
Synthesis of Non-homogeneous Textures by Laplacian Pyramid
Coefficient Mixing

Das Moitry and David Mould
School of Computer Science, Carleton University, Ottawa, Canada

Keywords: Texture Synthesis, Texture Blending, Laplacian Pyramids, Image Processing.

Abstract: We present an example-based method for generating non-homogeneous stochastic textures, where the output
texture contains elements from two input exemplars. We provide user control over the blend through a blend
factor that specifies the degree to which one texture or the other should be favored; the blend factor can vary
spatially. Uniquely, we add spatial coherence to the output texture by performing a joint oversegmentation
of the two texture inputs, then applying a fixed blend factor within each segment. Our method works with
the Laplacian pyramid representation of the textures. We combine the pyramid coefficients using a weighted
smooth maximum, ensuring that locally prominent features are preserved through the blending process. Our
method is effective for stochastic textures and successfully blends the structures of the two inputs.

1 INTRODUCTION

Texture is a key element in synthetic and modified
images, used to add detail and visual interest to a
rendered scene. Example-based synthesis algorithms,
including modern machine-learning based methods,
have been quite successful for stationary textures.
However, there has been comparatively less success
at non-homogeneous textures, where the texture’s ap-
pearance varies over the image plane. In this paper,
we describe a method for generating blends between
two input textures, where the degree to which one tex-
ture is favored over the other changes with spatial lo-
cation within the image. Our method is best adapted
to stochastic, unstructured textures.

Our method can be used directly for texture syn-
thesis, blending between two input exemplars, with
the output texture being applied to geometry in a
conventional rendering pipeline. However, in many
cases, it is not a priori obvious what texture might
be intermediate between two textures. Thus, another
possible application of our method is in texture de-
sign, allowing a texture artist to explore a space of
textures generated by mixing different exemplars.

Our method takes as input exemplars of stochastic
texture. For generating a large output of required size,
we use the method of Heitz and Neyret (Heitz and
Neyret, 2018) which employs histogram-preserving
blending. We can also use textures as input directly,
bypassing the histogram-preserving blending stage.

Once we have two textures of matching size, we
blend them within their Laplacian pyramid represen-
tations. Enforcing the same size on the two inputs
ensures that there is a one-to-one correspondence be-
tween the coefficients in the two Laplacian pyramids.
We mix the pyramid coefficients using a weighted
smooth maximum; the smooth maximum ensures that
strong features, manifesting as large coefficient mag-
nitudes, are preserved. By weighting the inputs ac-
cording to a user-controllable local blend factor, we
can control the degree of blending spatially.

As an optional final step, we can further increase
the heterogeneity of the texture blend by preserving
larger texture chunks. We conduct an oversegmen-
tation of the image plane using Simple Linear Itera-
tive Clustering (SLIC), and then for each segment, we
merge the inputs with a blend factor weighted towards
one or the other texture. The result has distinct frag-
ments of texture, as opposed to the more continuous
blend we would otherwise see.

This paper presents a framework for merging
stochastic textures with local control over the degree
to which one texture or the other is more promi-
nent. The outputs have features from both inputs, with
strong features being preserved in a perceptually ap-
pealing way. Supporting this work, this paper makes
the following technical contributions:
• Structural texture blending of stochastic textures,

using the smooth maximum to mix coefficients of
the Laplacian pyramid.

Moitry, D. and Mould, D.
Synthesis of Non-homogeneous Textures by Laplacian Pyramid Coefficient Mixing.
DOI: 10.5220/0010204601610168
In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 1: GRAPP, pages
161-168
ISBN: 978-989-758-488-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

161

• Adding texture heterogeneity through a joint
SLIC segmentation of both input textures.

• Use of a weighted smooth maximum for control-
lable and spatially varying texture mixing.

• An overall framework for synthesizing non-
homogeneous stochastic textures from exemplars.
Given exemplars, we use histogram-preserving
blending to generate full-size textures, then blend
them in a Laplacian pyramid representation.

In the remainder of the paper, we first discuss
background and related work, then move on to de-
scribing our algorithm in detail. We show results and
discuss some specific features of our output in Sec-
tion 4. We close in Section 5 and give some sugges-
tions for future work.

