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Abstract: Identifying ingredient substitutes for cooking recipes can be beneficial for various goals, such as nutrient opti-
mization or avoiding allergens. Natural language processing (NLP) techniques can be valuable tools to make
use of the vast cooking-related knowledge available online, and aid in finding ingredient alternatives. Despite
previous approaches to identify ingredient substitutes, there is still a lack of research in this area regarding the
most recent developments in the field of NLP. On top of that, a lack of standardized evaluation metrics makes
comparing approaches difficult. In this paper, we present two models for ingredient embeddings, Food2Vec
and FoodBERT. In addition, we combine both approaches with images, resulting in two multimodal repre-
sentation models. FoodBERT is furthermore used for relation extraction. We conduct a ground truth based
evaluation for all approaches, as well as a human evaluation. The comparison shows that FoodBERT, and
especially the multimodal version, is best suited for substitute recommendations in dietary use cases.

1 INTRODUCTION

In the light of rising rates of non-communicable dis-
eases such as type 2 diabetes, and with an unhealthy
diet being one of the leading health risks globally,
healthy eating has become increasingly important
(World Health Organization, 2020). However, chang-
ing one’s diet can be challenging as eating habits are
hard to break. This is why the substitution of food
items is a promising approach to foster healthy nutri-
tion. Substituting ingredients in a cooking recipe for
healthier alternatives can, for instance, help to opti-
mize the meal’s nutrient profile to meet individuals’
dietary needs, while at the same time preserving the
dish’s culinary attributes. Thus, familiar meals can be
enjoyed while approaching dietary aims in manage-
able steps. Apart from replacing ingredients for nutri-
ent optimization, food substitutes can also be applied
for other goals such as avoiding allergens or adapting
dishes to dietary preferences.

A promising way to find food substitutes is
to leverage the vast amounts of (mostly textual)
cooking-related data online to draw conclusions about
which food items are interchangeable. Thus, natu-
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ral language processing (NLP) can be used to iden-
tify generally applicable ingredient substitutes. We
refer to these replacements as context-free, meaning
independent of the direct recipe context. The food
items identified as fitting substitutes for an ingredient
should, therefore, be suitable replacements in several
cases, and lay the foundation for all substitution use
cases mentioned above.

While there has been previous research in the NLP
domain that explored this task, there are few gen-
erally applicable approaches that use neural embed-
ding models to generate ingredient substitutes, de-
spite these models’ success on other NLP tasks. No-
tably, there is no approach to our knowledge that ap-
plies the most recent NLP-powerhouses, transformer-
based models like BERT (Devlin et al., 2018), to the
task of substitute generation.

In this paper, we propose and compare several ap-
proaches for context-free ingredient substitute gener-
ation. We train two models, word2vec (Mikolov et al.,
2013) and BERT (Devlin et al., 2018), on recipe in-
structions from the Recipe1M+ dataset (Marin et al.,
2019) to compute meaningful ingredient embeddings.
For BERT, we start from a pre-trained checkpoint.
We refer to these models as Food2Vec and Food-
BERT. Additionally, we combine these text-only ap-
proaches with an image-based approach resulting in
multimodal ingredient representations. We also use
FoodBERT to perform relation extraction on recipe
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comment data to extract substitute pairs. Further-
more, we propose an approach for a ground truth
based evaluation for all methods and conduct a hu-
man evaluation. Our code and the trained models are
available on GitHub1.

The remainder of the paper is organized as fol-
lows: Section 2 presents related work, and Section 3
provides the theoretical background. Section 4 intro-
duces the used dataset. The approaches are explained
in Section 5, and their results on ingredient substitu-
tion are presented and discussed in Section 6. Section
7 concludes the paper and proposes possible future
work.

2 RELATED WORK

This section presents previous research in the area of
NLP that has explored the task of substitute gener-
ation, as well as different approaches to evaluating
such methods.

