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Abstract: Smartphones are increasingly being used for health monitoring. Training of machine learning health models
require studies in which smartphone sensor data is gathered passively on subjects’ phones. Subjects live their
lives ’In-the-wild” and periodically annotate data with ground truth health labels. While computational ap-
proaches such as machine learning produce accurate results, they lack explanations about the complex factors
behind the manifestation of health-related symptoms. Additionally, population-level insights are desirable
for scalability. We propose Population Level Exploration and Analysis of smartphone DEtected Symptoms
(PLEADES), a framework to present smartphone sensed data in linked panes using intuitive data visualiza-
tions. PLEADES utilizes clustering and dimension reduction techniques for discovery of groupings of similar
days based on smartphone sensor values, across users for population level analyses. PLEADES allows analysts
to apply different clustering and projection algorithms to a given dataset and then overlays human-provided
contextual and symptom information gathered during data collection studies, which empower the analyst in
interpreting findings. Such overlays enable analysts to contextualize the symptoms that manifest in smart-
phone sensor data. We visualize two real world smartphone-sensed datasets using PLEADES and validate it
in an evaluation study with data visualization and human context recognition experts.

1 INTRODUCTION

Health assessments are currently schedule-driven and
often infrequent. Smartphones provide a useful way
to monitor their users’ health status. They are ubiqui-
tous and come equipped with several sensors. Data
from those sensors have been used to infer health
markers such as Circadian Rhythms (sleep-wake cy-
cles) (Abdullah et al., 2017), depression (Gerych
et al., 2019; Saeb et al., 2015) and infectious diseases
(Madan et al., 2011). To create computational mod-
els that analyze user sensor data to make health in-
ferences, researchers need to conduct studies to col-
lect labeled datasets. In such studies, smartphone
sensed-data is passively gathered by an app on sub-
jects’ smartphones as they live their lives “in-the-
wild”. Periodically, subjects provide ground truth la-
bels on their health status by responding to health
and other contextual questions. Such health labels are
used to create supervised deep/machine learning clas-
sification models for future assessment of subjects.

Such an approach yields realistic but imperfect
data with missing ground truth labels and missing pe-
riods of data collection (Restuccia et al., 2017). The
streams of multi-variate data from multiple smart-
phone sensors are difficult to understand without pre-
processing. Due to these issues, the factors that
caused user-reported symptoms may not always be
clear. It may be useful to have some way of group-
ing similar objective smartphone sensor data together
and overlaying human provided symptom and context
information to create linkages between them that may
increase explainability. For instance, linking reports
of disruptions in circadian rhythms (sleep-wake cy-
cles) with late night time smartphone screen usage
patterns which have been shown to accurately detect
sleep and waking times (Abdullah et al., 2017).

For large populations of smartphone-sensed health
subjects (Vaizman et al., 2018; Wang et al., 2014),
data science analysts may find visualizations that link
human-reported symptoms to objective smartphone-
sensor data useful. For instance, visually linking
changes in user-reported sleep duration and quality to
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their smartphone-sensed sleep location (e.g. primary
residence [normal] vs. workplace [abnormal]) may
contextualize and explain their sleep patterns. Visual-
izations over longer periods may also be useful in sep-
arating one-off behaviors from patterns. For instance
visualizing disruptions in sleep along with mobility
patterns over long periods of time may help distin-
guish mentally healthy subjects who travel more and
thus have occasional sleep disruptions from mentally
ill people who primarily stay at one place and still
report sleep disruptions (Mendes et al., 2012). This
enables analysts to filter, select and label participants
with days that have potentially concerning symptoms
to generate classification models that can then be used
to assess other current or future participants.

Unsupervised clustering facilitates scalable visu-
alization and sense-making of large, multi-variate,
data by grouping similar data points (Cavallo and
Demiralp, 2018; Kwon et al., 2017). As the re-
sults of clustering algorithms are still in a high di-
mensional space, they can then be projected to be
more easily visualizable on two dimensional planes
using dimension reduction techniques. Examples in-
clude t-Distributed Stochastic Neighbor Embedding
(t-SNE) (Maaten and Hinton, 2008), Isomap (Tenen-
baum et al., 2000) and Multi-dimensional Scaling
(Mead, 1992), which can work with a large number
of data points and features. Clustering and project-
ing using dimension reduction is often an exploratory
process which can become overwhelming given the
large number of clustering and projection algorithms
(Cavallo and Demiralp, 2018; Kwon et al., 2017). It is
also important to keep track of the smartphone-sensed
features and human applied symptom and context la-
bels across different clustering results to assign asso-
ciations between them. For example, a cluster of days
with lower reported sleep quality may be explained
by higher night time smartphone usage. In addition,
there also needs to be some method of assessing the
role of each data feature with regards to the clustering
result to understand the differences between clusters.

