵଶଵଶ(ఈ)  = 𝐾(ఈ)  is called 𝛼 − Gaussian curvature and is given by (c.f., Li, Sun, 
Tao and Jiu, 2007). 𝐾(ఈ) =  ோభమభమ(ഀ)ௗ௧൫ೕ൯  (2.10)

4. The Ricci Tensor (c.f., Loveridge, 2016) is simply 
a contraction of the Riemannian Tensor (c.f., Li, 
Sun, Tao and Jiu, 2007).  

5. The Ricci curvature Tensor (RCT) (c.f., Rudelius, 
2012) of an oriented Riemannian Manifold M 
means the extent to which the volume of a 
geodesic ball on the surface differs from the 
volume of a geodesic ball in Euclidean space. 

6. The Ricci curvature (RCT) (c.f., Ollivier, 2010) 
contracts the evolution of volumes under the 
geodesic flow. When Ricci curvature is positive, 
then according to the Bonnet Myers theorem (c.f., 
Ollivier, 2010) the Riemannian manifold is more 
positively curved than a sphere and the diameter 
of the manifold is smaller. 

 
Figure 3: (RCT) describes how conical regions in the 
manifold differ in volume from the equivalent conical 
regions in Euclidean space (c.f., Thomas, 2015). 

Definition 2.9: 
1. Considering the linear system of differential 

equations  ௗ௫ௗ௧ = 𝐴𝑥  (2.11)

with x is an n-dimensional vector and A is an nxn 
matrix. It can be shown that (Gunawardena, 2006) the 
matrix exponential  𝑒 = ∑ !ஶୀ =  𝐼 + 𝐴 + మଶ! + ⋯ + ೖ! +.... (2.12)

is the solution of (2.11). 
2. If the characteristic polynomial of A is defined by Φ(𝛿) = det(A − δI) (2.13)
then, the set of eigen values of A will is defined to be 
(c.f., Gunawardena, 2006) the set of all the roots of 
the equation Φ(𝛿) = (𝛿) = det(A − δI) = 0  (2.14)
and corresponding eigen vectors x assigned to each 
eigen value 𝛿 are defined to satisfy the equation:  𝐴𝑥 =  𝛿𝑥 (2.15)

Another way to represent  𝑒  will be 

𝑒 = 𝑇 𝑒 𝑇ିଵ  (2.16)
where D is the diagonal matrix of eigen values of A, 
and T is matrix having of the corresponding eigen 
vectors of A as its columns (c.f., Gunawardena, 2006). 

3 THE FIM AND ITS INVERSE 
FOR THE STABLE M/G/1 QM 

According to (El-Affendi and Kouvatsos, 1983), the 
maximum entropy (ME) state probability of the 
generalized geometric solution of a stable M/G/1 
queue (c.f., Figure. 4), subject to normalisation, mean 
queue length (MQL), L and server utilisation, 𝜌(<1) 
is given by  

 

Figure 4: A Stable M/G/1 queue. 

𝑝(𝑛) = ൜ 1 − 𝜌, 𝑛 = 0(1 − 𝜌)𝑔𝑥 , 𝑛 ≥ 1                        (3.1)

where 𝑔 = ఘమ(ିఘ)(ଵିఘ) , 𝑥 =  ିఘ  and 𝐿 = ఘଶ ቀ1 +ଵାఘೞమଵିఘ ቁ (MQL of Pollaczeck-Khinchin Formula of a 
stable M/G/1 queue), 𝜌 = 1 – 𝑝(0) (server utilisation) 
and 𝐶௦ଶ (SCV of the service times). 