2 BACKGROUND

Early texture synthesis methods were based on ma-
nipulating structured noise, such as Perlin noise or
Worley noise. Such methods were ad hoc and dif-
ficult to generalize. Later example-based synthesis
methods were considered easier to control: example-
based texture synthesis aims at creating new tex-
ture images from an input sample, with both pixel-
based (Efros and Leung, 1999; Ashikhmin, 2001)
and patch-based (Efros and Freeman, 2001) methods
proposed. An early effort at example-based synthe-
sis by Heeger and Bergen made use of image pyra-
mids (Heeger and Bergen, 1995). More recently,
methods based on machine learning have received
considerable attention (Gatys et al., 2015; Sendik and
Cohen-Or, 2017).

Early work on non-homogeneous textures was
conducted by Zhang et al. (Zhang et al., 2003), who
blended binary texton maps from two inputs to create
a progression from one texture to the other. More re-
cently, both Zhou et al. (Zhou et al., 2017) and Lock-
erman et al. (Lockerman et al., 2016) gave methods
to construct a label map from a non-homogeneous ex-
emplar. Zhou et al. (Zhou et al., 2018) used genera-
tive adversarial networks to synthesize non-stationary
textures from a guidance map.

Heitz and Neyret proposed texture synthesis
through histogram-preserving blending (Heitz and
Neyret, 2018). We discuss this method in more detail
as it forms one stage of our own synthesis process.

Their method works as follows. They take in an
exemplar of a stochastic texture. They apply a his-
togram transformation so that the resulting texture’s
color distribution is a Gaussian. They then generate
a new texture sample by blending patches from the

Gaussianized exemplar; the key insight is that since
the patches have Gaussian histograms, the blending
can incorporate a function that preserves the same
Gaussian histogram in the output. Once the blended
texture is computed, the inverse histogram transfor-
mation can be applied to restore the original texture
distribution.

Their method then restores the original color
distribution, computing an optimal transport match-
ing (Bonneel et al., 2016) between the original tex-
ture colors and the Gaussianized colors. The overall
method is fast and effective, creating new texture that
resembles the exemplar. The method does not work
on structured textures, a drawback that our method
shares due to (a) our use of HPB in an early stage, and
(b) our use of Laplacian pyramid coefficient mixing,
ill-suited to merging dissimilar structured images.

We will make use of the smooth maximum func-
tion (Cook, 2010). The smooth maximum of two vari-
ables x and y is given by

g(x,y) = log(exp(x)+ exp(y)). (1)

When one of the inputs is much larger than the other,
the smooth maximum converges to the regular maxi-
mum. When the inputs are closer to equal, however,
the smooth maximum produces an output larger than
either. The function is designed to avoid any sudden
discontinuity in behaviour as the values of the inputs
change. We use a variant of the smooth maximum for
mixing coefficients in the Laplacian pyramid repre-
sentation of the textures.

3 ALGORITHM

We present an algorithm for blending two input tex-
tures. The process follows these steps:

• We establish our inputs, often synthesized from
exemplars using histogram-preserving blending.

• We compute the Laplacian pyramid of each tex-
ture. We then compute a merged pyramid by mix-
ing the corresponding coefficients at every level
in the input pyramids, using a weighted smooth
maximum to find the output coefficient. The out-
put pyramid is then collapsed to create an output
texture.

• Optionally, we oversegment the output plane, then
blend with a fixed blend factor within each seg-
ment. This step creates macroscopic regions that
strongly favor one texture or the other, increasing
the texture heterogeneity.

• The Laplacian pyramid is done in greyscale only.
We determine a color for each pixel, choosing one

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

162

input color or the other, based on which texture’s
Laplacian coefficients more influenced this pixel’s
intensity.

In the following subsections, we describe each of
these steps in greater detail.

3.1 Histogram Preserving Blending

We take in two texture samples, A and B. We then
use histogram-preserving blending (HPB) (Heitz and
Neyret, 2018) to generate textures A′ and B′ each of
the desired output size. We will then blend A′ and
B′ using the Laplacian pyramid. The use of HPB al-
lows us to generate many distinct textures from a sin-
gle pair of examplars.