Some approaches have detected food substitutes
in recipe websites’ user comments, for instance
by identifying segments with alteration suggestions
(Druck and Pang, 2012), or through relation extrac-
tion (Wiegand et al., 2012a; Reiplinger et al., 2014).
(Teng et al., 2012) used pattern extraction results
to build an ingredient substitute network. Other re-
searchers have focused on recipe texts and used statis-
tical methods to find food substitutes (Shidochi et al.,
2009; Boscarino et al., 2014; Yamanishi et al., 2015).
(Achananuparp and Weber, 2016) identified substi-
tutes from food diary data with food-context matrices.
The authors refer to the distributional hypothesis, the-
orizing that ingredients that occur in similar contexts
tend to be similar. Other researchers have followed
this concept with neural embedding techniques. Some
approaches employ vector arithmetic on word em-
beddings to find substitutes via ingredient analogies.
They are designed for special use cases, such as ”veg-
anizing” meals (Lawo et al., 2020) or adapting recipes
to different cuisines (Kazama et al., 2018). There
is a lack of research on general-purpose ingredient
embeddings for food substitution, as the general ap-
proaches so far have been rather exploratory and with-
out in-depth evaluation (Hinds, 2016; Altosaar, 2017;
Sauer et al., 2017). Additionally, there is no ap-
proach to our knowledge that employs transformer-
based models like BERT (Devlin et al., 2018).

A big challenge for food substitution is the ab-
sence of a standard for comparing the results of dif-
ferent methods. Many approaches so far relied solely
1https://github.com/ChantalMP/
Exploiting-Food-Embeddings-for-Ingredient-Substitution

on human evaluation on a relatively small scale, ei-
ther by cooking and testing recipes with substitu-
tions (Kazama et al., 2018; Yamanishi et al., 2015)
or through qualitative analysis of recipes or substi-
tute pair examples (Shidochi et al., 2009; Sauer et al.,
2017; Lawo et al., 2020). In contrast, (Achananuparp
and Weber, 2016) had crowd workers rate 2,000 sub-
stitute pairs. The authors were then able to employ
quantitative evaluation metrics. In an endeavor to cre-
ate a gold standard for various food relations, (Wie-
gand et al., 2012b) found that two subjects’ lists of
substitute pairs had little overlap, indicating that find-
ing a consensus on suitable substitutes is challenging.
The authors used their gold standard in subsequent
research to evaluate their approaches quantitatively
(Wiegand et al., 2012a). (Reiplinger et al., 2014) cre-
ated a gold standard for food relations by manually la-
beling sampled sentences from their domain-specific
corpus. However, the above gold standards are both
in German and in include terms specific to the Ger-
man cuisine, such as ”Maultaschen”, a German kind
of dumpling. Therefore, it is difficult to apply them
to approaches in other languages, which in turn might
require additional terms in their vocabulary to reflect
the respective cuisines.

Given the lack of exploration of neural embedding
models for ingredient substitution and the challenges
concerning evaluation, we propose several learning-
based approaches for substitute generation and con-
duct both a ground truth based and a human evalua-
tion.

3 BACKGROUND

In the previous section, we observed that a con-
cept that has been employed in many substitution ap-
proaches is the distributional hypothesis, which states
that words occurring in similar contexts tend to be
similar in meaning. It was first explored in linguistics
(Harris, 1954), and later adopted in the area of com-
putational linguistics (Rubenstein and Goodenough,
1965; Rieger, 1991). In recent years and with the
surge of neural networks, neural approaches to cap-
ture this semantic similarity have been developed.
Two of the most popular approaches are word2vec
(Mikolov et al., 2013) and BERT (Devlin et al., 2018).

Word2vec (Mikolov et al., 2013) is an approach to
compute continuous vector representations of words
given a large corpus of training text. Training a
word2vec model results in vectors representing the
words in the corpus, with semantically similar words
being closer to one another in the vector space. Each
token is represented by exactly one vector, meaning
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the embeddings are context-free.
BERT (Bidirectional Encoder Representations

from Transformers) (Devlin et al., 2018) is a
transformer-based language model pre-trained on a
large amount of textual data, which can be fine-tuned
for more specific tasks. The training is based on two
tasks, masked language modeling and next sentence
prediction, and results in contextualized embeddings.
The authors show that BERT has achieved state-of-
the-art results on various NLP tasks.

One of these applications, R-BERT (Wu and He,
2019), employs BERT for relation extraction and is
among the best methods for this task. The authors
tagged two possible entities in a relation and had the
model predict the relation between them.

In addition to fine-tuning the pre-trained BERT
models, success was also achieved by pre-training
BERT on domain-specific data for science or biology
(Beltagy et al., 2019; Lee et al., 2020). This is espe-
cially useful if the target domain contains many words
rarely encountered in common texts.

4 DATA

We use Recipe1M+ (Marin et al., 2019), a dataset
containing one million recipes with information like
title, ingredient list, instructions, and images. We
specifically use 10,660,722 instruction sentences for
training our models. We also extend this dataset by
scraping recipe comments and normalize the content.