It clearly follows that 𝑝(𝑛) of (3.1) can be 
rewritten as 

𝑝(𝑛) =   ⎩⎪⎨
⎪⎧1 − 𝜌,   𝑛 = 02𝜌(1 + 𝜌𝛽1 − 𝜌 − 1)ିଵ(1 + 𝜌𝛽1 − 𝜌 + 1) ,   𝑛 ≥  0 ,   with 𝛽 =  𝐶௦ଶ (3.2)

Theorem 3.1. For the stable M/G/1 queue manifold, 
it holds that 
(i) The FIM is given by  

[𝑔] = ቌ ଵ(ଵିఘ)మ 00 ିଵ(ఉାଵ)మቍ (3.3)

(ii) The square of the arc length (i.e., Fisher 
Information Metric) is determined by (𝑑𝑠)ଶ= ( ଵ(ଵିఘ)మ)(𝑑𝜌)ଶ - ଵ(ఉାଵ)మ (𝑑𝛽)ଶ (3.4)

(iii) The inverse of Fisher Information Matrix is 
given by 

[𝑔] = 
ௗൣೕ൧∆  = ൬(1 − 𝜌)ଶ 00 −(𝛽 + 1)ଶ൰ (3.5)

Proof. Following (3.2), two cases would arise. 
Case I: For 𝑛 = 0 ,  𝑝(𝑛) = 1 − 𝜌 . Hence, the 
coordinate system is one dimensional satisfying 
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ℒ(𝑥; 𝜃) = 𝑙 𝑛൫𝑝(𝑥; 𝜃)൯ =  𝑙 𝑛(1 − 𝜌) ,𝜃 =  𝜃ଵ =  𝜌 
(3.6)

The potential function Ψ(𝜃)will be the standalone 
part of (- ℒ(𝑥; 𝜃))involving the coordinates, i.e., Ψ(𝜃) = −𝑙 𝑛(1 − 𝜌) (3.7)

Thus, 𝜕ଵ =  𝜕Ψ𝜕𝜌 = 11 − 𝜌 (3.8)

𝜕ଵ𝜕ଵ =  𝜕ଶΨ𝜕𝜌ଶ = 1(1 − 𝜌)ଶ (3.9)

FIM is given by [𝑔] = ቂడమஏడఘమ ቃ= ቂ ଵ(ଵିఘ)మቃ (3.10)

The inverse of the FIM is determined by [𝑔] = [𝑔]ିଵ = [(1 − 𝜌)ଶ]  (3.11)
Moreover,  Γଵଵ,ଵ(ఈ)  = ( ଵିఈ(ଵିఘ)య) , Γଵଵଵ(ఈ)= ଵିఈ(ଵିఘ) , Γଵଵଵ() =  ଵ(ଵିఘ) (3.12)

Following the same argument, the proofs of (ii) 
and (iii) follow. 

4 𝐓𝐡𝐞 𝜶(OR 𝛁(𝛂))-CONNECTION 
OF THE M/G/1 QM 

By definition (2.8), we have Γଵଵ,ଵ(ఈ) = (ଵିఈ)(ଵିఘ)య  (4.1)

Similarly, the remaining components are devised. 
Furthermore, after some lengthy calculations 𝛤111(𝛼) =  1−𝛼(1−𝜌) , 𝛤111(0) =  1(1−𝜌)  (4.2)𝛤ଶଶଶ(ఈ) =  − 1 − 𝛼(1 + 𝛽) , 𝛤ଶଶଶ() =  − 1(1 + 𝛽) (4.3)

The remaining components could be computed as 
above. Using the above derivations, the Ricci 
curvature of the stable M/G/1 QM can be devised. 

5 THE KD AND THE J-D OF 
STABLE M/G/1 QM 

Following (2.6), KD is expressed by 𝐾(𝑝, 𝑞) =  𝐸ఏ 𝑙 𝑛 ൬൫௫;ఏ൯൫௫;ఏ൯൰൨ = 

⎩⎪⎨
⎪⎧ 𝒍𝒏(𝟏 − 𝝆𝒑𝟏 − 𝝆𝒒),                                                                                        𝒏 = 𝟎