We present Population Level Exploration and
Analysis of smartphone DEtected Symptoms
(PLEADES), a visualization framework that displays
smartphone-sensed data using multiple linked panes.
PLEADES enables analysts to flexibly select clus-
tering and projection algorithms, as well as features
which are used for clustering. It then computes the
clusters for all the study days across all selected
participants and presents the clustering results as hor-
izontally stacked bars, with the colors representing
the cluster and the width of each bar representing
the proportion of days in that cluster. The cluster-
ing results are then ordered by clustering quality

metrics such as silhouette score (Rousseeuw, 1987),
Davies-Bouldin score (Davies and Bouldin, 1979)
and Calinski-Harabasz score (Caliński and Harabasz,
1974). Being able to select only features relevant
to a given task may enable analysts to focus and
observe important patterns in specific categories of
smartphone-sensed behavior (e.g. mobility), reducing
the confounding effects of irrelevant features.

PLEADES also supports filtering study partic-
ipants, allowing analysts to compare the results
of multiple techniques across different populations,
providing more intuition than traditional non-visual
methods of exploratory data analysis. This en-
ables comparisons between sub-populations of partic-
ipants with very different smartphone sensor data for
clearer understanding of the semantic factors leading
up to differences that manifested themselves in the
smartphone-sensed data. For instance, frequent trav-
ellers will have different location signals than stay-
at-home people, and clustering days based on those
location features may allow analysts to identify these
groups and contextualize reported symptom data.

Specifically our contributions include:

• PLEADES, an interactive visualization tool that
facilitates flexible and reproducible population-
level exploratory data analysis of smartphone-
sensed symptom data using multiple clustering
and dimension reduction techniques and visualiz-
ing their results in multiple linked panes.

• Insightful walk-throughs of illustrative use cases
that demonstrate the utility of PLEADES to fos-
ter clearer understanding of in-the-wild collected
health related smartphone data.

• Evaluation of PLEADES with experts in smart-
phone sensed health and data visualizations.

2 RELATED WORK

2.1 Analyzing Smartphone Data

Smartphone sensed data has clues about user be-
haviors and health symptoms such as coughing and
sneezing caused by influenza (Madan et al., 2011)
and abnormal mobility patterns caused by mental ill-
ness (Mohr et al., 2017). Smartphone sensed data has
semantically important information and can be pre-
dictive of health. For instance, GPS trajectories have
been used to predict depression (Gerych et al., 2019;
Saeb et al., 2015; Canzian and Musolesi, 2015). Ab-
dullah et al. (Abdullah et al., 2017) used screen in-
teractions at night to detect disruptions in Circadian
Rhythms (sleep-wake patterns), which have health
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ramifications (Vetter, 2018). In StudentLife, Wang et
al. (Wang et al., 2014) used objective smartphone-
sensed data to assess students’ mental health and
their academic performance. Wang et al. (Wang
et al., 2020) collected social functioning measures and
smartphone sensor data, which they used to predict
the social functioning of patients with schizophrenia.

Much of the smartphone sensing research above
has focused on using machine learning to build pre-
dictive models. However, such approaches provide
limited explanations. Data visualizations can rep-
resent highly multivariate and complex smartphone
sensed data. Shen and Ma created MobiVis (Shen and
Ma, 2008), an interactive visualization tool that rep-
resented individual and group behaviors compactly
using the “Behavior Ring”, a radial metaphor. Mo-
biVis enabled visual data mining by semantic filtering
for analysis of “social-spacial-temporal” phone data.
Senaratne et al (Senaratne et al., 2017) used interac-
tive visualizations to analyze spatio-temporal similar-
ities in human movements using phone data. They
used matrix visualizations of the user movements. Pu
et al. (Pu et al., 2011) utilized voronoi-based maps
and parallel coordinates plots to visualize mobility
patterns across a large number of users.

These works show the usefulness of interactive
data visualizations to understand human movement
(an important facet of life), its variations and disrup-
tions. Our work adds to this field by using multiple
linked panes to overlay human reported symptom data
on objective sensor data to guide intuition during ex-
ploratory data analysis, to inform the building of ma-
chine learning classifiers. Moreover, our work visual-
izes not only mobility data but a more comprehensive
set of smartphone-sensed features including user ac-
tivity levels and screen interaction patterns.

2.2 Clustering Multivariate Data

Unsupervised clustering is a useful technique for
grouping similar data, facilitating exploratory anal-
ysis of large datasets. Clustering results are in a
high dimensional space and can be visualized after
using dimension reduction to project them onto a
2D plane. Such projection enhances interpretability
(Sacha et al., 2016). Analysts can use domain knowl-
edge to perform interactive tasks such as merging
and assigning data points to specific clusters for flex-
ible understanding (Wenskovitch and North, 2019;
Boudjeloud-Assala et al., 2016) as no computational
model can find a perfect solution that separates data
into meaningful clusters and account for all the com-
plexities in multi-feature data. Researchers have used
these techniques for data in domains such as social

media (Hoque and Carenini, 2015), bio-informatics
(L’Yi et al., 2015) and crimes (Fujiwara et al., 2019),
demonstrating their diverse applicability.