3.2 Blending Coefficients

We compute the Laplacian pyramids LA′ and LB′ of
inputs A′ and B′ respectively. We aim to compute an
output pyramid LR, blending the coefficients of LA′

and LB′ using a weighted smooth maximum function.
The weights are controlled by a blend factor t and by
an estimate of the texture activity level. The smooth
maximum prioritizes the larger coefficient, so weight-
ing by texture activity presents a higher-contrast tex-
ture with larger-magnitude coefficients from over-
whelming the other texture.

The blend factor 0 ≤ t ≤ 1 indicates the desired
proportions of the two inputs. It can be be a constant
over the image, or a field over the image plane. We
typically show results with t as a function of horizon-
tal distance: t = 0 at the left-hand image edge, rising
linearly to t = 1 at the right edge.

We estimate the strength of each texture from the
root mean squared (RMS) average of the coefficients
at each pyramid level. We then average the RMS
scores at each level, weighted by the blend factor;
this average influences the weighted smooth maxi-
mum used in the coefficient mixing. More formally,
the output coefficients are computed using a weighted
smooth maximum. For inputs x and y, with weights
p and q respectively, we formulated the weighted
smooth maximum as follows:

SM(x,y, p,q) =
1√

pq+ ε

(
ln(exp(px)+ exp(qy)−1)

)
.

(2)

When p > q, the result will tend more towards x;
when p < q, the result tends towards y. We subtract
one from the sum of the exponentiated inputs to re-
move upward bias: when both inputs are zero then
the output will also be zero. The small value ε guards
against division by zero.

Given Equation 2, we need to decide on suitable
weights. It would be natural to simply use the blend
factor as the weight: texture A would have weight
(1− t) and texture B would have weight t. However,
suppose one texture had greater variability than the
other, hence generally larger coefficients. This texture
would dominate and its features would show through
the relatively lower-amplitude texture, even when the
blend factor indicated otherwise.

We normalize the coefficients of each pyramid
level according to their root mean square. Let gl and
hl be the RMS of level l’s coefficients for A′ and B′

respectively. The normalization factor a is then com-
puted as follows:

al = (1− t) ·gl + t ·hl . (3)

The value al is the average of the two input RMS val-
ues, weighted by the blend factor t. Consider a to be a
target amplitude, governing the amplitude of the out-
put texture. We then assign coefficient weights based
on the ratio of a to each texture’s RMS, as follows:

pl = al/gl (4)

ql = al/hl (5)
We calculate final weights p′l and q′l in Eqn. 6 and

Eqn. 7. Notice that t is in effect included twice: once
to compute the local normalization factor in Eqn.3
and once to blend between the normalized coeffi-
cients. The weights p′l and q′l will be used to do our
final coefficient mixing.

p′l = pl · (1− t) (6)
q′l = ql · t (7)

Finally, we compute each output coefficient
LR

l (x,y) at level l as follows. Each level of the resul-
tant Laplacian pyramid LR will be constructed with
the resultant merged coefficients.

LR
l (x,y) = Ψ×SM

(∣∣∣LA′
l (x,y)

∣∣∣ . ∣∣∣LB′
l (x,y)

∣∣∣ , p′,q′
)
(8)

In the preceding, the variable Ψ ∈ {−1,1} is the
sign of the coefficient which has the larger absolute
value after weighting. Combining all the levels of
LR, we form an output image merging the textures A′

and B′. The blended greyscale image exhibits features
of both inputs, distributed depending on the map of
blend factor values t.

An example result is give in Figure 1, show-
ing blending between two textures for different fixed
blend factors. In this example, the blend factor t is
fixed at a single value over the entire image plane.For
small t, the output resembles the first input; as t ap-
proaches 1, the output resembles the second input.

Synthesis of Non-homogeneous Textures by Laplacian Pyramid Coefficient Mixing

163

Intermediate values of t show elements from both in-
puts, without the unappealing blurring of features that
is characteristic of alpha blending.

Figure 1: Texture blending with fixed t. Above: t = 0.0,
t = 0.2, t = 0.4. Below: t = 0.6, t = 0.8, t = 1.0.

3.3 Recoloring

Above, we compute the Laplacian coefficients of the
greyscale image. Attempting to merge three sets of
coefficients in a 3D colorspace yields unsatisfactory
results. In this step, we finalize our texture by adding
color.