4.1 Comment Scraping

Recipe1M+ provides URLs to the original recipe
pages for all recipes. We scrape accessible user com-
ments for the most frequent web pages. A part of
this data was already provided to us in a master’s the-
sis by (Engstler, 2020). In total, our data comprises
1,525,545 comments.

4.2 Normalization

As Recipe1M+ (Marin et al., 2019) does not include
a clean list of all ingredients, we use an ingredient
dataset provided by Yummly (Yummly, 2015) as the
starting point to create such a list. We clean this set
by deleting terms in brackets and discarding ingre-
dients with more than three words, as these gener-
ally include unneeded names of a brand or location,
such as ”Nakano Seasoned Rice Vinegar” or ”Spice
Islands Chili Powder”. To match ingredients from the
Yummly dataset with Recipe1M+, we lemmatize all
nouns in the ingredient list. We do not alter other

words like verbs as these are usually constant, and
lemmatizing them can lead to wrong matchings. For
instance, ”baked” in ”baked potatoes” would be nor-
malized to ”bake”, thus prohibiting a differentiation
between instruction and ingredient part. The same
lemmatization is applied to the instruction and com-
ment sentences. We also combine multi-word in-
gredients with an underscore (”ice cream” becomes
”ice cream”) and discard ingredients that occur less
than ten times in the whole Recipe1M+ dataset. Ad-
ditionally, we manually delete non-food items from
the ingredient list. After these steps, the ingredient
list contains 4,372 ingredients.

5 METHODS FOR SUBSTITUTE
GENERATION

In this section, we present several approaches that can
be used for context-free ingredient substitute genera-
tion.

5.1 Pattern Extraction

One previously applied method for food substitute ex-
traction (Wiegand et al., 2012a; Teng et al., 2012),
which we use as a baseline for our work, is to use user
comments from recipe sites since a good portion of
them mention how to replace certain ingredients with
others (Druck and Pang, 2012). We use Spacy (Hon-
nibal and Montani, 2017) to extract these recommen-
dations by applying the following hand-crafted pat-
terns previously presented by (Engstler, 2020), where
A and B reference ingredients:

• {replace | substitute} A {with | f or} B

• A {instead o f} B
Instead of predicting every extracted pair as a sub-

stitute, only pairs of ingredient I and substitute S
which occur at least t times will be predicted as substi-
tutes. This way, precision can be traded off for recall.

5.2 Food2Vec

The context-free word representations created by
word2vec (Mikolov et al., 2013) match our goal of
context-free ingredient substitutes. Thus, we follow
the idea first described in a blog post by Rob Hinds
(Hinds, 2016) and adopt his experimental approach
food2vec of training word2vec on recipe instructions.
We train it on a bigger, pre-processed dataset and re-
fine the process of substitute generation as explained
below. Figure 1 shows an overview of our approach
Food2Vec.
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Figure 1: The Food2Vec approach is separated into two
parts: The first part calculates text-based embeddings for all
ingredients and optionally concatenates them with image-
based embeddings. The second part uses these embeddings
in conjunction with KNN to predict substitutes.

5.2.1 Training

For creating Food2Vec, we trained the CBOW vari-
ant of word2vec on the normalized instructions of the
Recipe1M+ (Marin et al., 2019) corpus. We use Gen-
sim (Řehůřek and Sojka, 2010) for training with de-
fault settings, but set the min count to 10 during train-
ing, as we only consider ingredients that occur at least
ten times in Recipe1M+. This means that also non-
ingredient words that occur less than 10 times will
be ignored. These rare words usually do not provide
substantial context and can be neglected. After com-
pleting the training, all our considered ingredients are
represented by a 100-dimensional embedding.

5.2.2 Generating Substitutes

For generating substitutes, we search for the N near-
est neighbors in the embedding space containing all
ingredients. N functions as a threshold to balance the
number of proposed substitutes and the model’s pre-
cision. We filter the possible results by a handcrafted
rule based on the assumption that for a given ingredi-
ent I, the substitute S should not be a specialization of
that ingredient. For example, we do not want to sub-
stitute ”chicken” with ”chicken breast”. To achieve
this, we remove any potential substitute S that com-
pletely contains the original ingredient I. We refer to
this approach as Food2Vec-Text.

Figure 2: The FoodBERT approach is separated into two
parts: The first part calculates text-based embeddings for
up to 100 occurrences of every ingredient and optionally
concatenates them with image-based embeddings. The sec-
ond part employs these embeddings together with KNN and
a further scoring and filtering step to predict substitutes.