Tracking multiple iterations of clustering and
dimension reduction techniques can become over-
whelming. Kwon et al. (Kwon et al., 2017) cre-
ated Clustervision, an interactive visualization tool to
present ranked results across multiple dimension re-
duction and clustering algorithms for flexible anal-
ysis of multi-dimensional data. They projected the
clusters on a 2-D view, linked with contextual vi-
sualizations such as a parallel coordinates plot and
bar charts with information about the selectable data
points. Cavallo et al. (Cavallo and Demiralp, 2018)
created Clustrophile 2, a visual tool to perform Ex-
ploratory Data Analysis by tuning dimension reduc-
tion parameters and features. They introduce the
”Clustering Tour”, for exploratory data analysis, by
presenting data using visualizations like feature aver-
age heatmaps. Chatzimparmpas et al. (Chatzimparm-
pas et al., 2020) created t-viSNE, a visual analytics
tool to let users analyze the results of t-SNE for better
understandability of the results using multiple linked
panes with bar charts and parallel coordinate plots.

Our contribution is utilizing visual clustering and
projection techniques to a new domain namely com-
plex smartphone sensed data. For explanability, we
overlay human-supplied labels along with computed
semantic information such as presence of weekdays
and weekends over objective smartphone sensor data
to enable analysts to discover important relationships
in the data during early exploratory data analysis.

3 GOAL AND TASK ANALYSIS

We conducted a goal and task analysis with four
experts in generating machine learning models for
health predictions using smartphone-sensed data. The
experts wanted interactive analysis for early stage ex-
ploration before training and testing machine learn-
ing models. Interactive clustering and projection is a
powerful method for exploratory data analysis (Cav-
allo and Demiralp, 2018; Kwon et al., 2017; Chatzim-
parmpas et al., 2020). The experts wanted Population
Level information of study cohorts for scalability as
the size and scope of such studies increase. From this
view, they wanted the ability to drill down on specific
study participants. In this population-level view of the
data, they were interested in: 1) Viewing clustering
results and groupings of objective sensor data such as
clusters of days with higher mobility vs. clusters of
days with lower mobility etc. and 2) linking any cor-
responding human-provided context and symptom la-
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bels such as clusters of days with higher mobility also
having poorer overall sleep etc., that may help them
assign semantic information to the objective sensor
data. The analysts also suggested using a window of
24 hours (one day) to divide up the data per user as
human behaviors are strongly influenced by daily cy-
cles (Vetter, 2018). We summarize a list of goals that
the experts would have while analyzing such data and
the tasks to accomplish them:
Goal 1. Grouping similar participant days. Clearly
view groupings of days across multiple participants
that are similar in terms of objective sensor data such
as clusters with higher activity levels vs. sedentary
clusters etc.
• Task 1: Giving analysts the ability to select and

filter features for smartphone sensor data to be
considered for clustering, to analyze specific be-
haviors (e.g. smartphone-detected activity levels
or mobility patterns).

• Task 2: Applying clustering and then dimension
reduction techniques to effectively display similar
days on a two-dimensional plane. Different clus-
ters will be color-coded.

• Task 3: Display the results of multiple iterations
of projection and clustering algorithms for flexi-
ble analyst interpretation. To ensure validity, re-
sults will be ordered using standard clustering re-
sult quality metrics such as silhouette scores etc.

Goal 2. Understand the causative factors behind the
clustering results.
• Task 4: Show smartphone-sensed features that are

most important for each clustering result. This
will inform analysts about the factors that are most
important for cluster separation. For example, a
clustering result might assign screen interaction
levels across different epochs more importance
and the clusters may be separated by high screen
interaction vs. low screen interaction.

• Task 5: Show the variation of feature values be-
tween different clusters to enable analysts to as-
sign semantic meaning to them. For example clus-
ters with higher levels of being present at home vs.
not being at home etc.

Goal 3. Compare individuals to populations along
with sub-populations to other sub-populations to find
interesting clusters and groupings of users.
• Task 6: Show a list of all the users with the ability

to select and filter a sub-set for clustering analysis.

• Task 7: Show the distribution of clusters for each
individual’s data for semantic meaning assign-
ment. For instance, showing if an individual has
more days in a cluster with higher mobility etc.

Goal 4. Overlay human labelled information on ob-
jective smartphone sensed data to allow analysts to
assign semantic meaning to data like clusters with
days having higher night time screen usage also hav-
ing poorer reported sleep and higher stress levels etc.
• Task 8: Present summaries of human-labelled

symptom data such as overall sleep quality, stress
etc. for every cluster, along with the ability to fil-
ter and select specific days for analysis.

• Task 9: Show external day-level factors that may
explain the symptoms present (e.g. weekend vs
weekdays, academic deadlines etc.)

Goal 5. Saving exploration results.
• Task 10: Storing results from an analysis session

to share with other analysts to save time as clus-
tering is computationally intensive.

4 OUR VISUAL APPROACH:
PLEADES

We present Population Level Exploration and Analy-
sis of smartphone DEtected Symptoms (PLEADES),
an interactive visual analytics framework that uses
multiple linked views to present smartphone sensed
data. We divided all participant data into individual
days and calculated day level features for sensor val-
ues across multiple epochs such as day, evening and
night. The analyst can start by selecting a dataset
(ReadiSens or StudentLife (Wang et al., 2014)) along
with features for the data to be clustered on (G1, T1)
and the participants (by default all participants are in-
cluded).