Each output pixel is governed by h coefficients,
where h is the height of the Laplacian pyramid. We
compare each coefficient in the output pyramid with
the corresponding coefficients in the pyramids of the
two inputs. We assign a score of +1 if the output co-
efficient is nearer to the first input’s coefficient, and
−1 otherwise. For each output pixel, we take the sum
of the scores of the relevant coefficients. This can be
thought of as a voting mechanism: if the final score is
positive, the first input has greater influence, and if the
score is negative, the second input has greater influ-
ence. Then, maintaining its intensity, we assign to this
pixel the color of the higher-influence input. Repeat-
ing over all pixels, we can color the entire output tex-
ture. Note that individual coefficient scores need not
be calculated repeatedly, but can be computed once
and saved in a data structure paralleling the Laplacian
pyramid, with the coloring being implemented as a
specialized form of pyramid collapse.

3.4 Additional Heterogeneity

We close by describing an optional step to increase
output heterogeneity. With the above, we are able to
create gradual blends between textures. However, in-
termediate texture structures may not be desirable; in
many natural examples of mixed textures, there are
distinct regions where one texture type or the other is

dominant. Consider, for example, a stone face with
occasional plant growth, or a pavement partly cov-
ered by snow, or an old car door with peeling paint.
In these cases, there are areas where one texture is
prevalent and areas that favor the other.

Accordingly, we suggest creating a spatial struc-
ture that helps assign values to the local blend factor.
We apply an oversegmentation to the image plane,
and within a given segment, we will favor one tex-
ture or the other. We will still interpolate between our
two inputs; now, the choice of which texture to fa-
vor will be determined by the location of the region,
such that the majority of regions on the left will be
assigned to the first input, and the regions on the right
will be predominantly assigned to the second input.
More formally, for a normalized distance t across the
horizontal dimension of the image plane, we assign a
segment the probability 1− t of favoring the first in-
put, and probability t of favoring the second.

The oversegmentation itself is computed taking
into account both inputs. We perform a joint SLIC
segmentation (Achanta et al., 2012) of the two in-
puts: recall that SLIC operates in a distance+color
5D space, and we amend it now to use two color dis-
tances, one for each input, weighted by the local blend
factor. Formally, the SLIC distance is given by

D(x,y) = sqrt((x− x0)
2 +(y− y0)

2

+(1− t)||C1(x,y)−C1(x0,y0)||
+ t||C2(x,y)−C2(x0,y0)||

for input color textures C1 and C2 and a region cen-
troid located at x0,y0. The choice of SLIC for the
segmentation ensures approximately equal-sized re-
gions throughout the image plane. Incorporating the
color distance for both input textures allows the re-
gion boundaries to take into account texton shapes.
Figure 3 provides a visual example of the region
boundaries obtained for two sample inputs.

Once the coefficients are blended, we keep only
the blended coefficients within the original SLIC seg-
ment boundary from the bounded square. We discard
the rest since the bounded square was created only for
generating the Laplacian pyramid. The coefficients
that were not discarded form a temporary pyramid
that can be collapsed to produce pixel values within
the segment. Once the pixel values within the seg-
ment have been computed, we discard the temporary
pyramid. This is done for all K of the SLIC segments.
The treatment of the Laplacian coefficients is akin to
that given by Paris et al. (Paris et al., 2011).

Figure 3 shows the region map with SLIC seg-
ments, showing how the input textures will dis-
tributed. The regions shown in blue will be populated
primarily with the first input and the white regions

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

164

Figure 2: Comparison of results with and without oversegmentation-based heterogeneity. First and last images: input textures.
Centre left: continuous blend. Centre right: blend with oversegmentation controlling blend factor.

Figure 3: Oversegmentation map. Blue regions will be pre-
dominantly one texture, white regions the other.

will be populated with the second.
Through this optional additional step we can add

further heterogeneity to the texture, giving a scattered
and irregular distribution of texture contents from
both inputs throughout the output image. While not
needed in all cases, this simple label map provides an
additional tool for creating a desired effect.

4 RESULTS AND DISCUSSION

Here, we discuss some results. Figure 4 shows re-
sults from our full pipeline, including histogram-
preserving blending. Figure 5 shows results on arbi-
trary inputs, omitting the histogram-preserving blend-
ing step in favor of using the exemplars directly. Fig-
ure 6 shows a result from blending two textures with
a hand-drawn map. Finally, Figure 7 shows a fail-
ure case from applying our technique on highly struc-
tured brick texture. We discuss each of these figures
in more detail below.