5.3 FoodBERT

BERT achieves state-of-the-art results in many dif-
ferent NLP tasks (Devlin et al., 2018), making it a
promising approach for generating substitutes. Ar-
guably one of the main strengths of BERT is that
it works with contextualized embeddings, meaning
a word can have different embeddings depending on
its context. This advantage can not be fully utilized
for our task, as we make context-free predictions.
Nonetheless, BERT’s expressive power and language
understanding can still be helpful. An overview of
this approach is shown in Figure 2.

5.3.1 Modifying BERT for Recipes

The BERT version we use has about 29,000 tokens
in its vocabulary but contains only about 3% of our
ingredients. Even some common ingredients such as
”onion” or ”pasta” are not included. This means that
those ingredients will be understood worse and split
into multiple tokens, resulting in multiple model out-
puts for one ingredient. Average, min, or max pooling
of multiple embeddings are possible ways to deal with
this, but we eliminate it entirely by making sure no in-
gredient is split into multiple tokens. To achieve this,
we extend the BERT vocabulary to include all of the
4,372 ingredients we mentioned in section 4. In total,
we end up with 33,247 tokens in the vocabulary.

5.3.2 Training FoodBERT

We start with the pre-trained bert-base-cased,
with extended vocabulary, and further train it on
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Figure 3: Embedding space visualization for ingredients:
Raspberry, Blueberry, Strawberry, Tofu, Chicken, Turkey,
Beef and Triple Sec. Each small image represents a con-
textualized embedding for one occurrence of the depicted
ingredient. It can be seen that berries and meat-like prod-
ucts are each grouped together, while Triple Sec is far away
from both groups.

Recipe1M+ (Marin et al., 2019) instructions for three
epochs. We use Hugging Face’s Transformers library
(Wolf et al., 2019) and the masked language modeling
training script (Hugging Face, 2020), only adapting
the BERTTokenizer to work with the extended vocab-
ulary. This training took approximately three full days
on an NVIDIA P-100 GPU.

5.3.3 Embedding Space Visualization

While BERT’s hidden representation has a dimension
of 768, it can still be projected into 3D space by using
a dimensionality reduction algorithm such as princi-
pal component analysis (PCA). We visualize the em-
beddings for 100 occurrences of eight different ingre-
dients. The visualization can be seen in Figure 3. It
shows that the ingredients are separated by their type
and use case. This is a valuable property, as the qual-
ity of the hidden representation of FoodBERT is di-
rectly correlated with the success of the approaches
relying on it.

5.3.4 Generating Substitutes

We exploit the FoodBERT embedding space to gen-
erate substitutes. To this end, we first sample 100
random sentences for every ingredient (less if there
are less than 100 occurrences) from the recipes in
Recipe1M+. Afterward, a contextualized embedding
with 768 dimensions is computed for every occur-
rence of every ingredient using FoodBERT. In total,
we end up with ∼285,000 embeddings for all ingre-
dients. For every embedding, we compute the 200
nearest neighbors using an approximate KNN (Bern-
hardsson, 2019). To calculate the substitutes for an
ingredient I, we sum up how often every other ingre-
dient appears in these 200 nearest neighbors for all

the embeddings of the ingredient I. This amount of
occurrences is assigned to every possible substitute
as a score. Afterward, we sort the potential substi-
tutes from the highest (most occurrences) to the low-
est score and apply the same filtering as in Food2Vec.
To get the final set of substitutes, we first require any
potential substitute to at least have a score of 100.
Second, we have a relative threshold that sets the min-
imum required score in relation to the highest score
(HS) for the ingredient, e.g. 1/10 of HS. This relative
threshold is tuned to achieve different precision-recall
trade-offs. We refer to this approach as FoodBERT-
Text.

5.4 Multimodal Representations

We argue that a good indicator for two ingredients’
interchangeability is their appearance. To utilize this
additional knowledge, we propose using multimodal
embeddings instead of pure text embeddings. Fig-
ure 1 and 2 show how we integrate the image embed-
dings in our methods.

5.4.1 Image Embeddings for Ingredients

For every ingredient, we download up to ten images
from Google. Afterward, we perform a manual ver-
ification and cleanup to ensure we have exactly five
correct images for every ingredient. For every image,
we extract a 2,048 dimensional embedding from the
last layer of a ResNet-50 (He et al., 2016), which is
pre-trained on ImageNet (Deng et al., 2009). Then we
average the embeddings of all five images to get one
final image representation per ingredient.