Here we describe the main views and the rationale
behind the design.

4.1 Algorithms Selection and Features
View

The analyst can select from three dimension reduction
(t-SNE, Isomap and multi-dimensional scaling) and
three clustering (kMeans, agglomerative and spectral)
techniques in (Figure 1 H). Clicking on the “Features
View” (FV) shows the dialog (Figure 1 I) to present
all the sensor values along with the epochs that those
sensor values should be averaged by, to be consid-
ered as features that can be input into the clustering
and projection algorithms (G1, T1). Through exten-
sive user studies, Cavallo and Demiralp (Cavallo and
Demiralp, 2018) reported that analysts spent consid-
erable effort on feature selection during exploratory
data analysis using clustering and projection methods
as it was very important for the outcomes.
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Figure 1: PLEADES: A) Every multi-colored bar represents a clustering result for the algorithms and k chosen, ordered by
their “quality”, calculated across several state of the art methods. The width of each colored bar in the multi-colored bars
represents the proportion of days in that cluster. B) Selecting a result projects it on a 2-D plane with every circle representing
one day, color coded to the cluster it belongs to. C) Hovering over any day in the Clusters View shows that day’s cluster’s
details in the Cluster Detail View. Details include average reported sleep quality for the cluster vs. the overall etc. D)
Every study participant is a row in the Users View and the colored bars represent distribution across the clusters for their
days in study. E) The distribution of feature value intensity across all clusters is shown in the Feature Distribution Heatmap.
F) The F-Stats View shows a bar chart for the most important features for the selected clustering result, determined by the
ANOVA F-Statistic. G) Every polyline is a day with the color representing the cluster. The axes represent features and are
brushable i.e analysts can select ranges of values. H) Analysts can select the clustering and dimension reduction algorithms.
I) Selecting features and their epochs for averaging. These features will be calculated for all days which will then be clustered.
J) Pre-computed clustering results from previous sessions are displayed to save analysts’ time.

4.2 Clustering Results View

Clustering creates groups of days that are similar
based on a set of selected features and metrics.
The Clustering Results View (CRV) displays mul-
tiple clustering results as horizontally stacked bars
with the colors representing the cluster and the width
representing the proportion of total days that belong
to that cluster (Figure 1 A). The results are ordered
by quality (G1, T2, T3). Using multiple cluster-
ing and projection algorithms enables flexible explo-
ration of various aspects of the data for more intu-
ition. This approach was inspired by Kwon et al.
who implemented Clustervision (Kwon et al., 2017)
and displayed multiple clustering results ordered by
quality for specified clustering and projection algo-
rithms. The results are ordered by the highest aver-
age across three clustering quality measures: Silhou-
ette score (Rousseeuw, 1987), Davies-Bouldin score
(Davies and Bouldin, 1979) and Calinski-Harabasz
score (Caliński and Harabasz, 1974) (G1, T3). The
scores are represented in the mentioned order as small
squares to the left of the clustering results, with higher

opacity representing higher quality (low quality:
vs. high quality: ). We used ColorBrewer (Har-
rower and Brewer, 2003) to assign each cluster a dis-
cernible color using an 8 color palette (G1, T2).

4.3 Clusters View (CV)

The Clusters View (CV) presents the projection of the
selected clustering result in the CRV on a 2-D plane
where every point is a day and the color encoding the
cluster (Figure 1 B). This visually represents days that
are similar according to the clustering result (G1, T2).
Combined with the clustering results view, the analyst
can quickly and easily see the size of the various clus-
ters along with the overlaps between clusters.

If the analyst wants to drill down on specific days
for further analysis, they can check the “Select Days”
box and brush over the days they are interested in the
CV, which will subsequently show the aggregated de-
tails for the selected day in the Cluster Details View
and highlight them in the Daily Values View (ex-
plained later). The analyst can also save the days
and the associated users by giving the days a name
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in the dialog that shows up after the days are brushed
(G5, T10). This allows analysts to use their domain
knowledge to determine whether certain days belong
in a cluster. This is also meant to assist analysts in
classifying the types of days that can be used for clas-
sification models and also to assign any meaningful
semantic information, such as low stress and better
sleep on days that are typically weekends.

4.4 Cluster Details View (CDV)

The Cluster Details View (CDV) (Figure 1 C) shows
aggregated details for all the days in a cluster being
hovered over in the CV, to be compared to the overall
average across all clusters (G4, T8, T9). The bar with
the grey stroke represents the overall
average across all days and participants. The color
of the fill inside represents the cluster of the day that
is being hovered over in the CV. In case the analysts
has selected specific days in the CV, the fill color is:

. The aggregated details include information such
as comparisons with the average occurrence of week-
ends in that cluster, the average amount of distance
travelled and average sleep quality reported.