𝒍𝒏 ቆ𝟏 − 𝝆𝒑𝟏 − 𝝆𝒒ቇ ቆ𝟏 + 𝜷𝒒𝟏 + 𝜷𝒑ቇ [ቆ𝝆𝒒(𝟐 + 𝝆𝒒(𝜷𝒒 − 𝟏)𝝆𝒑(𝟐 + 𝝆𝒑(𝜷𝒑 − 𝟏)ቇ ቆ𝟏 + 𝜷𝒒𝟏 + 𝜷𝒑ቇ]𝑳, 𝒏 ≥ 𝟎 
(5.1)

where 𝐿 is MQL of Pollaczeck-Khinchin Formula of 
a stable M/G/1 QM. (5.1) 

Moreover, in a similar fashion, it could be seen 
that 𝐽(𝑝, 𝑞) = 𝐾(𝑝, 𝑞) + 𝐾(𝑞, 𝑝) = 0  (5.2)

Equation (5.2) presents a great contribution as it 
shows that the stable M/G/1 QM is incompressible or 
non-solenoidal, in which case any closed surface has 
no net flux across it. 

6 THE STABLE M/G/1 QM HAS A 
NON-ZERO RICCI 
CURVATURE (RCT) TENSOR 

In this section, it is revealed that the stable M/G/1 QM 
is developable (can be mapped onto the plane surface 
without distortion of curves: any curve from such a 
surface drawn onto the flat plane remains the same) 
and has a non-zero Ricci curvature, shortly written as 
(RCT) tensor (the M/G/1 QM is more positively 
curved than a sphere and the diameter of the manifold 
is smaller).  
Theorem 6.1. The stable M/G/1 QM.  
i) Has a zero 0-Gaussian curvature ii) Has a non-zero 
Ricci tensor 
Proof. Case i), by definition (2.10), part i), it is 
enough to show that the 𝛼 −Gaussian curvature 𝐾() = ோభమభమ(బ)ௗ௧൫ೕ൯ = 0  (6.1)

It could be verified that, 𝑅ଵଶଵଶ(ఈ) = 0  (6.2)𝑑𝑒𝑡൫𝑔൯ =  − ଵ(ఉାଵ)మ(ଵିఘ)మ ≠ 0. Hence, 𝐾() =  ோభమభమ(బ)ௗ௧൫ೕ൯ = 0, 
which proves the developability Case i) of stable 
M/G/1 QM. 

Case ii) To prove that the stable M/G/1 (QM) 
Ricci tensor is non-zero, one needs to show that the 𝛼 − RCs, 𝑅(ఈ) are given by(c.f., definition 2.8, part 2)  𝑅𝑖𝑘(𝛼) =  𝑅𝑖𝑗𝑘𝑙(𝛼) 𝑔𝑗𝑙, 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3, … . , 𝑛 
is non zero, which means that at least one of its 
components is non-zero. By (6.1),  𝑅11(𝛼) equals 𝑅ଵଶଵଶ(ఈ) 𝑔ଵଵ +  𝑅ଵଵଵଶ(ఈ) 𝑔ଵଶ +  𝑅ଵଶଵଵ(ఈ) 𝑔ଶଵ +  𝑅ଵଶଵଶ(ఈ) 𝑔ଶଶ 

 Engaging the same procedure as in (6.1), we have 𝑅ଵଵ(ఈ) = 𝑅ଵଶ(ఈ) = 𝑅ଶଶ(ఈ) = 0  (6.3)𝑅ଶଵ(ఈ) = − ଵ(ଵିఘ)మ  (6.4)

Hence, 𝑅ଶଵ(ఈ) ≠ 0  (6.5)
This proves Case ii). 
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As 𝜌 → 1,  𝑅ଶଵ() → −∞. This shows the significant 
impact of instability of the two dimensional M/G/1 
QM. This presents a novel link between Ricci 
Curvature (RCT) and the stability analysis of Queueing 
Systems. It is clear that  𝑅ଶଵ()  is a server utilization 
dependent function. To experiment more closely the 
impact of the server utilization, 𝜌 and the behaviour of 
the (RCT). It is observed by Figure 5 that the stability 
phase of M/G/1 QM enforces (RCT) to be a decreasing 
function in 𝜌, whereas in Figure 6, it can be seen that 
instability phase of M/G/1 QM enforces (RCT) to be 
an increasing in 𝜌. 