5.4.2 Combining Image and Text Embeddings

As Food2Vec and FoodBERT embeddings have a di-
mension of 100 and 768 respectively, directly con-
catenating these image embeddings with the corre-
sponding text embeddings would put more focus on
the image embeddings. Therefore, we use PCA to de-
crease the image embedding size from 2,048 to 100
or 768 depending on the method, so that both embed-
ding types have equal influence. We also normalize
the image embeddings so that they have similar mean
and variance as the text embeddings. Afterward, we
concatenate the text-based and image-based ingredi-
ent representations to get one multimodal embedding
of size 200 for Food2Vec or 1,536 for FoodBERT.
This new ingredient representation is then used like
the text-only embeddings described in the respective
substitute generation sections of Food2Vec and Food-
BERT. Empirically, we achieve better results when in-
tersecting the predicted substitutes of our multimodal
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approach with the predicted substitutes of the corre-
sponding text-only approach. In this setting, an ingre-
dient will only be proposed as a substitute if both the
text-only and multimodal methods predict it. These
intersected results are what we refer to as Food2Vec-
Multimodal and FoodBERT-Multimodal.

5.5 Relation Extraction

Handcrafted patterns are not optimal when it comes
to extracting the information from user comments.
These patterns do not capture all substitute recom-
mendations and also make mistakes as they are not
context-specific. We, therefore, propose a learned and
context-specific relation extraction method, which is
based on FoodBERT.

5.5.1 Data Preparation

We extract pairs of mentioned ingredients for all
the sentences in the user comments by matching the
words to our ingredient list. For all pairs that occur
together in one sentence, we mark the ingredients’ be-
ginning and end with unique characters:

”I used plain $ yogurt $ in place of the £
sour cream £ and it is delicious.”

This modified sentence is then added to our rela-
tion extraction dataset. To generate labels for train-
ing, 1,000 frequent ingredient pairs are extracted and
labeled with two labels. The first label denotes if
the first ingredient can be substituted by the second,
the second label vice versa. We gather all 1.3 mil-
lion sentences which include these frequent pairs. To
further focus the dataset on relation extraction, we
only use sentences which include one of the follow-
ing expressions: ”instead”, ”substitute”, ”in place of”
or ”replace”. In this way, we bias our data towards
comments which contain user substitute recommen-
dations. After this step, we end up with approxi-
mately 170,000 sentences, which we use to train and
evaluate our relation extraction model.

5.5.2 Modifying R-BERT

We base our implementation on R-BERT (Wu and He,
2019), which is one of the state-of-the-art relation ex-
traction methods based on BERT. We differ in our
implementation mainly in four places. First, unlike
R-BERT, we do not have entities that span multiple
tokens, so we do not need to average the representa-
tion over multiple embeddings. Instead, we directly
use the embedding for an ingredient token. Second,
we use $ and £ symbols, as underscore is reserved for
multi-word ingredients. Third, we use FoodBERT in-
stead of BERT in the backbone of the model. Finally,

we adapt the classification layer to support our desired
output format.

5.5.3 Model Architecture and Training

A marked sentence is given to FoodBERT, with the
first token being the BERT specific classifier token.
From the computed hidden state vector H, three parts
are used further, namely the pooled output H0, which
represents the whole sentence, and embeddings corre-
sponding to the first and second ingredient. The three
representations are concatenated and fed into a fully
connected layer which reduces the representation size
to two. These two features correspond to the two la-
bels described previously (Ingredient 1 can be sub-
stituted by 2 or vice versa). To get binary labels, a
sigmoid is applied, and the output is thresholded at
0.5.

We train our network for ten epochs with a learn-
ing rate of 10−5 and AdamW (Loshchilov and Hutter,
2019) as the optimizer.

5.5.4 Substitute Generation

For generating a final list of substitutes, we use all
of the comment data, also the part without labels,
but still limit ourselves to sentences that contain
substitute-relation indicating expressions. We only
consider ingredient pairs that occur more than t times
together. This threshold t can be tuned to achieve
different precision-recall trade-offs. We then use our
model to predict labels for all pairs and add a pair to
our substitute list if more than 10% of the predicted
labels are positive.

6 EXPERIMENTS

In this section, we present the effects of fine-tuning
BERT for the food domain and the results for the task
of substitute generation of all presented methods.