4.5 Users View (UV)

The User’s View (UV) (Figure 1 D) shows a list of
the individual participants in the smartphone-sensed
symptoms studies. The colored bars in each partic-
ipant’s row represent the distribution of clusters for
every individual user’s days for the clustering result
selected (G3, T7). The analyst can sort the user list by
the prevalence of days in a specific cluster, by click-
ing on its respective color under “Sort users by clus-
ter” (G3, T6) (Figure 1 H). Hovering over a user’s row
shows their days highlighted in the Clusters View and
the Daily Values View (explained later) and hides oth-
ers’ days (G3, T7). The user can be selected for re-
clustering by clicking on their checkboxes (G3, T6).

4.6 F-Stats View (FSV)

The F-Stats View (FSV) (Figure 1 F) shows the most
important features for creating the clusters (those
that have a statistically significant relationship) as a
ranked bar chart. This helps an analyst reason about
the proportion of importance of each feature and the
causes of separation between clusters (G2, T4). We
perform the Analysis Of Variance (ANOVA) test for
every clustering result to obtain the f-statistic, along
with its associated p-value across all clustering fea-
tures that measures the importance and statistical sig-
nificance of each feature for the clustering result.

4.7 Feature Distribution Heatmap
(FDH)

The Feature Distribution Heatmap (FDH) (Figure 1
E) shows the average values of the selected features
across all the different clusters using a gradient of
dark blue to dark red to represent very low and very
high respectively (G2, T5). The features are ordered
from the top to bottom in terms of their importance
(shown in FSV). It is important to show the distribu-
tions of feature values across all the clusters to help
analysts understand characteristics of the days within
each cluster. This allows an analyst to quickly assign
semantic meaning to specific clusters.

4.8 Daily Values View (DVV)

Every day across all its features is plotted as a poly-
line in a parallel coordinates plot in the Daily Values
View (DVV) (Figure 1 G). The y-axes are brushable
for filtering specific ranges of features values. The
lines are color-coded to the cluster they belong to.
This view lets analysts filter down on specific features
and assign semantic meaning to clusters (G4, T8).

4.9 Saved Results View (SRV)

SRV can save the results of exploration sessions.
Clustering multi-feature data is computationally in-
tense and re-running clustering every time is not scal-
able. In addition, analysts may want to share their
insights for reproducibility. We allow the user to save
the results from the clustering session they performed
by clicking on the “Save New Result” button in the
Saved Results View (SRV) (Figure 1 J) and providing
a name that can then be selected for viewing from the
list every time PLEADES is started (G5, T10).

5 EVALUATION WITH USE
CASES

We now introduce Luna, a graduate student specializ-
ing in computational social science and psychology.
Luna has access to two datasets and she would like
to perform exploratory data analysis on both of them
using PLEADES. Specifically, she is interested in
understanding relationships between symptoms and
objective sensor data. This information can guide
her creation of machine learning models that classify
smartphone user symptoms from sensed data.
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Figure 2: kMeans clustering of every day across every participant based on the similarity of their geo-location features. The
results are then projected using t-SNE. A) A clustering result with k=3 and high quality (Davies-Bouldin score) and the
associated Feature Distribution Heatmap. B) Selecting a result with k=5. Cluster details are shown for the five clusters. The
yellow cluster has high presence in “Res Grad night” and “Res Grad day”, whereas the green and purple clusters have high
values for presence in the “Res Undergrad day, evening and night”, possibly indicating two different student populations i.e.
graduate students and undergraduate students. E) Brushing over “Res Grad night” shows no purple or green lines.

5.1 StudentLife (Dataset 1)

The first dataset is StudentLife (Wang et al., 2014)
which has data for 49 Dartmouth University students
over a 10 week academic term. The students in-
stalled an application on their smartphones which pas-
sively and continuously gathered sensor data includ-
ing screen interaction, light levels, conversations, ac-
tivity levels (walk, run, still) and on-campus location,
using WiFi connection points for on campus build-
ings. The buildings are binned into categories such as
undergraduate-residential, graduate-residential, din-
ing, academic and administrative services. The ap-
plication also gathered GPS coordinates that we clus-
tered using DBSCAN (Ester et al., 1996). We only
used the primary and secondary location, defined as
the geo-cluster where the students spent the most and
the second most time in. Students also responded
to daily questionnaires about their stress levels, sleep
quality, socializing issues and hours of sleep.

The data was divided into days for every partici-
pant and the features (selected by the analyst in the
FV) are calculated per day. All the days across all
participants are then clustered and projected using the
analyst-selected algorithms. Mobility statistics are
computed for every cluster in the clustering result
such as the average distance travelled and the average
location entropy i.e. how many different geo-clusters
they visit as these features have been linked to symp-
toms (Madan et al., 2011; Saeb et al., 2015; Gerych

A

C

B

Figure 3: Days in the selected clump seem to have very
little presence on campus. In addition, these days are far
more likely to be weekends then the average, along with
much higher than average distance being travelled.

et al., 2019). Additionally, we calculate the propor-
tion of weekends in every cluster and visualize them
against the overall average along with the proportion
of days in “midterm”, an academically demanding
time at Dartmouth. Wang et al. (Wang et al., 2014)
mentioned that data gathered for weekdays would dif-
fer from weekends along with days in midterms.