Figure 5. Figure 6. 

7 THE EXPONENTIAL MATRIX 
OF FIM OF STABLE M/G/1 QM 

Theorem 7.1. The exponential matrix of the Fisher 
information of the stable M/G/1 QM is a solution of a 
differential equation of the form ௗ௫ ௗ௧  = Ax. 

Proof. It has been proved earlier (c.f. Theorem 3.1) 
that the FIM of the stable M/G/1 queue manifold ൣ𝑔൧, 𝑖, 𝑗 = 1,2 is given by 

ൣ𝑔൧= ቌ ଵ(ଵିఘ)మ 00 ିଵ(ఉାଵ)మቍ   (7.1)

We write  [𝑔] = ቀ𝑎 00 𝑏ቁ , 𝑎 = ቀ ଵ(ଵିఘ)మቁ , 𝑏 =  ିଵ(ఉାଵ)మ  (7.2)

It follows that Φ(𝛿) = (𝛿) = det൫[𝑔] − δI൯ =det ቀ𝑎 − 𝛿 00 𝑏 − 𝛿ቁ = 0 . Hence, it holds that 𝛿ଶ −(𝑎 + 𝑏)𝛿 + 𝑎𝑏 =0, which implies that the eigenvalues 
are given by

  𝛿ଵ,ଶ = 𝑎, 𝑏. The diagonal matrix D is 
given by  𝐷 = ൬𝛿ଵ 00 𝛿ଶ൰  (7.3)

For 
  𝛿ଵ,ଶ = 𝑎, 𝑏 , the corresponding eigen vectors 

are ൫ଵ൯, ൫ଵ൯. Hence, 
T = 𝑇ିଵ = ቀ1 00 1ቁ  (7.4)

Hence, the exponential matrix of the FIM of the 
stable M/G/1 queue manifold is given by 𝑒= 𝑇𝑒𝑇ିଵ = ቀ𝑒 00 𝑒ቁ (7.5)

The result obtained in (7.5) shows that the 
exponential of the FIM of the stable M/G/1 queue 
manifold is a solution of a differential equation of the 
form ௗ௫ௗ௧ = Ax  (7.6)

8 CONCLUSIONS AND FUTURE 
WORK 

The stable M/G/1 QM is characterized from the 
viewpoint of IG, KD and J-D were determined. 
Moreover, the matrix exponential of information of 
the M/G/1 QM is devised. This paper opens a new 
ground for research linking queueing theory with 
many other mathematical disciplines such as 
information theory, differential geometry and matrix 
theory. Specifically, adding information geometric 
links with queueing theory enables the study of the 
dynamics of a queueing system from the Riemannian 
Geometric point of view (c.f., Amari, 1985) and (c.f., 
Dodson, 1999) and in turn, enabling the analysis of a 
queueing system based on the Theory of Relativity 
(c.f., Norton, 2020).  

This paper has introduced for the first time the 
FIM and its inverse and has also obtained the Fisher 
information metric for the M/G/1 QM.  

Moreover, a novel expression for 𝛼 (or ∇(α)) -
connection of the stable M/G/1 queue manifold was 
devised. In addition, the KD and the J-D of the stable 
M/G/1 queue manifold were devised. In this context, 
it was shown that the stable M/G/1 queue manifold 
can be described as compressible or non-solenoidal, 
in which case any closed surface has no net flux 
across it The latter, was justified by the Divergence 
Theorem of (c.f., MIT Open Course Ware, 2010), 
which states that the flux of a vector field across a 
closed boundary curve C is equal to the integral of the 
divergence over its interior. It is implied that, when 
the J-D is zero, any closed surface has no net flux 
across the M/G/1 QM. Moreover, it was revealed that 
the stable M/G/1 QM has a zero 0-Gaussian curvature 
and a non-zero Ricci Curvature Tensor. Finally, it 
was proven that the exponential of the FIM of the 
stable M/G/1 queue manifold is a solution of a 
differential equation of the form 𝑑𝑥 𝑑𝑡 = Ax. Specifically, 
the main original contributions of this paper are 
summarised below. 
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• The proposed new approach to visualize queueing 
systems via computational information geometry; 

• The establishment of new links between queueing 
theory and other mathematical disciplines such as 
information geometry, matrix theory Riemannian 
geometry and the theory of Relativity. 