6.1 Evaluation Metrics

Our evaluation is twofold. First, we perform a human
evaluation, where we label the correctness of gener-
ated substitute pairs. Additionally, we created a list
of ground truth substitutes for a subset of ingredients,
which we use for automatic evaluation. For creating
this ground truth set as well as for the human eval-
uation, we consider an ingredient as substitute S for
another ingredient I if we can think of several dishes
where I can be substituted by S. The labeling was per-
formed by two authors with amateur cooking experi-
ence.
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6.1.1 Human Evaluation

We randomly sample 200 ingredient-substitute pairs
(I, S) per method and label them regarding their cor-
rectness. We sample these pairs from two portions
of our ingredient set. For 100 pairs, we only sample
from substitute recommendations where the ingredi-
ent I is among the 1,000 most common ingredients in
the recipe dataset. For the other 100 pairs, we sample
from all recommendations. A substitute S can, in both
cases, be from the whole ingredient set. Two authors
labeled these pairs independently to get a more reli-
able evaluation, as we are dealing with an ambiguous
task. The inter-rater reliability using Cohen’s Kappa
lies at 0.72, indicating a substantial reliability (Lan-
dis and Koch, 1977). Given the labels on these two
sets, we compute the overall precision and precision
on common ingredients for all methods. As we have
two annotators, we compute the precision scores sep-
arately for both sets of annotations and then average
them to get the final precision values.

6.1.2 Ground Truth based Evaluation

In comparison to human evaluation, an evaluation on
a ground truth set can measure not only precision but
also recall. The challenge in measuring recall is that
it requires an extensive list of all possible substitutes
for every ingredient. As this is unfeasible, we decided
to create such a list only for a subset of 42 ingredi-
ents. Seven of these are not among the 1,000 most
common ingredients. We started creating the ground
truth set with a selection of 42 ingredients and some
of their substitutes recommended in the Food Substi-
tutions Bible (Joachim, 2010). We continuously ex-
tended the set by manually adding any correct predic-
tions of our approaches if they were missing in the
ground truth. In the end, we evaluated all approaches
with the final ground truth set. This set contains on av-
erage 16.9 substitutes per ingredient and 708 unique
substitute pairs in total.

6.2 Ablation Study on FoodBERT

Since this is to our knowledge the first attempt to fine-
tune BERT for ingredient embeddings, we wanted to
better understand the benefit of fine-tuning BERT for
the food domain. Therefore, we performed an ab-
lation study by replacing FoodBERT with the pre-
trained BERT model bert-base-cased from Hugging
Face (Wolf et al., 2019) for the two methods based on
FoodBERT. The results of these experiments on the
ground truth dataset are shown in Table 1.

It can be seen that fine-tuning on text from the
food domain substantially improves performance. Di-

Table 1: Precision and Recall of FoodBERT methods com-
pared to the same methods using bert-base-cased.

Prec. Recall
FoodBERT-Text 0.806 0.147
BERT 0.151 0.032
FoodBERT Relation Extraction 0.700 0.129
BERT Relation Extraction 0.632 0.085

rectly using the basic BERT embeddings for substi-
tute generation produces poor results with a precision
of 0.151 compared to 0.806 and a lower recall. For
relation extraction, the difference is smaller. BERT is
able to learn the general task of relation extraction on
this dataset, but the additional information about the
food domain still increases the accuracy from 0.632
to 0.700 and the recall from 0.085 to 0.129. These
results are not surprising, as the original BERT vo-
cabulary only contains 137 ingredients from the 4,372
ingredients in our ingredient set. Moreover, several of
these are ambiguous, like animals (”rabbit”, ”lamb”)
or body parts (”liver”, ”breast”), or are homonyms
(”date”).

6.3 Substitution Results

Here we present the quantitative results of our ap-
proaches. Some example substitute predictions can
be found in the appendix in Table 5.

All presented approaches can be tuned for ei-
ther higher precision or higher recall by setting a
method-specific threshold value. Figure 4a shows the
Precision-Recall curves of our approaches for differ-
ent thresholds. Similarly, Figure 4b visualizes the pre-
cision in relation to the average number of predictions
per ingredient. We can see in both cases that for a
small recall or few predictions, Relation Extraction
stands out with the highest precision, and FoodBERT-
Text has the lowest precision together with Pattern
Extraction. When looking at a higher recall or at
least three predictions, FoodBERT shows better re-
sults than the rest, both on its own and in the multi-
modal setting. Relation Extraction’s performance de-
creases sharply and becomes similar to Pattern Ex-
traction, and the Food2Vec approaches are in be-
tween. Another observation from both curves is that
combining text embeddings with image embeddings
yields additional improvement.