5.2 Use Case 1: Quick Overview

Luna would like an overview of the data. She selects
all the sensor values across 3 epochs (day, evening
and night) to be clustered and projected using ag-
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Figure 4: After clustering potential grad and undergrad
students, there are four clusters of undergraduate students.
This can help insights by observing how undergraduates
differ in their behaviors and how their smartphone labelled
symptoms manifest in objective sensor data.

glomerative clustering (for up to k = 6 clusters) and
t-SNE (G1, T1). She selects the clustering results
with three and four clusters (second and third high-
est quality) (G1, T3). Interacting with the clusters in
the CV reveals nothing interesting in the CDV. She se-
lects fourth the highest quality clustering result with
k = 5 (Figure 1 A), which has good quality (Davies-
Bouldin score) (G1, T3). She also notices in the F-
Stats View that on-campus building presence features
(Res Undergrad, Common Space, Dining) are impor-
tant features for this clustering (G2, T4). She hovers
over the clusters in the CV to see the overall values
associated with each cluster in the CDV. She notices
that days in cluster (Figure 1 B), tend to have more
deadlines, poorer sleep quality, higher stress levels
and generally tend to fall on weekdays (Figure 1 C)
(G4, T8, T9). This makes sense to Luna as deadlines
can induce behavioral changes. In contrast, the clus-
ter has more days on the weekends, fewer dead-
lines and slightly better sleep duration and quality,
and more distance travelled. Such clear contrasts en-
courages Luna to delve further into the analysis. She
saves this clustering session using the SRV and names
it “more deadlines, less sleep” (G5, T10).

5.3 Use Case 2: Determining Student
Characteristics to Utilize for
Insightful Comparisons

Looking at the FSV, Luna realizes that features for
smartphone detected presence in on campus resi-
dences were important. To analyze this further, she
selects only the location features (on campus build-
ings and primary and secondary geo-locations) (Fig-
ure 1 H) and re-clusters the data using K-Means (k
= 6) and t-SNE for all participants. She selects a
clustering with good quality and k = 4 (Figure 2 A).
She notices in the FDH that there are two clusters in

which the days had high presence in Res Undergrad
and one cluster with high presence in Res Grad. She
wants to see some more distribution of features and
selects a clustering result with k = 5 (Figure 2 B).
Cluster (Figure 2 B) has higher than average val-
ues of being in Res Undergrad at all times of day
(Figure 2 C) and cluster has much higher than av-
erage incidence of being in other on-campus build-
ings such as Dining, Libraries, Academic etc. (G2,
T5). Days in cluster have no incidence of being
in Res Undergrad and fewer than usual incidences of
being in other on-campus building, with the only ex-
ception being Res Graduate (Figure 2 C). Sorting the
UV (Figure 2 D) using all three clusters and brushing
on the “Res Grad night” axis (Figure 2 E) shows that
there are no users who have days in both cluster

and cluster (G3, T6).
This is an indication of two sub-populations (G3,

T7) to Luna as she is aware that the StudentLife
(Wang et al., 2014) study included both graduate and
undergraduate students. Luna believes that the users
with days in clusters and are undergraduate
students whereas the users with days present in
represent graduate students. This is important for her
as one of the goals she had for analysis was compar-
ing symptoms and behavior patterns between differ-
ent populations. Graduate and undergraduate students
typically differ in their ages along with courseloads
and other life circumstances. She looks at the de-
tails for the three clusters in the CDV and notices that
for cluster (Figure 2 B) students reported slightly
worse sleep and slightly more stress than usual along
with more deadlines (G4, T8). Interestingly, for clus-
ter (Figure 2 B), students reported fewer than av-
erage deadlines along with average sleep quality and
slightly lower stress levels. The students in cluster
do not report any particularly concerning symptoms
(Figure 2 B). She saves the results from this session
in the SRV and calls it “geo analysis” (G5, T10).

Overlaying levels of semantically understandable
information like the types of on-campus buildings
along with sorting users by clustering results made the
discovery of these two populations of students easier
for Luna. In addition, she notices in the FDV that for
the cluster , there appear to be few days of presence
in any on-campus building (Figure 2 C). She hovers
over a day in that cluster and notices the bars in the
CDV show that students travelled much more distance
(Figure 2 B) than usual for these days along with the
fact that there were many more days on the weekends,
which makes intuitive sense (G4, T9). Luna notices
a peculiar shape in (Figure 3 A) and selects those
days by clicking on “Select Days” (Figure 1 B) and
then brushing over it. She notices in the CDV (Figure

PLEADES: Population Level Observation of Smartphone Sensed Symptoms for In-the-wild Data using Clustering

71



3 B) that the days in this clump are much more likely
to be weekends than the overall cluster , along with
much higher distance being travelled. She also no-
tices in the DVV (Figure 3 C) that there is little to
no presence for all the days in on-campus buildings.
She is now confident that these days represent travel.
In addition, she notices slightly better sleep quality,
more hours of sleep and fewer deadlines. This is in-
teresting as Luna is now able to assign semantically
relevant context to objective sensor data. She also
plans to build classification models using these days,
which can find similar days in other clusters. She la-
bels these days “travelling off campus” (G5, T10).