• Providing a novel link between Ricci Curvature 
(RCT) and the stability analysis of the stable 
M/G/1 QM. 

• Having introduced several information geometric 
concepts, we have managed for first time to 
capture the M/G/1 queue as a manifold and 
analysed the M/G/1 QM by using information 
geometric methods. Consequently, classical 
Queueing Theory can be extended to become 
richer because of the application of IG.  

 
An exponential family or mixture family of 

probability distributions has a natural hierarchical 
structure. Orthogonal decomposition of such a system 
based (c.f. Amari, 2001) on information geometry. A 
typical example is the decomposition of stochastic 
dependency among a number of random variables. In 
general, they have a complex structure of 
dependencies. The orthogonal decomposition is given 
in a wide class of hierarchical structures including 
both exponential and mixture families. As an 
example, we decompose the dependency in a higher 
order Markov chain into a sum of those in various 
lower order Markov chains. 

Single-server, such as M/G/1 system is simple and 
can be utilized as preliminary models (c.f., Hamasha 
et al, 2016). Modelling of the systems state using 
Markov chain approach and queuing models provides 
a more rigid approach to better understand the 
dynamics of the service delivery system, which 
proposes a conceptual model using of Markov chain 
approach combined with M/G/1 queuing model to 
optimize general service delivery systems.  

Based on the above discussion, clearly the lost 
link is now uncovered by our novel approach as it 
reveals the significant impact of IG on Queueing 
Theory.  

The stability problem (Rachev, 1989) in queueing 
theory is concerned with the continuity of the 
mapping F from the set U of the input flows into the 
set V of the output flows. First, using the theory of 
probability metrics we estimate the modulus of F-
continuity providing that U and V have structures of 
metric spaces. Then we evaluate the error terms in the 
approximation of the input flows by simpler ones 
assuming that we have observed some functionals of 
the empirical input flows distributions. This shows 
the strength of our novel approach as it derives for the 

first time ever the exact stability and instability 
phases of the underlying M/G/1 queueing system. 

The beauty of our novel approach that 
revolutionizes Queueing Theory, is looking at a queue 
as a manifold, in which case, 𝛼 is considered as the 
parameter of curvature as well as being the connection 
parameter of the underlying stable M/G/1 QM. 

In other words, under a metric connection (c.f., 
Jefferson, 2018), parallel transport of two vectors 
preserves the inner product, hence their significance 
in Riemannian geometry. Any connection which is 
both metric and symmetric is Riemannian, of which 
there are generically an infinite number. However, the 
natural metrics on statistical manifolds are 
generically non-metric! Indeed, since only the special 
case 𝛼 = 0  defines a Riemannian connection ∇() 
with respect to the Fisher metric (though observe that ∇(ఈ) is symmetric for any value of 𝛼). While this may 
seem strange from a physics perspective, where 
preserving the inner product is of prime importance, 
there’s nothing mathematically pathological about it. 
Indeed, the more relevant condition, that every point 
on the manifold have an interpretation as a probability 
distribution. In general, (c.f., Lee, 1950), 
exponentiating a matrix corresponds to 
exponentiating each of its Jordan blocks. In fact, this 
interpretation also holds for any analytic function 𝑓 
applied to a matrix and not just 𝑒. Also, it may be 
useful to think of the matrix exponential as the 
"Solution to the System of Ordinary Differential 
Equations (ODEs)". 

Based on the contributions of this paper, there are 
several future research directions towards the new 
applications of information geometric queueing 
theory includes developing further advances on many 
existing queueing manifolds, such as the G/G/1 queue 
(c.f., Dodson, 2005 and Kouvatsos 1988) manifold 
and employing information geometrics on various 
statistical manifolds. 
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