Figure 4 shows several results of structural tex-
ture blending. Consider first the topmost blend in
Figure 4. The textures are dissimilar: the rock is
largely isotropic, while the fur exhibits strong direc-
tionality. However, the texture structures merge ef-
fectively, with fur structures giving way to higher-
frequency roughness and vice versa. The reader is
invited to look closely at the blended region near the

lower left of the image, where elements of both tex-
tures integrate particularly harmoniously.

For more similar inputs, the results are even more
convincing. Consider the blend in the second row in
Figure 4, showing a transition between two rock tex-
tures. The small-scale structures flow seamlessly into
one another; at some locations one texture dominates,
and at some locations another, but the continuity be-
tween structures is excellent. The use of smooth max-
imum ensures that a strong feature is not lost unless it
is covered by an even stronger feature. Examples of
good local transitions abound.

The third row shows a blend between two distinc-
tive colors. Here, we did not use oversegmentation;
the blend factor changes linearly from left to right.
The textures merge seamlessly, with features from
each integrating nicely. There is no ghosting as would
have been produced by alpha blending.

The fourth row shows an oversegmentation-based
blend between granite and lava textures with dissim-
ilar structures and similar colors. The result is good
structurally. The color mixing is plausible, partially
due to the compatibility of the inputs.

The fifth row shows a blend between two textures
dissimilar both in structure and in color. The overseg-
mentation produces islands of one color or the other.
Although the colors do not blend neatly here, the re-
sult admits a semantic interpretation of water sinking
into sand. This result shows the limitation of our color
blending process in the oversegmentation context and
points the way towards future work.

Figure 5 shows two results from blending in-
puts directly, without the step of histogram-preserving
blending to create new texture. None of the textures
shown could have been recreated with histogram-
preserving blending. In the top row, we see a mix
of stone and grass textures. The result scatters small
patches of greenery across the grey stone. The tex-
ture suggests a rough surface throughout, occasion-
ally covered but not concealed by a veneer of plant
life. In the bottom row, we see a complex stone face
merge with lichens. Again, the structural preservation

Synthesis of Non-homogeneous Textures by Laplacian Pyramid Coefficient Mixing

165

Figure 4: Texture blending results using histogram-preserving blending to generate inputs. Left column: input 1; middle
column: blended output; right column: input 2.

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

166

Figure 5: Sample results with arbitrary inputs. Left column: input 1; middle column: blended output; right column: input 2.

Figure 6: Controlling the blending factor with a handmade
map. Above: two inputs. Lower left: visualization of map.
Lower left: blended texture.

Figure 7: Failure case on structured inputs. The blended
output exhibits significant ghosting artifacts.

is good, with the lichens seeming to conform to the
shapes in the stone. In both examples, we use over-
segmentation, with a blend factor favoring the left in-
put on the left side of the output, and favoring the right
input towards the right.

We typically blended textures with a blend factor
that varied smoothly from left to right. This was done
for consistency and for convenience of interpretation
rather than any technical limitation. Figure 6 shows a
result from blending two textures with a hand-drawn
map of blend factors. Despite the low level of simi-
larity between the input textures, we obtain a merged
texture with structural consistency across the texture
boundary.

In general, our method is effective within the do-
main for which it was intended: blending between
two stochastic textures, with local variation of the
blend factor. However, the features of regular tex-
tures are blended less plausibly. The bricks in Fig-
ure 7 provide an example. Of course, the brick tex-
tures could not have been recreated by histogram-
preserving blending in the first place.

Our method has other limitations. Our efforts at
normalizing the texture intensity were only partially
successful: when two textures with radically differ-
ent contrasts are blended, the results are not entirely
satisfactory. Future work will further investigate tex-

Synthesis of Non-homogeneous Textures by Laplacian Pyramid Coefficient Mixing

167

tures with very different levels of intensity variation.
Color restoration could also be improved. Compat-
ible palettes yield convincing results, but dissimilar
palettes are integrated less well. Better color blend-
ing, especially in conjunction with oversegmentation,
is a direction for future work. The sign of the output
coefficient (positive or negative) is decided separately
from the magnitude and is a binary outcome. While
generally effective for static textures, the process has
a discontinuity as the two input values become simi-
lar in magnitude, which could be a problem for future
efforts on dynamic textures.