For further evaluation, we consider that people
have different food preferences and can have sev-
eral medical conditions like allergies that forbid them
from eating certain foods. In this context, it is vi-
tal to provide the user with some choice when rec-
ommending food substitutes. We therefore chose to
evaluate a version of every approach in more detail,
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(a) Precision - Recall Curve. (b) Precision - Prediction Count Curve.
Figure 4: Precision in relation to recall or prediction count.

which at least predicts three substitutes on average for
the ground truth ingredients. The detailed results for
these versions can be found in Table 2.

The first thing to notice is that generally, learning-
based methods perform better than the rule-based Pat-
tern Extraction. We can further see the FoodBERT
approaches, both the vanilla and the multimodal ver-
sion, excel in our scenario of predicting at least three
substitutes, with considerably better precision values
of 0.806 and 0.844. The Food2Vec approaches follow
with precision values around 0.77 and slightly worse
recall. Relation Extraction and Pattern Extraction per-
form worst with a precision of around 0.70.

The overall low recall across all approaches can
be explained by the average number of 16.9 substi-
tutes per ingredient in our ground truth. The evaluated
versions of the approaches make on average at least 3
predictions per ingredient, which makes it impossible
to achieve a high recall, as the large number of ground
truth substitutes per ingredient can not be predicted.
Nevertheless, the differences in recall between the ap-
proaches still show that the multimodal approaches
perform best with FoodBERT-Multimodal achieving
the highest recall of 0.164. Pattern Extraction and Re-
lation Extraction have the lowest recall, which once
again indicates that they are not very suitable if sev-
eral substitute predictions per ingredient are desired.

The human evaluation was performed using pre-
dictions from the same method versions, which make,
on average, three predictions. The results are shown
in Tables 3 and 4. In comparison to the ground truth
based results in Table 2, Relation Extraction performs
better, whereas Food2Vec approaches are in a worse
position. In Table 3, we can see that approaches with
fewer uncommon predictions achieve higher preci-
sion. At the same time, considering only common
ingredients, meaning the 1,000 most frequent ones,

leads to much fewer uncommon substitute predictions
compared to the results of the overall case in Table 4.
There, we see considerably more uncommon ingredi-
ents and substitute predictions, except for Pattern Ex-
traction and Relation Extraction. Instead of a recipe
corpus, these two approaches use user comments in
which uncommon ingredients are rarely mentioned,
thereby not surpassing the used threshold. Generally,
suggesting fewer uncommon ingredients or, in other
words, having limited creativity by being restricted to
only the most common ingredients, can increase pre-
cision by ”playing it safe”. How much the creativity
of the approach is worth against its precision can not
be decided generally, as it depends strongly on the use
case.

6.4 Discussion

Overall, the results are encouraging, as the ap-
proaches show good performance according to our
evaluation. Nevertheless, accurately evaluating food
substitutes remains a big challenge. Without a unified
benchmark, it is hard to compare different approaches
objectively. However, it is questionable whether the
creation of an exhaustive substitute gold standard is
even feasible, as culinary matters are subjective.

The ground truth dataset we created is biased be-
cause we used our own approaches to expand it. The
unbiased alternative would have been to label all in-
gredient pairs (I, S), where I is from the 42 ingredi-
ents in the ground truth set, and S is from all 4,372
ingredients. This would have resulted in manually la-
beling 183,624 pairs, which was unfeasible. By label-
ing only pairs that any approach predicted, we obtain
a correct precision value, but the recall is an upper-
bound, as the ground truth might miss correct substi-
tute pairs. Still, the relation between the recall values
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Table 2: Precision, Recall, Top-5 Recall, average prediction count for the ground truth ingredients and total prediction count
for all approaches. This shows the best versions of all approaches making at least 3 predictions per ingredient on average.

Precision Recall Top-5 Recall Avg Predictions Total Predictions
Pattern Extraction 0.695 0.126 0.257 3.05 1238
Food2Vec-Text 0.762 0.136 0.224 3.0 13056
Food2Vec-Multimodal 0.771 0.153 0.257 3.33 5908
FoodBERT-Text 0.806 0.147 0.281 3.07 28385
FoodBERT-Multimodal 0.847 0.164 0.338 3.26 33941
Relation Extraction 0.700 0.129 0.248 3.10 1393

Table 3: Top1000: Precision of all approaches in human
evaluation when considering only common ingredients for
sampling. ”S rare” is the approximate proportion of uncom-
mon ingredients predicted as substitute S for pairs (I,S).