5.4 Use Case 3: Clustering Graduate vs.
Undergraduate Students

Luna is now interested in analyzing the two distin-
guishable populations in comparison to each other.
She selects the students in the UV that she feels con-
fident are more likely to belong to either cohort (8
graduates and 15 undergraduates) and re-clusters their
data using the same algorithms and k = 6 (G3, T6,
T7). She selects a result with k = 6 and views the
FDH to gain similar intuition to the last use case
about the graduate and undergraduate students by
noticing the distribution of presence incidence of on-
campus buildings. She can see four clusters

where the participants had reported high in-
cidence of being in Res Undergrad and one cluster

with higher Res Graduate (Figure 4 C). Interact-
ing with shows higher than average days being in
the midterm with poorer than average sleep quality
(Figure 4 A), but interestingly less stress and socia-
bility issues (G4, T8). For the cluster , Luna no-
tices more than average distance travelled along with
slightly worse sleep and stress levels (Figure 4 B). She
now has a finer grain view of a population she iden-
tified earlier. She clicks “Save New Result” to show
her analysis to her colleagues (G5, T10).

5.5 ReadiSens (Dataset 2)

The second dataset is called ReadiSens. It has data
for 76 participants in a large study with smartphone
sensed data and reported symptoms such as sleep du-
ration and quality. The participants were asked to
install the ReadiSens collection application that ran
passively in the background and solicited daily and
weekly symptom reports. The participants have been
completely anonymized. The sensors include GPS lo-
cations and phone measurements such as activity lev-
els, screen usage and sound levels. The geo-location
data is used to derive mobility features in the same

way as the previous dataset and is also clustered the
same way to derive participants’ primary and sec-
ondary locations. The participants were asked to pro-
vide answers about sleep duration and quality ev-
ery day through a smartphone administered question-
naire, with varying levels of compliance. We divided
up the sensor data per day across all users and calcu-
lated the same mobility and contextual features (e.g.
proportion of weekends) as the StudentLife dataset.

5.6 Use Case 4: Presence in Primary
Location vs. Secondary Location

Luna visualizes ReadiSens data using PLEADES. She
selects all the features across all epochs, Isomap and
kMeans and k = 6. She views some clustering results
in the CV and their details in CDV but cannot seem to
find any cluster that stands out (G1, T2, T3). She de-
cides to drill down on a specific sensor type (G1, T1).
She selects primary and secondary geo-clusters (the
geo-clusters where the participant spent the most and
the second most amount of time respectively) across
the 3 epochs and clusters the data using Isomap and
kMeans (k = 6) for projection and clustering. Partici-
pants’ locations have important bearing on symptoms.
Location can be indicative of home (Gerych et al.,
2019) vs. work schedules which in turn have impor-
tant health ramifications (Ravesloot et al., 2016).

Luna selects a result with k = 6 and hovers over
some clusters (Figure 5 A) and notices that for days
in cluster , participants tended to stay in in their
primary location for all the 3 epochs. Luna sees that
these days were more likely to be weekends, with
less distance travelled and more than average sleep
reported (G4, T8, T9). Luna believes that the days
in represent times where a person stayed “home”.
She assigns this semantic information to this cluster.

Next she interacts with cluster and notices
these days are less likely to be weekends (Figure 5
A). In addition, participants tend to be in their sec-
ondary location more during the day and evening with
little presence in the secondary position at night (Fig-
ure 5 B). Participants also tended not to be at their
primary location during the day and are a little more
present there during evening. But they usually are
there for the night (Figure 5 B). Participants also trav-
elled more distance than usual and report fewer than
average sleep hours. This leads Luna to guess that
these days belong to a work vs. home routine and
she make a note for that by saving this clustering ses-
sion in the SRV. This is useful for her as this specific
behavior has long term health ramifications (Raves-
loot et al., 2016). In addition, since this is an ongoing
project, the classifiers she builds using data for those
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Figure 5: Visualizing ReadiSens data (dataset 2). A) Clustering the geo-features of the ReadiSens data with kMeans and
projecting it using Isomap. The yellow cluster has a much higher proportion of weekdays than other clusters along with
higher levels of distance travelled, perhaps indicating work-life routine. The pink cluster has days that are more likely to be
weekends and with lower sleep quality and little time spent in either the primary or the secondary locations.