5 CONCLUSIONS AND FUTURE
WORK

We presented a method for synthesizing textures in-
termediate between two exemplars. The degree of
blending can vary spatially, yielding inhomogeneous
textures if desired. Using the SLIC segments we were
able increase heterogeneity, preserving small coher-
ent regions of each texture.

Our process is applicable only for textures lacking
well-defined structures. It also has difficulty preserv-
ing long continuous features. However, for stochastic
textures with small features, our output textures look
realistic and natural. In future work, we would like
to consider additional factors, including local con-
trast and directionality. We would like to extend the
method to work well for more structured textures. We
would also like to use time as a factor in order to cre-
ate dynamic textures.

In this work, we treated all levels of the Laplacian
pyramid the same way. However, it might make sense
to investigate different treatments for different levels.
Depending on the texture, one level or another may
contain more of the structural content, and account-
ing for this in the merging could produce still bet-
ter blends. The example of Doyle and Mould (Doyle
and Mould, 2018) is instructive, albeit not in a texture
blending context.

ACKNOWLEDGEMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada. We thank
members of the Graphics, Imaging, and Games Lab at
Carleton University for many useful discussions dur-
ing the development of this work. Finally, thanks to
the reviewers for helpful comments.

REFERENCES

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
Süsstrunk, S. (2012). SLIC superpixels compared to
state-of-the-art superpixel methods. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(11):2274–2282.

Ashikhmin, M. (2001). Synthesizing natural textures. In
Proceedings of the 2001 Symposium on Interactive 3D
Graphics, I3D ’01, page 217–226, New York, NY,
USA. Association for Computing Machinery.

Bonneel, N., Peyré, G., and Cuturi, M. (2016). Wasserstein
barycentric coordinates: Histogram regression using
optimal transport. ACM Trans. Graph., 35(4).

Cook, J. D. (2010). Soft maximum.
Doyle, L. and Mould, D. (2018). Augmenting photographs

with textures using the Laplacian pyramid. The Visual
Computer, pages 1–12.

Efros, A. A. and Freeman, W. T. (2001). Image quilting for
texture synthesis and transfer. Proceedings of SIG-
GRAPH 2001, pages 341–346.

Efros, A. A. and Leung, T. K. (1999). Texture synthesis by
non-parametric sampling. In ICCV, volume 2, pages
1033–1038.

Gatys, L., Ecker, A. S., and Bethge, M. (2015). Texture syn-
thesis using convolutional neural networks. In NIPS
28, pages 262–270. MIT Press.

Heeger, D. J. and Bergen, J. R. (1995). Pyramid-based tex-
ture analysis/synthesis. In SIGGRAPH, SIGGRAPH
’95, page 229–238, New York, NY, USA. ACM.

Heitz, E. and Neyret, F. (2018). High-performance by-
example noise using a histogram-preserving blending
operator. Proc. ACM Comput. Graph. Interact. Tech.,
1(2).

Lockerman, Y. D., Sauvage, B., Allègre, R., Dischler, J.-
M., Dorsey, J., and Rushmeier, H. (2016). Multi-
scale label-map extraction for texture synthesis. ACM
Trans. Graph., 35(4).

Paris, S., Hasinoff, S. W., and Kautz, J. (2011). Local
Laplacian filters: Edge-aware image processing with
a Laplacian pyramid. ACM Trans. Graph., 30(4).

Sendik, O. and Cohen-Or, D. (2017). Deep correlations for
texture synthesis. ACM Trans. Graph., 36(4).

Zhang, J., Zhou, K., Velho, L., Guo, B., and Shum, H.-
Y. (2003). Synthesis of progressively-variant tex-
tures on arbitrary surfaces. ACM Trans. Graph.,
22(3):295–302.

Zhou, Y., Shi, H., Lischinski, D., Gong, M., Kopf, J., and
Huang, H. (2017). Analysis and controlled synthesis
of inhomogeneous textures. Computer Graphics Fo-
rum (Proceedings of Eurographics), 36(2):199–212.

Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D.,
and Huang, H. (2018). Non-stationary texture syn-
thesis by adversarial expansion. ACM Trans. Graph.,
37(4).

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

168