Precision S rare
Pattern Extraction 0.64 4%
Food2Vec-Text 0.51 41%
Food2Vec-Multimodal 0.63 39%
FoodBERT-Text 0.76 3%
FoodBERT-Multimodal 0.80 27%
Relation Extraction 0.79 8%

Table 4: Overall: Precision of all approaches in human eval-
uation when considering all ingredients for sampling. ”I
rare” is the approximate proportion of uncommon ingredi-
ents as ingredient I, ”S rare” the proportion of uncommon
ingredients predicted as substitute S for pairs (I,S).

Prec. I rare S rare
Pattern Extraction 0.61 11% 4%
Food2Vec-Text 0.53 78% 86%
Food2Vec-Multimodal 0.66 47% 66%
FoodBERT-Text 0.60 90% 89%
FoodBERT-Multimodal 0.61 92% 91%
Relation Extraction 0.73 10% 8%

of different approaches is valid.
In our human evaluation, we randomly sampled

ingredient-substitute pairs for each approach. This
sampling may have been advantageous for one ap-
proach and less favorable in another method’s case.
However, using the same set of ingredients to evaluate
every approach would carry the same risk of an unfair
comparison, as some approaches might not have pre-
dicted a single substitute for certain ingredients.

Despite these challenges, we provide an over-
all impression of different approaches’ strengths and
weaknesses by considering several evaluation meth-
ods. For our envisioned use case of providing sub-
stitute recommendations while leaving room for per-
sonal choice, FoodBERT-Multimodal is the best ap-
proach, both according to the ground truth based eval-
uation and the Top1000 human evaluation. Of course,
when considering a different use case, for instance, if

one substitute suggestion per ingredient is sufficient,
different methods can be preferable.

7 CONCLUSION AND FUTURE
WORK

In this work, we presented several approaches for the
task of context-free food substitute recommendation.
We demonstrated that learning-based approaches per-
form very well on this task. The comparison of the
approaches showed that in a dietary context, where it
is beneficial to offer a variety of substitutes to choose
from according to personal preferences, the exploita-
tion of the FoodBERT embeddings and especially its
multimodal enhancement perform best.

Our results suggest that FoodBERT’s embedding
space represents knowledge about food items much
better than the embedding space of the original BERT
model. This opens the possibility to apply our model
to other food-related tasks like cuisine-prediction or
estimating meals’ healthiness. Another direction for
future work could be the contextualized setting of
food substitute recommendations, where the specific
use case of an ingredient in a particular recipe is
considered to find substitutes. Since BERT embed-
dings are contextualized, it is promising to apply it to
this task. Also, since ImageNet is not food-focused,
the multimodal model’s understanding of food items
could be improved by fine-tuning the image embed-
ding model on food images.

While the models presented in this paper consider
the usage context of ingredients in order to identify
culinarily fitting alternatives, the selection process for
substitutes can be extended to incorporate other fac-
tors as well, especially regarding healthy nutrition.
With rules based on dietary guidelines, or even an in-
dividually tailored health metric considering personal
nutrient requirements, the substitutes proposed by the
models could be filtered or re-ranked, resulting in sug-
gestions which are both culinarily adequate as well as
conducive to health goals.
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APPENDIX

Table 5: Example substitute predictions of all approaches.

potato
Pattern Extraction pasta, rice
Food2Vec-Text beet, squash, turnip

Food2Vec-Multimodal beet, brussel sprout,
squash, turnip

FoodBERT-Text beet, parsnip, yam
FoodBERT-Multimodal parsnip, plantain
Relation Extraction -

tuna
Pattern Extraction salmon, chicken

Food2Vec-Text crab meat, pickle relish,
salmon

Food2Vec-Multimodal crab meat, pickle relish,
salmon

FoodBERT-Text
crab, crab meat, fish,
prawn, salmon, seafood,
tilapia

FoodBERT-Multimodal crab meat, prawn,
salmon, swordfish, tofu

Relation Extraction chicken, salmon

pork
Pattern Extraction beef, lamb, chicken
Food2Vec-Text beef, chicken, lamb
Food2Vec-Multimodal beef, chicken, lamb, veal
FoodBERT-Text lamb, tenderloin
FoodBERT-Multimodal beef, lamb, tenderloin

Relation Extraction

chicken, beef, fat, veal,
shrimp, turkey, bacon,
sausage, turkey bacon,
chicken breast,
turkey sausage
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