A

B

C

Figure 6: A) The green cluster has 2 clumps. Days in this
cluster are more likely to be weekends than other clusters
and the sleep quality is poorer. B) Selecting the clump on
the left shows that those days are about as likely to be week-
ends as other clusters with average sleep quality and very
little travel. C) The clump on the right however has poorer
sleep quality and much more distance travelled. In addition
the days in this clump are much more likely to be weekends.

days can be used to identify future day level patterns.
Finally, she interacts with the cluster . Days in

this cluster are much more likely to be on weekends.
She notices in the FDH that there seem to be few in-
stances of participants being present in their primary
or secondary location for (Figure 5 B). In addition,
there seems to be a drop in the quality of sleep (G4,
T8). This along with its relatively small size leads
Luna to believe that this cluster represents days where
participants travelled. However, given that the cluster-
ing result is of poor quality (Figure 5 A) and the pro-
jection is scattered, she is unable to see a clear spatial
grouping of and decides to use other parameters.

She selects geo-features and tries t-SNE, kMeans
and k = 6. She selects a result with k = 5 clusters,
which has a better overall quality than the previous
selection (G1, T2, T3)(Figure 6) . She notices the
cluster (Figure 6 A) with higher than average days in
weekends and lower sleep quality. She notices two

separate clumps of and selects both of them sep-
arately using the “Selects Days” option (Figure 1 B)
to view their details. She notices that days in the first
clump (Figure 6 B) are more likely to be on weekends,
with average sleep quality, lower sleep hours and little
movement across geo-locations (G4, T8, T9). Luna
takes a look at the next clump (Figure 6 C) and no-
tices that these days are far more likely to be week-
ends, register much higher than average distance trav-
elled and also contain poorer quality of sleep (G4, T8,
T9). She is confident that these days represent travel
and the context of knowing that these days are more
susceptible to lower quality sleep encourages Luna to
make classifiers to detect such behavior in future data
that may not contain any human provided labels. She
saves these days and their associated users as “travel-
ling with poor sleep” in the dialog that shows up after
the the days were brushed in the CV (G5, T10).

6 EVALUATION WITH EXPERTS

To evaluate PLEADES, we invited three evaluators
who were experts in building health predictive models
using machine learning and smartphone sensed data.
We also invited one expert in interactive data visual-
izations. We held a video-conference during which
the experts were free to contribute any feedback. Af-
ter a brief tutorial, they were led through the same use
cases as Luna. The experts were all well aware of un-
supervised clustering as a method for exploratory data
analysis. They liked the workflow of being able to se-
lect the sensor features and epochs, as they agreed that
during early exploration, they would need to use sev-
eral different parameters and algorithms before com-
ing across interesting results. They also found the
saving of results from previous analysis sessions to
be useful as they were aware of the computational
time complexity that can make cross clustering results
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comparisons time consuming.
One expert liked how we separated out the raw

sensor level data from the contextual data such as av-
erage sleep quality and proportion of days in week-
ends in the CDV as “it shows two types of information
like features that are maybe more granular and only
smartphone detectable and then you have this contex-
tual information that adds more semantic meaning.”

While going through the use cases, the experts
suggested potential groupings of users that we had
not considered. For instance, while going through use
case 2 (Section 5.3), they noticed that for the days
in cluster , there was little to no presence in on-
campus residences but presence in other on campus
buildings. There was also presence in the primary lo-
cation. This led the experts to believe that students
with days in this cluster may reside off-campus with
one expert suggesting grouping off-campus students
and on-campus students and clustering their data to
observe interesting changes in symptoms. For the
ReadiSens data (Section 5.6), one expert was curious
about comparing regular travellers with people who
stay home more as both these patterns can be predic-
tive of health issues (Weston et al., 2019). He sug-
gested ordering the users by and (Figure 5 D).
After viewing the ordered list of users, he suggested
interest in selecting a sub-sample of users in the two
extremes and then computing a classification model
to see if those users can be clearly separated out.

Overall, the evaluators liked PLEADES and
showed interest in using it to assign human under-
standable semantic labels to objective sensor data.

7 DISCUSSION AND
LIMITATIONS

The current research focus in smartphone-sensed
health monitoring is towards long-term deployment
of applications that can passively detect health. As
the number of participants increase along with longer
durations of participation, it may become difficult to
analyze data on a per day basis on limited 2-D visual
real estate. Effective filtering of participants along
with longer time windows such as weekly for binning
data may mitigate such issues. In addition, it may
be helpful to integrate such exploratory data analy-
sis with a machine learning pipeline that can use the
analyst selected days to classify patterns of interest.
For instance, taking the days labelled as “travelling
off campus” (end of Section 5.3) and selecting and
labelling another group of days when students were
on campus and using them as a training set to build a
classifier. The various times of year can also be visu-

ally encoded, which can help analysts find seasonal
patterns in reported symptoms.

8 CONCLUSION

We present PLEADES, an interactive visual ana-
lytics tool for exploratory analysis of smartphone
sensed data, to determine the contextual factors be-
hind the manifestation of smartphone inferred symp-
toms. PLEADES enabled the analysts to select clus-
tering and projection parameters such as the number
of clusters along with the clustering and dimension
reduction techniques and used multiple linked panes
containing visualizations like bar charts, heatmaps
and brushable parallel coordinated plots to present the
clustering results to allow users to link semantically
important information to objective smartphone sensed
data to further explain the human labelled symptom
reports. We validated our approach using two real
world datasets along with expert evaluation.
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